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Due to limitations of computer resources, when utilizing a neural network to process an image with a high resolution, the typical
processing approach is to slice the original image. However, because of the influence of zero-padding in the edge component
during the convolution process, the central part of the patch often has more accurate feature information than the edge part,
resulting in image blocking artifacts after patch stitching. We studied this problem in this paper and proposed a fusion method
that assigns a weight to each pixel in a patch using a truncated Gaussian function as the weighting function. In this method, we
used the weighting function to transform the Euclidean-distance between a point in the overlapping part and the central point of
the patch where the point was located into a weight coefficient. With increasing distance, the value of the weight coefficient
decreased. Finally, the reconstructed image was obtained by weighting. We employed the bias correction model to evaluate our
method on the simulated database BrainWeb and the real dataset HCP (Human Connectome Project). The results show that the
proposed method is capable of effectively removing blocking artifacts and obtaining a smoother bias field. To verify the
effectiveness of our algorithm, we employed a denoising model to test it on the IXI-Guys human dataset. Qualitative and
quantitative evaluations of both models show that the fusion method proposed in this paper can effectively remove blocking
artifacts and demonstrates superior performance compared to five commonly available and state-of-the-art fusion methods.

1. Introduction

In recent years, with the development of deep learning, med-
ical imaging has gradually become one of the most promis-
ing fields of artificial intelligence. Especially in the aspects
of localization and detection, recognition and classification,
lesion segmentation, registration, and fusion in medical
images, deep learning algorithms have played a crucial role
in assisting doctors to diagnose accurately and efficiently
[1]. Medical images have the characteristics of large image
pixels [2], when using neural networks to process them,
due to the limitations of computer video cards and video
memory, directly using the original image as an input will
often lead to insufficient graphics memory. The usual pro-
cessing method involves slicing the original image, recon-
structing the image patches, and then splicing the image
patches. In deep learning, patch-based training methods

have been widely used because they can save GPU memory,
are not affected by insufficient training data, and can obtain
better local performance than other methods [3]. However,
there is also a grid artifact phenomenon at the edge of
patches when they are spliced for image reconstruction as
shown in Figure 1 [3], these artifacts are called image block-
ing artifacts.

To solve this problem, Yang et al. [4] and Hu et al. [5]
obtained the final predicted deformation field by averaging
the overlapping regions of patches when reconstructing the
deformation field in medical image registration. In brain
image registration using dual-supervised fully convolutional
networks, as proposed by Fan et al. [6], only the deformation
field in the central region of the patch is estimated, the input
patch size is 64 × 64 × 64, and the output DDF (dense dis-
placement field) is 24 × 24 × 24. The MINScnn model pro-
posed by Müller and Kramer [7] used the average fusion
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method for the two overlapping patches in the segmentation
field. In the patchify method proposed by Wu, the overlap-
ping region is covered with the next patch [8]. The EDW
(Exponential-Distance-Weighted) method proposed by Wu
et al. [9] uses an exponential function to convert the distance
between the point of the overlapping area and the center
point of the patch into a weight coefficient and reconstruct
the predicted deformation field by weighting. This method
achieved good results.

During image reconstruction, most of the above
methods reduce image blocking artifacts to a certain extent
by reducing the step size or by performing estimates for
the central area of the patch, but blocking artifacts are still
obvious after image reconstruction. Considering the uncer-
tainty of patch edge region prediction, we propose to use
the truncated Gaussian function as a weighting function to
convert the Euclidean distance from the points in the over-
lapping regions to the center point of the patch into a weight
coefficient. The value of the weight coefficient will decrease
with increasing distance, reducing the predicted value in
the patch edge region. Finally, the reconstructed image will
be obtained by weighted fusion. For distance calculation,
we choose Euclidean distance as the distance measure [9].
This method can be applied to any patch-based deep learn-
ing network without modifying the network structure and
loss function. Compared with the image reconstruction
methods used in the above literature, the patch-based fusion
method in this paper shows better performance in both
qualitative and quantitative evaluations.

The paper is organized as follows. In Section 2, we briefly
review the popularly available methods for extracting

patches in deep learning. Section 3 describes the proposed
patch fusion method in detail. In Section 4, we evaluate the
proposed patch fusion algorithm on synthetic and real data-
sets and present the experimental results. At the same time, a
comparison with other state-of-the-art methods is also
given. Conclusions and future works are discussed in Section
5.

2. Common Methods for Extracting Patches

Nonoverlapping slicing is performed directly on the image,
as shown in Figure 2(a). Assuming that the image size is
512 × 512, the image is sliced into four equal parts, and the
size of each patch is 256 × 256. The patches are input to
the network to obtain the reconstructed image patches, and
then, they are stitched together. Because the boundary infor-
mation of each patch is inconsistent after reconstruction, the
stitched image has obvious blocking artifacts.

In overlapping slicing, the image is sliced into patches, so
that there are overlapping areas between the patches, as
shown in Figure 2(b). The red region is the region where
the two patches overlap. Assuming that the image size is still
512 × 512 and the red overlapping region is 8 pixels wide,
then the size of the input patch is 260 × 260. After recon-
struction, in situ pixel stitching is performed, and the red
overlapping part is taken as the average value after stitching.
This scheme has a better effect in removing the blocking
artifact. However, since the average weighting method is
adopted for the overlapping region, the weight of the pixels
in the overlapping region is the same no matter how far
away from the center point, so grid artifacts appear.

When padding is used around the image block, a patch is
obtained as shown in block 1 in Figure 2(c). First, the pad-
ding is made around the image, the image is sliced after pad-
ding, and the cyan line is the central axis of the image. For
example, in block 1, the orange part is the size of the original
image block, and the surrounding red area consists of the
expanded pixels. If the original image block is 256 × 256
and the red area occupies a width of 8 pixels, the input patch
size is 272 × 272 (256 + 8 ∗ 2) for reconstruction. Then, the
reconstructed image block is cut with a width of 8 pixels
around to obtain a patch with a size of 256 × 256, and finally,
it is stitched in sequence. For image block 1, the red part is
removed after reconstruction. For image block 2, the blue
part on the left needs to be cut off. This scheme is better than
the previous two schemes in removing blocking artifacts, but
it will be affected by stride. The smaller the stride is, the bet-
ter the effect of removing blocking artifacts. However, the
smaller stride, the greater the amount of calculations. Since
the weight of the entire estimated central region is the same,
the image blocking artifacts will still occur.

3. Methods and Theories

3.1. One-Dimensional Gaussian Distribution. The one-
dimensional Gaussian function has the following form [10]:

f xð Þ = ae− x−bð Þ2/2c2 , ð1Þ

Figure 1: Image blocking artifacts after patch-based image
reconstruction.
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where a, b, and c are arbitrary real numbers. The Gaussian
curve graph is a characteristically symmetrical “bell curve”
shape, where a represents the height of the peak of the curve,
b is the position of the center of the peak, and c is called the
standard variance, which is a parameter used to control the
width of the “bell.” Let a = 1, b = μ (mean value) and c = σ
(standard variance); the Gaussian distribution can be
obtained as follows:

G xð Þ = e− x−μð Þ2/2σ2 : ð2Þ

Its function curve is shown in Figure 3.
The horizontal axis represents the possible values, the

vertical axis represents the probability distribution density
GðxÞ, the expected value μ of the normal distribution deter-
mines the center of the curve, and the standard variance σ
determines the magnitude of the distribution. In Figure 3,
the settings are a = 1, b = μ = 0. Hence, the peak heights
and center positions of all curves are the same. With increas-

ing standard variance, the graph becomes wider, the distri-
bution becomes dispersed, and the area of the graph
becomes increasingly larger. The closer the value of x is to
the center, the greater the value of GðxÞ. Therefore, we can
use this feature of the Gaussian function by assigning the
distance from the pixel’s location to the center point of the
patch as the input x to the Gaussian function and calculating
the weight coefficient of each pixel point through Gaussian
function [11].

3.2. The Proposed Patch Fusion Method. In Figure 4, the
blue part is patch 1, B is the central point of patch 1,
the orange part is patch 2, C is the central point of patch
2, and the red part is the overlapping part of these two
patches. It can be seen that pixel A is closer to the central
point B in patch 1 in the overlapping area, so its predicted
value in patch 1 is more accurate. To reduce the weight of
the predicted value of the pixel located at the boundary,
we convert the Euclidean distance between the pixel and
the center of the patch to the weight coefficient of the

(a) Nonoverlapping patches (b) Overlapping patches

(c) Extracting the patch around the padding of the image block

Figure 2: Three methods for extracting patches of images.
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pixel through the Gaussian truncation function. The for-
mula is defined as follows [11, 12]:

W yð Þ =
1
z
e− yj j2/2σ2 , for yj j ≤ ρ,

0, else,

8
<

:
ð3Þ

where σ represents the standard variance, z represents the
normalization factor of the normalized Gaussian kernel,
and ρ represents the radius to measure the size of the
local region. Therefore, in Figure 4, assuming that the pre-
dicted value of point A in patch 1 is PAB and the predicted
value in patch 2 is PAC , the final predicted value of point
A is PA =Wðy1ÞPAB +Wðy2ÞPAC .

We take a two-dimensional graph as an example.
Assuming that the image size is M ×N , the patch size is h
×w, and the stride size is s, n patches can be generated,
and the value of n can be calculated by

n = M − h − sð Þ
s

� �
N − w − sð Þ

s

� �

: ð4Þ

In these n patches, the Gaussian distribution of the dis-
tance between each pixel point and the center point of the
patch is the same, which is calculated by Formula (2). The
Gaussian function value corresponding to the pixel point ði
, jÞ in the kth patch can be recorded as Gði,jÞ

k ðykÞ, k ∈ ½1, n�,
where yk is the Euclidean distance from this point to the cen-
tral point of the patch. Therefore, Formula (3) can be

expressed by Gði,jÞ
k ðykÞ.

Assuming that the pixel point Oði, jÞ overlaps m times,
m =mi ×mj, i ∈ ½0,M − 1�, j ∈ ½0,N − 1�, then mi can be cal-
culated by Formula (6) [9], and the edge part that cannot

be obtained by the patch is discarded. The value of mj can
be obtained by replacing M in Formula (6) with N . Assum-

ing that the m predicted values of the pixel point are Pði,jÞ
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Figure 3: The Gaussian function curve (a = 1, b = μ, c = σ).
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Figure 4: Schematic diagram of patch overlap. The red part is the
overlapping area, and B and C are the center points of patch 1 and
patch 2, respectively. A is a point in the overlapping area, and y1
and y2 are the distances from point A to the two center points.

W ykð Þ =
1
z
G i,jð Þ
k ykð Þ, for ykj j ≤ ρ,

0, else,

8
<

:
ð5Þ

mi =

i
s

� �

+ 1, i < h,

h
s
, h ≤ i ≤

M − h − sð Þ
s

� �

s − 1,

M + sð Þ/sb c − 1ð Þs − i
s

� �

,  M − h − sð Þ
s

� �

s − 1 < i < M + s
s

� �

− 1
� �

s,

0,  M + s
s

� �

− 1
� �

s ≤ i:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð6Þ

4 Computational and Mathematical Methods in Medicine



= fpði,jÞ1 , pði,jÞ2 ,⋯, pði,jÞm g and the weight coefficients of the m

predicted values calculated by Formula (5) are Wði,jÞ = f
Wði,jÞ

y1 ,Wði,jÞ
y2 ,⋯,Wði,jÞ

ym g, then the final predicted value of
the pixel point Oði, jÞ is

P̂
i,jð Þ = P i,jð Þ ⋅W i,jð Þ = 〠

m

k=1
p i,jð Þ
k W i,jð Þ

yk
, ð7Þ

where ∑m
k=1W

ði,jÞ
yk

= 1.

4. Experimental Results and Analysis

To evaluate the effective fusion ability of the algorithm, we
employed DN-RESnet (a deep convolutional neural network
consisting of several residual blocks) [13] as the training
model. The bias field removal experiment was carried out on
the simulation database BrainWeb [14–15] and the real data-
set HCP (Human Connectome Project) [16]. Meanwhile, we
also used the DnCNN (De-nosing Convolutional Neural Net-

work) denoising model [17] for validation on the IXI-Guys
(http://brain-development.org/ixidataset) dataset [18].

4.1. Validation of the Proposed Fusion Method in the Bias
Removal Model

4.1.1. Results Obtained on the Simulation Database BrainWeb.
In the Simulated Brain Database (SBD) [15], the size of each
MRI brain image volume is 181 × 217 × 181 voxels with a res-
olution of 1 × 1 × 1mm3. 2D MRI slices were extracted from
the volumes for training and testing, with different intensity
nonuniformity (INU) levels (20%, 40%, and 60%) on the axial
plane, respectively. We used rotation, mirror imaging, transla-
tion, and other methods to expand the samples. Finally, 604
slices were obtained for training and 30 slices for testing from
the volume of each INU level. In order to obtain fewer redun-
dant regions, we cropped the edges of each slice, so the slice
size becomes 210 × 180. In the training stage, we set the patch
size to 60 × 60, and obtained 99 patches from each image by
using a sliding window with a stride of 15 × 15. Finally, we
obtained 59796 patches.
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Figure 5: MSE values of different standard variance on different INU level datasets.
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Figure 6: SSIM values of different standard variance on different INU level datasets.
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Figure 7: Continued.
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In our algorithm, we needed to set the value of the stan-
dard varianceσ. We conducted experiments on datasets with
different (INU) levels (20%, 40%, and 60%) setting the value
of σ in the range of 1 to 20. The mean square error (MSE)
and the structural similarity index (SSIM) were used as the
quantitative evaluation criteria after image reconstruction.
The results are shown in Figures 5 and 6.

It can be seen from Figures 5 and 6 that when the INU
level is not high (20%, 40%), no matter what the value of
the standard variance σ was, it had little effect on the MSE
and SSIM after image reconstruction. However, when the
INU level increased to 60%, MSE and SSIM values fluctuated
for different values of σ. When σ = 4, MSE and SSIM showed
better performance. At the same time, we also performed the

(e) (f)

(g) (h)

Figure 7: Contaminated image, real image, and bias field images obtained by different fusion methods from the BrainWeb database: (a)
original image (INU = 40%, noise level = 0%); (b) real image; (c) NPS; (d) AAW; (e) MIScnn; (f) pathify; (g) EDW; (h) proposed method.

Table 1: MSE values between the real image and the corrected
images obtained by different fusion methods.

Methods n3-20 n0-40 n0-60

NPS 13:60 × 10−4 2:139 × 10−4 8:228 × 10−4

AAW [5] 16:95 × 10−4 2:054 × 10−4 6:575 × 10−4

MIScnn [7] 48:57 × 10−4 2:108 × 10−4 7:079 × 10−4

Pathify [8] 13:53 × 10−4 2:110 × 10−4 7:985 × 10−4

EDW [9] 6:593 × 10−4 2:053 × 10−4 7:887 × 10−4

Proposed 4:193 × 10−4 2:051 × 10−4 6:212 × 10−4
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same experiments on the real dataset HCP [16] and reached
at consistent conclusions. Therefore, in the bias removal
experiment of our algorithm, the standard variance σ was
set to 4.

To evaluate the fusion ability of the proposedmethod after
image reconstruction, we compared the proposed method
with popularly available and state-of-the-art nonoverlapping
patch splicing (NPS) method, arithmetic average weighted
method (AAW) [5], MIScnn [7], Pathify [8], and
Exponential-Distance-Weighted method (EDW) [9] on three
datasets with different INU levels from BrainWeb. The dataset
with INU = 20%and noise level = 3% was denoted as n3-20,
the dataset with INU = 40%and noise level = 0% was denoted
as n0-40, and the dataset with INU = 60%and noise level = 0
% was denoted as n0-60. The experimental results are shown
in Figure 7, Table 1, and Figure 8.

In Figure 7, we show the bias field images fused by differ-
ent methods. The bias field images of NPS (Figure 7(c)) and
Pathify (Figure 7(f)) demonstrate an obvious blocking arti-
fact phenomenon, while the blocking artifact phenomena
of AAW (Figure 7(d)) and MIScnn (Figure 7(e)) are greatly
improved, but the seam line between patches are vaguely vis-
ible. The AAW method is greatly affected by the stride. The
larger the stride is, the more obvious the blocking artifact
phenomenon is. However, in Figure 7(e), the MIScnn
method also shows the phenomenon of uneven bias field,
indicating the inaccurate prediction of the edge region.
EDW (Figure 7(g)) and our method (Figure 7(h)) consider
the uncertainty of edges and assign different weights to the
central region and the edge region, effectively eliminating
the grid artifacts. From Table 1 and Figure 8, it is observed
that on the n0-40 dataset, our method has little difference
from the EDW method, but on the n3-20 and n3-60 data-
sets, our method shows better performance in the quantita-
tive evaluation of MSE and SSIM than EDW, indicating
that our method has better generalization ability.

4.1.2. The Results from the Real Database HCP. HCP [16]
real human brain dataset contains T1-W and T2-W struc-

tural MR images of healthy adults from Siemens Skyra 3T
scanner, along with the corresponding bias fields images.
For detailed information, please refer to [19]. In the experi-
ment, we randomly selected the T1-W structural images of
10 patients from the dataset. The size of each MRI brain
image was 260 × 311 × 260 voxels, and the resolution was
0:7 × 0:7 × 0:7mm3. We randomly selected 1000 slices from
these 10 brain image volumes. To better train the model, we
augmented the data with rotation and mirroring methods
and finally obtained 3200 training samples and 200 testing
samples. Similarly, to speed up the training process and
obtain fewer redundant regions, we cropped the image edges
of each sample with size 300 × 240. In the training stage, we
set the patch size to 60 × 60 and obtained 63 patches from
each image by using a sliding window with a stride of 30 ×
30. Finally, we obtained 201600 patches.

In Figure 9, we show the bias field images from HCP fused
by different methods and the corrected images. It can be seen
that the bias field images fused by the NPS, AAW, MIScnn,
and Pathify methods have obvious seam lines at the junction
between patches, which indicates that the prediction at the
boundary region is not accurate. EDW and our proposed
method can effectively reduce grid artifacts by assigning differ-
ent weights to pixels in different regions. In the enlarged red
box of the corrected image, it can be seen that there are no grid
artifacts in Figures 9(g) and 9(h). Meanwhile, it can be seen
from Figures 9(g) and 9(h) that the bias field obtained by
our method is smoother, and the intensity of each tissue area
of the corrected image looksmore consistent, which is obvious
in the white matter region of Figure 9(h). This conclusion is
also verified in Table 2. Our method can obtain a lower MSE
value and a higher SSIM value.

In the AAW method, the stride size has a great influence
on the patch fusion effect. Therefore, on the HCP dataset, we
verified the effect of different stride sizes on the fusion effect
of AAW [5], EDW [9], and the method proposed in this
paper. Table 3 lists the number of patches obtained on each
image with different stride sizes and the fusion time of these
three methods. At the training stage, we used a sliding window
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0.965
SS

IM
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n0-40 n0-60
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MIScnn[3]

Pathify[6]
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Figure 8: SSIM values between the real image and the corrected images obtained by different fusion methods.
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(a) (b)

(c) (d)

Figure 9: Continued.
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(e) (f)

Figure 9: Continued.
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(g) (h)

Figure 9: Bias field images obtained by different fusion methods on real HCP data and corresponding corrected images: (a) original image,
(b) real image, (c) NPS, (d) AAW, (e) MIScnn, (f) pathify, (g) EDW, and (h) proposed method.

Table 2: The MSE values, SSIM values and synthesis time between the real image and the corrected image obtained by different fusion
methods.

Method NPS AAW [5] MIScnn [7] Pathify [8] EDW [9] Proposed

MSE 1:233 ∗ 10−3 1:130 ∗ 10−3 1:136 ∗ 10−3 1:468 ∗ 10−3 1:139 ∗ 10−3 1:104 ∗ 10−3

SSIM 0.9882 0.9909 0.9913 0.9869 0.9936 0.9942

Time (s) 0.25 0.40 0.41 0.39 1.79 1.81

Table 3: The number of patches extracted from each image with different strides and the fusion time.

Stride 10 × 10 20 × 20 30 × 30
Patch number 475 130 63

Fusion time (s)
AAW EDW Proposed AAW EDW Proposed AAW EDW Proposed

1.77 6.16 6.20 0.61 2.44 2.45 0.37 1.79 1.81
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(a)

(b)

(c)

Figure 10: Continued.
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(d)

Figure 10: Bias field images obtained by fusing patches with AAW, EDW, and the proposed methods under different strides. (a) The
original image and the real image. (b) The result of AAW. (c) The result of EDW. (d) The result of the proposed method. The step sizes
from left to right are 10 × 10, 20 × 20, 30 × 30.
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Figure 11: MSE values of AAW, EDW, and the proposed methods using different strides on the HCP dataset.
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Table 4: Average MSEs, PSNRs, and SSIMs of different fusion methods on the IXI-Guys dataset.

Method NPS AAW [5] MIScnn [7] Pathify [8] EDW [9] Proposed

MSE 4:574 ∗ 10−4 3:034 ∗ 10−4 3:024 ∗ 10−4 3:064 ∗ 10−4 2:986 ∗ 10−4 2:971 ∗ 10−4

PSNR 32.85 35.64 35.67 35.61 35.71 35.76

SSIM 0.9789 0.9833 0.9838 0.9835 0.9841 0.9843

(a) (b)

(c) (d)

Figure 13: Continued.
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with a stride of 30 × 30 to obtain 63 patches from each image
and finally obtained 201,600 patches. At the test phase,
according to Equation (6), we used sliding windows of differ-
ent strides to extract patches as shown in Table 3 and explored
the performance of the proposed fusion method.

In Figure 10, we can see that the AAW method
(Figure 10(b)) is greatly affected by the stride size. When the
stride size is 10 × 10, the image blocking artifact is not obvious
in the fused bias field image, but with increasing stride size,
obvious grid artifacts appear in the fused image. The EDW
method (Figure 10(c)) and our method (Figure 10(d)) are less
affected by the stride size. From the line chart of the quantita-
tive evaluation index MSE in Figure 11, we can see that the
highest point of the AAWmethod fluctuates by approximately
9% relative to the lowest point, while the highest point of the
EDW method and our method fluctuates by less than 1% rel-

ative to the lowest point %. In Figure 12, we show the change
in SSIM value with the change in stride size. The SSIM value of
the AAW method decreases obviously with increasing stride.
Although the SSIM values of the EDW method and our
method fluctuate with the change in stride, their amplitude
is small. In addition, compared with the EDW method, our
method resulted in a smoother bias field image. As seen from
Figure 12, ourmethod can obtain a higher SSIM value than the
EDW method despite the INU level, regardless of stride size.

As seen in Table 3, the smaller the step size, the more the
number of patches extracted from each image; hence, the
fusion time increases accordingly. Although the AAW
method can obtain a relatively smooth bias field image when
the stride is 10 × 10, the fusion time difference is very small
compared with the other two methods when the stride is
30 × 30. However, there are still blocking artifacts in the

(e) (f)

(g) (h)

Figure 13: Images from the IXI-Guys dataset with 30% level Rician noise, real images, and denoised images obtained by different fusion
methods: (a) noise image, (b) noise-free image, (c) NPS, (d) AAW, (e) MIScnn, (f) pathify, (g) EDW, and (h) proposed method.
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images fused by the AAW method. Our method and the
EDW method are less affected by the stride. Even when the
stride is 30 × 30, the bias field image obtained does not
appear to contain image blocking artifacts, having a lower
MES value and higher SSIM value than the AAW method.
Therefore, in the experiment on HCP database, to shorten
the fusion time, we uniformly used a sliding window with
a stride of 30 × 30 to extract patches.

4.2. Validation of the Proposed Fusion Method on the
Denoising Model for 3D Brain MR Images. To further evalu-
ate the fusion performance of the proposed algorithm, we
adopted the DnCNN denoising model [18] for validation on
the IXI-Guys human dataset. We randomly selected 20 T1w
brain images from the IXI-Guys dataset with an image size
of 256 × 256 × 150 and voxel resolution of 0:9375 × 0:9375
× 1:2mm3 [20, 21]. 12 images were randomly selected as the
training set, 4 images were used for verification, and the other
4 images were used for testing. In this dataset, we manually
added 30% Rician noise to simulate the noise image [22]. In
order to better train the model, we cropped the image to 240
× 240 × 150, used the mirroring method to augment the data,
and finally obtained 36 training samples. For patch-based
training, we set the patch size to 60 × 60 × 60 and used a slid-
ing window with stride 30 × 30 × 30 to obtain 196 patches
from each image. Finally, we obtained 7056 patches for train-
ing the 3D model. Our fusion algorithm is evaluated on the
testing set based on three aspects: MSE, PSNR (peak signal-
to-noise ratio), and SSIM. The results are shown in Table 4.

In Table 4, we quantitatively compared the image quali-
ties of the proposed fusion method and the state-of-the-art
fusion methods in terms of MSE, PSNR, and SSIM [23] by
training the denoising model on the 3D IXI-Guys human
dataset. As seen from Table 4, the fusion method proposed
in this paper shows lower MSE and higher PSNR and SSIM
than other methods, which further proves the effectiveness
of our method. In addition, in the enlarged red box in
Figure 13, it can be seen that the denoising images of NPS,
AAW, MIScnn, and Pathify have obvious seam lines
between patches, which further illustrates the difference in
the prediction of boundary regions between adjacent
patches. However, in Figures 13(g) and 13(h), this situation
is much better, because both the EDW method and our
method fully consider the uncertainty of the edge and assign
different weights to the central and the edge regions to solve
the problem. However, a small grid artifact appears faintly in
Figure 13(g), while in Figure 13(h) obtained by our fusion
method, there is no grid artifact and is smoother than EDW.

5. Discussion and Conclusions

In deep learning, when the resolution of the image to be
processed is too large and the resources (such as video card
and video memory) are limited, the image is divided into
small patches for processing, and the image patches are
reconstructed and then spliced. Since the zero-padding
method is commonly used in deep learning networks to
ensure the consistency of input and output sizes, this
method can lead to uncertainty in edge prediction. After

image reconstruction, obvious blocking artifacts appear in
the spliced image due to the inconsistency of the boundary
information of each patch processed. To solve this problem,
we have studied the most popularly available patch fusion
methods and proposed a fusion method with a truncated
Gaussian function as a weighting function to assign weights
to each pixel in the patch. In this method, we used the
weighting function to convert the Euclidean-distance
between the overlapping point and the central point of the
patch into a weight coefficient, considered the predicted
pixel values in all patches, and reduced the weight of the pre-
dicted pixels at the boundary. Finally, we obtained the pre-
dicted pixel values through the weighted calculations.

We carried out experiments on the simulated database
BrainWeb and the real dataset HCP using the bias removal
model. After comparing the proposed method with the pop-
ularly available fusion methods, NPS, AAW, MIScnn, patch-
ify, and EDW, our method can obtain a super seamless and
smooth bias field image. As evidenced by quantitative anal-
ysis, our fusion method achieves lower MSE and greater
SSIM on both simulated and real data, which is clearly supe-
rior to the other five methods. In addition, we also discussed
the bias field images obtained by AAW, EDW, and our pro-
posed method with different stride on the HCP dataset. To
further demonstrate the robustness of our method, we con-
ducted experiments by training a denoising model on the
IXI-Guys human dataset. Experimental results show that
our fusion method also performs better than other five
methods in quantitative analysis of MSE, PSNR, and SSIM
on 3D dataset. However, our method has two shortcomings:
(1) the standard variance of Gaussian function σ needs to be
determined. Different application backgrounds require dif-
ferent values of σ. For example, in the bias removal model,
the best fusion performance is achieved when σ = 4, while
on the 3D brain image denoising model, the best fusion per-
formance is achieved when the value of σ is around 8; (2)
while our approach for obtaining an artifact-free image
under a wider sliding window takes about the same amount
of time as the AAW method for obtaining the same quality
image under a smaller stride, it still takes a lengthy period.
In a future work, we hope to be able to adaptively select
the hyperparameters of different scenes and further optimize
the algorithm to shorten the running time.

In this paper, we introduced a truncated Gaussian func-
tion as a weighting function, which converted the Euclidean
distance between each pixel in the patch and the center point
into the weight coefficient of this pixel, to reduce the image
blocking artifact in patch-based image reconstruction. We
demonstrated that the method proposed in this paper has
significant advantages over existing patch fusion methods.
Additionally, our approach can be applied to any patch-
based deep learning model, even when the model is already
trained.

Data Availability

All datasets used in this study are discussed in Section 4.
They are publicly available and cited in the list of references.
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