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ABSTRACT
Approximately 15% of colorectal cancer (CRC) cases present with high levels 

of microsatellite instability (MSI-H). Bulk RNA-sequencing approaches have been 
employed to elucidate transcriptional differences between MSI-H and microsatellite 
stable (MSS) CRC tumors. These approaches are frequently confounded by the complex 
cellular heterogeneity of tumors. We performed single-cell deconvolution of bulk 
RNA-sequencing on The Cancer Genome Atlas colon adenocarcinoma (TCGA-COAD) 
dataset. Cell composition within each dataset was estimated using CIBERSORTx. Cell 
composition differences were analyzed using linear regression. Significant differences 
in abundance were observed for 13 of 19 cell types between MSI-H and MSS/MSI-L 
tumors in TCGA-COAD. This included a novel finding of increased enteroendocrine (q 
= 3.71E-06) and reduced colonocyte populations (q = 2.21E-03) in MSI-H versus MSS/
MSI-L tumors. We were able to validate some of these differences in an independent 
biopsy dataset. By incorporating cell composition into our regression model, we 
identified 3,193 differentially expressed genes (q = 0.05), of which 556 were deemed 
novel. We subsequently validated many of these genes in an independent dataset of 
colon cancer cell lines. In summary, we show that some of the challenges associated 
with cellular heterogeneity can be overcome using single-cell deconvolution, and 
through our analysis we highlight several novel gene targets for further investigation.

INTRODUCTION

Colorectal cancer (CRC) is a complex, heterogenous 
disease. At least two broad molecular pathways contribute 
to the development of CRC tumors: microsatellite 
instability (MSI) and chromosomal instability (CIN). 
Microsatellite instability-high (MSI-H) tumors account for 
~15% of CRC tumors, and are driven by a dysregulation 
of mismatch repair (MMR) [1]. The majority of MSI-H 
tumors (80%) occur via acquired epigenetic silencing of 
the MMR gene MLH1. In contrast, microsatellite stable 
(MSS) tumors account for the majority (~85%) of CRC 
tumors, and are defined by increased loss or gain and 
rearrangement of chromosomes (CIN phenotype) [2]. 
MSI-H and MSS tumors have been shown to differ with 
regards to survival [3] and response to treatment [4], 
but the molecular mechanisms driving the differences 

between these tumor types remain poorly understood. One 
commonly employed approach to interrogate differences 
between tumor types is through a comparative analysis 
of RNA-sequencing (RNA-seq) data [5]. However, the 
cellular heterogeneity of tumors can mask important gene 
expression differences identified by RNA-seq. To improve 
understanding of the molecular mechanisms across 
tumor subtypes, cellular composition must be adequately 
controlled. 

Various methodological advances have been made 
to address the problems arising from tumor cellular 
heterogeneity including the sorting of cell populations 
prior to RNA-seq and the development of single-cell 
RNA-seq (scRNA-seq) approaches. However, these 
studies are often limited by factors such as availability 
of sufficient material or high cost associated with 
scRNA-seq. While these methods increase resolution, 
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they are often hindered by small study designs, which 
reduces generalizability. The application of single-cell 
deconvolution approaches using bulk RNA-seq data 
therefore provides an opportunity to infer cell composition 
differences of large tumor datasets at reduced cost [6]. 
Indeed, our group has previously employed single-cell 
deconvolution to quantify and account for variation in cell 
composition in a large colon organoid study [7]. 

In this study, we aim to identify differences in cell 
composition between MSI-H and MSS/microsatellite 
instability-low (MSI-L) tumors in The Cancer Genome 
Atlas Colon Adenocarcinoma (TCGA-COAD) dataset 
[8]. We achieve this by using a machine learning approach 
[6] and by incorporating scRNA-seq data derived from 
normal colon biopsies [9] to deconvolute bulk RNA-seq 
data [8]. We estimate cell type abundance and identify 
novel cellular composition differences between MSI-H 
and MSS/MSI-L tumors, which we then validate in an 
independent cohort of CRC tumors [10]. Following 
adjustment for cell composition, we identified novel 
differentially expressed genes (DEG)s between MSI-H and 
MSS/MSI-L tumors in TCGA-COAD and replicate many 
of these DEGs in an independent analysis of colon cancer 
cell lines derived from Cancer Cell Line Encyclopedia 
(CCLE) [11]. Together, we provide data showing that 
single-cell deconvolution analysis of tumors can be used 
to address cellular heterogeneity, and has the potential to 
reveal novel insight into tumor biology. 

RESULTS

Differential expression of genes specific to 
immune cell types are commonly overexpressed 
in MSI-H tumors 

MSS and MSI-L tumors were merged for 
comparisons to MSI-H tumors in all downstream analysis 
based on the similarities of expression profiles observed 
between MSI-L and MSS tumors (Supplementary Figure 
1A). Further, a total of 89 significant DEGs (q = 0.05) 
were identified in our preliminary regression analysis 
of MSI-L vs MSS tumors. This was in stark contrast to 
the extent of transcriptomic variation observed between 
MSI-H versus MSI-L (5,472 DEGs) or MSI-H versus 
MSS tumors (8,641 DEGs), where 61.48- and 97.01-
fold more DEGs were reported than in MSI-L vs MSS 
tumors, respectively (Supplementary Figure 1B). This is 
in line with clinical practice, where MSI-L tumors are 
often considered to be similar to MSS tumors [12]. This 
grouping has also been used in other studies [13]. 

Differential expression analysis of RNA-seq data 
from MSI-H versus MSS/MSI-L tumors identified 
8,693 FDR corrected DEGs (q = 0.05). Our preliminary 
analysis aimed to determine the potential impact of 
cell composition on the DEGs reported in an RNA-seq 
analysis of MSI-H versus MSS/MSI-L tumors. We found 

that 17.92% (1,558) of these DEGs were potential markers 
of specific cell types [9]. In total, 72.62% (515/656) of 
significant DEGs corresponding to immune cell markers 
were expressed at higher levels in MSI-H versus MSS/
MSI-L tumors (Figure 1). This finding is in line with 
reports that MSI-H tumors are most frequently associated 
with increased immune cell populations [14]. We extended 
this analysis by increasing the resolution of the cell types 
considered (Supplementary Table 1). We found that 
expression markers of both transit amplifying (TA) and 
CD8+T cell populations were consistently higher in MSI-H 
versus MSS/MSI-L tumors. Further, significant reductions 
in expression were identified for 41 of 50 FDR corrected 
stem cell-related genes in MSI-H tumors, including LGR5 
(q = 2.67E-04). Significant reductions in expression were 
also identified for 101 of 146 FDR corrected colonocyte 
expression markers in MSI-H tumors. Thus, many of the 
significant differences identified in standard regression 
analysis of tumor biopsies are reflective of variation in 
cell composition across tumors.

To address the challenge of cellular heterogeneity and 
to accurately capture cell composition of TCGA-COAD 
tumors, we employed single-cell deconvolution using 
publicly available scRNA-seq data generated from normal 
colon biopsies [9]. A signature matrix was generated from 
scRNA-seq data, which stratified cell populations based 
upon the average gene expression of select genes (defined 
by CIBERSORTx) across the 19 cell types considered 
(Figure 2A). Cell scores were then generated for these cell 
types using this signature matrix [6]. Regression analysis 
was performed on each cell score to determine whether cell 
scores capture known expression markers of relevant cell 
types. One-way Fisher’s exact tests determined significant 
enrichments for known expression markers in the DEGs 
identified in these cell score regressions (Figure 2B) [9]. 
Glial cell gene expression markers were not provided 
within the scRNA-seq dataset. As such, we identified 
canonical gene expression markers for glial cells using 
an online database [15]. Of the eight canonical markers 
of enteric glial cells identified, ALDH1A3 (q = 1.49E-25), 
SLC18A2 (q = 3.39E-11), S100B (q = 9.69E-11), FOXD3 (q 
= 5.98E-10), SLC18A2 (q = 3.39E-11), GFAP (q = 3.58E-09) 
and GFRA3 (q = 1.24E-04) were significantly upregulated (q 
= 0.05) in glial cell regressions of TCGA-COAD tumors. 
These findings highlight that the deconvolution approach 
used here accurately captures the expected expression of 
relevant cell types. 

We used immunedeconv [16] to generate stromal 
and immune cell scores in matched tumor samples using 
four additional deconvolution methods [17–20]. We 
were able to estimate the relative performance of each 
method by correlating cell type expression markers to 
cell scores generated from each approach. We considered 
performance as the difference (shift) in median correlation 
between cell score and expression markers of that cell 
type, and the median correlation of the same cell score to 
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expression markers of other cell types. The performance 
of our cell scores was comparable to other approaches 
(Supplementary Table 2). 

Finally, we compared the correlation of CRC 
stem cell markers LGR5, CD24 and EPCAM to both a 
previously generated stemness score [21] and to the stem 
cell scores generated in our analysis. We found that LGR5, 
CD24 and EPCAM were more positively correlated with 
stem cell scores generated in our method (r = 0.26; r = 
0.45; r = 0.38 respectively) than with the stemness score 
(r = 0.08; r = 0.14; r = 0.30 respectively). We extended 
this approach to determine the relative ability of stemness 
scores, stem cell scores and cycling TA cell scores to 
capture the expression of markers of normal colon stem 
cells and TA cells [9] (Figure 2C). We find that stem 
cell scores generated here are better able to distinguish 
TA and stem cell gene maker expression than markers of 
stemness. These results are perhaps unsurprising given 
that the stemness score was originally designed as a pan 
cancer score of global dedifferentiation, rather than a 
colon-specific marker of stem cell content. 

Defining a high-resolution cellular roadmap of 
CRC tumors

We first aimed to determine differences in overall 
cell composition between MSI-H and MSS/MSI-L 
tumors. A linear regression was performed on MSI status 
for each cell score. Significant differences in 13 of 19 
cell populations were identified (q = 0.05) (Figure 3). 
Increased cell abundance was observed for six of eight 
immune cell populations in MSI-H tumors, in line with 
increased immune cell content associated MSI-H tumors 
[14]. A cytolytic signature was generated for each sample 
by averaging the expression of six genes (GZMA, GZMB, 
GZMH, GZMK, GZMM and PRF1), as demonstrated in 
Rooney et al. [22]. This signature was strongly correlated 
to CD8+T cell content (r = 0.76). Further, MSI-H CD8+T 
cells were found to have a significantly increased cytolytic 
score (P = 1.53E-53), indicating an increased potential for 
tumor immune cell killing in MSI-H samples. We also 
observed an increase in enteroendocrine cell (EEC) content 
(q = 3.71E-06), in MSI-H versus MSS/MSI-L tumors. To 
the best of our knowledge, this analysis represents the 
first to report this finding. We also observed a decrease 
in colonocyte (q = 2.21E-03) and stem cell content (q = 
4.23E-21) as well as an increase in the cycling TA cell 
population (q = 2.32E-10) in MSI-H tumors, highlighting 
the importance of considering cellular heterogeneity of 
epithelial cells in these analyses.  

We were able to validate some of these changes in 
cellular composition in a second, smaller cohort of MSI-H 
tumors (GSE146889) [10]. We were unable to capture 
EEC, dendritic cell or innate lymphoid cell gene signatures 
(Supplementary Figure 2). As a result, no analysis was 
performed on these cell types in this dataset. We replicated 

reduced stem cell (P = 0.02) as well as increased cycling 
TA (P = 7.05E-03) and macrophage cell content (P = 0.029) 
in MSI-H versus MSS tumors. Further, we also observed 
trends for a significant increase in CD8+T cells (P = 0.076) 
and a reduction in colonocytes (P = 0.08) in MSI-H versus 
MSS tumors (Supplementary Figure 3). 

For sensitivity, we repeated our analysis of TCGA-
COAD by stratifying MSS and MSI-L. Here, we found 
that all 13 significant cell populations remained significant 
(q = 0.05) in a regression of MSI-H versus MSS, while 
no significant differences were observed between MSS 
and MSI-L tumors. Of the 13 significantly different cell 
populations identified between MSI-H and MSS tumors, 
seven were also found to be significantly different 
between MSI-H and MSI-L tumors (Table 1). Replication 
of three additional cell types was confirmed at a nominal 
significance threshold (P = 0.05). These data further 
support a strong similarity between MSS and MSI-L 
tumors.

Differential expression following adjustment for 
cell composition

To correct for the effects of cell composition in 
our analysis of MSI-H versus MSS/MSI-L tumors, we 
repeated our initial regression while incorporating cell 
composition scores. We identified 3,193 DEGs (q = 0.05), 
of which 556 were not reported in our original analysis 
and were thus deemed novel (Figure 4A). Pathway 
analysis performed on the novel DEGs that displayed 
reduced expression in MSI-H compared to MSS/MSI-L 
tumors revealed an enrichment for DNA repair (q = 2.81E-

06). Indeed, 124 Gene Ontology biological processes were 
enriched in this analysis, of which 15 were associated with 
DNA damage, mismatch or repair processes (Figure 4B). 
Interestingly, PMS1 (q = 1.90E-03), MSH2 (q = 2.80E-03) 
and MSH6 (q = 0.02) only reached significance following 
adjustment for cell composition. Inherited mutations 
of these genes are associated with Lynch syndrome, a 
genetic condition that greatly increases the risk of MSI-H 
tumor development [23]. In contrast, pathway analysis 
of downregulated DEGs that were no longer significant 
following adjustment for cell composition revealed 
enrichments for cell-specific processes such as T cell 
activation (q = 2.40E-03), leukocyte differentiation (q = 
0.03) and T cell differentiation (q = 0.03). However, a 
notable absence for enrichment of pathways associated 
with DNA repair or mismatch repair was observed (Figure 
4B) [24, 25]. Together, these findings highlight that 
adjusting for cell composition, leads to the identification 
of important pathways, and reduced the reporting of 
findings that can be attributed to cell-specific variation. A 
full list of the pathways and DEGs identified within each 
analysis can be found in (Supplementary File 1).

Given the cellular heterogeneity of tumor biopsies 
and the relatively small sample size of the GSE146889, 
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we did not attempt to replicate these differences in this 
cohort. Instead, we performed a similar regression analysis 
to identify DEGs associated with MSI status in a dataset 
of colon cancer cell lines [11]. Here we generated cell 
scores for four epithelial cell populations (Supplementary 
Figure 4). Regression analysis was then performed on MSI 
status while adjusting for cell composition. We were able 
to replicate 607 of these DEGs at nominal significance 
(P = 0.05) and 221 following FDR correction (q = 0.05) 
(Supplementary Table 3). A one-way Fisher’s exact test 
was performed, which revealed that there was a significant 
enrichment of overlap between the FDR corrected DEGs 
identified in these two datasets (Odds ratio = 1.68, P = 
3.09E-10). Thus, our secondary analysis of colon cancer 
cell lines provides an independent replication of the results 
identified in TCGA-COAD tumors. With regards to the 556 
DEGs identified in TCGA-COAD only after adjustment for 
cell composition, 56 were also identified in colon cancer cell 
lines dataset (P = 0.05), of which 18 remained significant 
following FDR correction (Supplementary Table 5). The 
three most significant novel genes identified in MSI-H 
vs MSS/MSI-L tumors that were subsequently replicated 
in colon cancer cell lines were AGMO, LINC02577 and 

KIF1A, all of which displayed reduced expression in MSI-H 
cell lines and tumors compared to MSS/MSI-L cell lines and 
tumors. To the best of our knowledge, roles for these three 
genes in MSI-H tumors have yet to be defined. 

Network analysis for the identification of candidate 
modules associated with microsatellite instability.

We regressed out the effects of cell composition 
and additional covariates prior to our network analysis 
(see Methods) to determine patterns of differential co-
expression between MSI-H and MSS/MSI-L tumors. We 
performed weighted gene co-expression network analysis 
(WGCNA) [26], which identified a network consisting of 
96 modules of coordinated expression (Supplementary 
Figure 5). Of these modules, 35 were found to be 
significantly different between MSI-H and MSS/MSI-L 
tumors following strict Bonferroni correction (q = 0.05) 
(Supplementary File 2, Figure 5). We used an independent 
method to validate the co-expression observed within the 
96 modules identified in our analysis. We uploaded gene 
lists for each module into STRING [27]. For each module, 
we calculated enrichment scores for protein-protein 
interaction (PPI). Of the 97 modules, 87 were enriched for 
PPI, including 34 of the 35 significant modules identified 

Figure 1: Differential expression analysis of TCGA-COAD prior to adjustment for cell composition. Volcano plot 
displaying direction of effect for bulk cell types. Positive log2fold changes correspond to increased expression in MSI-H tumors.
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(Supplementary Table 4). Intramodular analysis was then 
performed to determine the relationship between a gene’s 
significance and its module membership. Modules relevant 
to differences between MSI-H and MSS/MSI-L tumors 
should contain genes with a high module membership that 
are also significantly associated with the trait of interest. 
We found that these two characteristics were significantly 
positively correlated (P = 0.05) in 18 of the 35 modules 
identified (Supplementary Figure 6). To provide functional 
characterization, pathway analysis was performed for each 
of these 18 modules (Supplementary File 2).

The blueviolet module was the most significant 
module identified in our analysis (q = 9.07E-57), and 
consisted of 28 genes, including central hubs MLH1 
and EPM2AIP1 (Figure 6). This module also contained 
nodes for RAB32, EGF and PTPRD. RAB32 is a ras 
proto-oncogene family member that has been previously 
associated with MSI-H tumors [28, 29], while both EGF 
and PTPRD have important roles in the regulation of cell 
growth and differentiation [30, 31]. Better understanding 
the relationship between MLH1 and other genes in this 
module may provide improved insight into MSI-H tumor 
biology. Brown4’s module eigengene was significantly 
positively correlated with MSI-H status (q = 5.10E-06), 
indicating that the average expression of each gene within 
brown4 is increased in MSI-H versus MSS/MSI-L tumors 
(Figure 7). Brown4 was of particular interest given that 

this large module contained 81 of the 556 novel DEGs 
identified in our single-gene approach. We used pathway 
analysis to determine the molecular functionality of 
brown4. Here, we found that many of the Gene Ontology 
[24, 25] biological processes enriched in this module 
corresponded to apoptosis, such as positive regulation of 
apoptotic signaling pathways (q = 2.00E-03) and intrinsic 
apoptotic response to DNA damage (q = 0.013). Of the 
top 20 genes with the greatest module membership to 
this module, 10 were deemed to be novel in our single-
gene analysis (ZNF628, DAPK3, TMEM259, INAFM1, 
RPUSD1, CAPN15, UBALD1, MAP1S, ZBTB45 and 
ADAT3). We uploaded genes within the brown4 module 
to CHEA3 in an attempt to identify transcription factors 
that may be driving this module [32]. Here, we identified 
ZBTB45 as the transcription factor most likely to regulate 
brown4, a novel gene with high module membership (r 
= 0.78, P = 1.48E-60). Taken together, WGCNA reveals 
novel insight into aberrant pathway activation between 
MSI-H and MSS/MSI-L tumors, which may lead to better 
understanding of tumor subtypes. 

DISCUSSION

We demonstrate the utility of single-cell 
deconvolution of bulk RNA-seq to aid in the interrogation 
of cellular heterogeneity of tumors using single-cell RNA-

Table 1: Cell composition analysis of MSI-H versus MSS and MSI-L versus MSS tumors in TCGA-
COAD

Cell-Type
MSI-H vs MSS (n = 242) MSI-H vs MSI-L (n = 116) MSI-L vs MSS (n = 231) Significant in MSI-H 

vs MSS/MSI-LT-Statistic P FDR T-Statistic P FDR T-Statistic P FDR

B -3.29 1.14E-03 2.16E-03 -2.19 0.03 0.08 -0.73 0.47 0.68 True

CD4+T -2.08 0.04 0.053 -1.29 0.20 0.27 0.88 0.38 0.68 False

CD8+T 7.87 1.37E-13 1.30E-12 3.59 5.09E-04 2.41E-03 1.05 0.30 0.68 True

Colonocytes -4.26 3.03E-05 7.20E-05 -2.68 8.58E-03 0.02 1.39 0.17 0.53 True

CyclingTA 6.57 3.26E-10 1.55E-09 4.29 3.94E-05 3.74E-04 0.82 0.41 0.68 True

DC 7.11 1.40E-11 8.87E-11 3.65 4.14E-04 2.42E-03 1.52 0.13 0.53 True

Enteroendocrine 4.89 1.92E-06 6.08E-06 2.72 7.63E-03 0.02 -0.18 0.86 0.92 True

Fibroblast -0.19 0.85 0.90 0.17 0.91 0.96 -0.89 0.37 0.68 False

Glia 3.07 2.34E-03 3.71E-03 1.28 0.20 0.27 -0.50 0.62 0.84 True

Goblet 1.92 0.06 0.08 0.46 0.65 0.82 1.85 0.07 0.53 False

ILC -0.31 0.76 0.85 0.31 0.76 0.88 -0.73 0.47 0.68 False

Macrophage 4.63 6.05E-06 1.64E-05 2.00 0.048 0.09 -0.11 0.92 0.92 True

Mast 1.82 0.07 0.08 1.34 0.18 0.27 0.19 0.85 0.92 False

Microvascular -3.66 3.13E-04 6.60E-04 -2.09 0.04 0.08 1.42 0.16 0.53 True

Myofibroblast 0.01 0.99 0.99 0.05 0.96 0.96 -0.86 0.39 0.68 False

NK 2.44 0.02 0.02 1.30 0.20 0.27 0.15 0.88 0.92 True

Pericyte -3.23 1.42E-03 2.45E-03 -0.27 0.79 0.88 -1.72 0.09 0.53 True

Postcapillary Venule 6.21 2.49E-09 9.46E-09 3.07 2.73E-03 0.01 -0.20 0.85 0.92 True

Stem -10.84 2.03E-22 3.86E-21 -6.52 2.41E-09 4.58E-08 -1.60 0.11 0.53 True

Positive test statistic indicates increased cell content in tumors with greater MSI. FDR corrections were calculated for each regression analysis individually 
and FDR significance was set at 5%. Bond fold indicates cell-types that pass FDR correction for that regression analysis. 
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seq data from normal tissue. We first aimed to determine 
cell type composition differences between MSI-H and 
MSS/MSI-L CRC tumors. We replicated a number of 
known findings, including increased CD8+T cells and 
macrophages in MSI-H tumors, which are consistent with 
results of a meta-analysis of MSI-H tumors across several 
microarray datasets [33], as well as in MMR deficient CRC 
tumors [34]. CD8+T tumor infiltrating lymphocytes (TIL)
s were also seen in greater number in MSI-H tumors [35]. 
Further, we were able to identify novel changes in cell 
composition including an increase in EEC and a reduction 
in stem and colonocyte cell populations in MSI-H versus 
MSS/MSI-L tumors. It is unclear whether these differences 
contribute to the etiology of MSI-H tumors. Importantly, 
we were able to replicate differences in cell content for 
three of the 13 cell types identified in TCGA-COAD (stem 
cell, cycling TA cells and macrophages) in independent 
datasets and provide some evidence for replication for an 
additional two cell types (CD8+T cell and colonocyte) that 
trended in the same direction. While this provides some 
evidence of replication, additional validation in a larger, 

independent cohort should still be considered an important 
step to improve the generalizability of our findings. 

To the best of our knowledge, changes in EEC 
content have not yet been described as a distinguishing 
feature between MSI-H and MSS/MSI-L tumors. EECs 
are sensory cells that play a fundamental role in the 
orchestration of mucosal immunity by modulating activity 
of several immune cell types [36]. Despite comprising 
only approximately 1% of the gut, these cells form the 
largest endocrine system in humans, while also aiding 
in the maintenance of the stem cell niche [36]. Previous 
studies have identified a subpopulation of EECs that can 
either migrate to the small intestinal crypt base, or remain 
localized there [37]. Additional research in the small 
intestine has shown that pre-terminal EECs are able to 
reconstitute LGR5+ stem cells upon stem cell loss [38]. 
It is therefore possible that the increase in EECs reflects 
a population aiming to reconstitute a diminished stem cell 
pool, but additional work will be required to confirm this. 

A reduction in colonocyte cell content was observed 
in MSI-H versus MSS/MSI-L tumors in both TCGA-

Figure 2: Single cell deconvolution of bulk RNA-seq datasets. (A) Heatmap to show separation of scRNA-seq cell populations 
based upon expression of signature genes. (B) Summary of enrichment analysis (one-way Fisher’s exact test) for cell type markers in 
differential expression analysis of cell scores. Grey line represents log10(0.05). Percentage overlap reflects percentage of cell type markers 
for a given cell type that were significant within regression of cell score. (C) Cell scores for cycling TA and stem cells generated using this 
approach, and a marker of stemness generated in a previous study were correlated to expression markers of TA cells (red), stem cells (blue) 
and significant markers of other colon cell types (grey).
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COAD and GSE146889. Colonocytes (enterocytes of the 
colon) are the most abundant epithelial cell type of the 
colon, primarily functioning to facilitate the absorption 
of nutrients and water [39]. Both CDX2 and HNF1A 

have previously been shown to play a role in enterocyte 
differentiation [40, 41]. Our initial analysis found that both 
of these genes, as well as a number of other genes required 
for enterocyte differentiation such as GADD45GIP1 and 

Figure 3: Cell composition analysis of TCGA-COAD dataset. Significant differences determined through linear regression 
analysis while adjusting for colon location, sex, consensus purity estimate and tumor stage.
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ELF3 [42], were significantly downregulated in MSI-H 
versus MSS/MSI-L tumors prior to adjustment for cell 
composition. Unsurprisingly however, these cell-specific 
genes did not remain significant following adjustment 
for cell composition. It remains unclear whether the 
reduction in colonocyte cell population is a function 
of reduced expression of absorptive transcriptional 
activators or due to other physiological constraints such 
as colon location, despite efforts to correct for this in our 
regression models. Two intriguing additional possibilities 
should be considered. The first, as hypothesized with 
enteroendocrine cells, colonocyte precursors may 
undergo dedifferentiation to replenish the stem cell pool, 
as has been shown to occur in enterocytes of the small 
intestine [43]. Over time, this may significantly reduce 
the availability of colonocyte populations. The second is 
that the reduced content observed here may also contribute 
to, not replenish the observed stem cell reduction. Under 
physiological conditions, differentiated colonocytes act 
to metabolize butyrate, leading to the establishment of an 
oxygen-butryate gradient along the crypt axis. Adequately 
maintaining a stable oxygen-butyrate gradient is vital for 
the protection of stem cells, as an increase in butryare 
has been shown to reduce their poliferative ability [39]. 
Butyrate is frequently associated with reduced tumor 

growth and is generated through the gut microbiota. 
Distinct patterns of gut microbiota have been associated 
with MSI-H status [44]. However, it remains unknown if 
differences in the butyrate concentration gradient occur 
and if so, how they may be able to better define MSI-H 
tumors. 

Previously, we have shown that correction for cell 
composition can reduce the impact of cell variation in 
DEG reporting of a colon organoid model exposed to 
ethanol [7]. Here, we use a similar approach to identify 
3,193 DEGs in our regression of MSI-H versus MSS/
MSI-L tumors, of which 556 were not significant prior 
to adjustment, and as such were deemed to be novel. 
Pathway analysis of DEGs displaying reduced expression 
in MSI-H tumors revealed an enrichment for the DNA 
repair pathway. Importantly, pathway analysis of genes no 
longer considered to be significanct following adjustment 
for cell compostion did not identify enrichments for repair 
pathways. Instead these pathways were enriched for cell-
specific processes such as T-cell activation. Together, 
these findings indicate that adjusting for cell composition 
enriches for biological signals that affect the system 
as a whole. Hypermethylation of MLH1 is primarily 
considered to be the hallmark of non-familial MSI-H 
tumors, while mutations in MLH1, MSH2, MSH6 and to a 

Figure 4: Differential expression analysis of MSI status in TCGA-COAD following adjustment for cell composition. 
(A) Volcano plot of results from regression on MSI status in TCGA-COAD cohort. Novel significant DEGs (q = 0.05) are highlighted in 
red, whereas DEGs identified also identified prior to adjustment for cell composition are highlighted in blue (B) Pathway analysis of DEGs 
found to be significantly reduced in MSI-H versus MSS/MSI-L tumors.  Color reflects pathway analysis performed on either novel (red) 
or on DEGs no longer considered to be significant (q = 0.05) following adjustment for cell composition. Size of each circle represent the 
percentage of overlap between the number of DEGs and the total number of genes within a given pathway.
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Figure 6: Overview of the blueviolet module. For visualization, the network was imported into Cytoscape. Grey lines reflect edges 
(connections) between hubs (genes).

Figure 5: Overview of relationship of significant modules (q = 0.05) identified through WGCNA of TCGA-COAD 
following adjustment for cell composition to MSI status. Negatively correlated modules are indicative of modules primarily 
consisting of genes that were reduced in MSI-H versus MSS/MSI-L tumors. Of these modules, 35 were found to be significantly different 
between MSI-H and MSS/MSI-L tumors following strict Bonferroni correction (q = 0.05) (Supplementary File 2, Figure 5).
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lesser extent, PMS1, are known to drive Lynch syndrome, 
an inherited condition that increases the risk primarily for 
MSI-H-related CRC [23]. However, two recent studies 
have shown that reduced expression of MSH2 and MSH6 
protein have also been identified in sporadic CRC [45, 
46]. While we were unable to replicate differences in 
these genes in colon cancer cell lines, their identification 
in TCGA-COAD following the adjustment for cell 
composition does reflect the importance of performing 
deconvolution methods. 

Beyond differential expression of DNA repair genes, 
highly significant reductions in the expression of AGMO, 
LINC02577 and KIF1A in MSI-H tumors may be worth 
further consideration. These genes represent the three most 
significant novel genes that were found to be replicated 
in our analysis of colon cancer cell lines. Differential 
expression of LINC02577 has recently been associated 
with CRC [47, 48], though to the best of our knowledge 
this gene has not been found to be differentially expressed 
in MSI-H tumors. Long non-coding RNAs have a variety 
of molecular functions, but are frequently regarded 
as a “sponge” for microRNAs, thus reducing their 

bioavailabilty to regulate the expression of downstream 
mRNA targets [49]. To further understand the role that 
this gene may play in MSI-H tumor biology, further 
studies should look to incorporate additional omic layers. 
Little is also known about the role AGMO may play in 
cancer, which primarily functions to aid in the synthesis of 
membrane lipids. However, recent studies have indicated 
a potential role for this gene in the regulation of Wnt 
secretion [50, 51]. Correct regulation of Wnt signaling 
is vital to the maintenance of healthy rates of stem cell 
proliferation and differentiation. Aberrant activation of 
the Wnt signaling pathway has been shown to be a major 
driver of colon cancer [52]. Further, MSS tumors are more 
likely to be driven through aberrant activation of Wnt 
signaling genes [53]. Reduced expression of AGMO may 
therefore have an important role in distinguishing MSI-H 
from MSS/MSI-L tumors and may contribute to the 
reduction in stem cell content observed by reducing Wnt 
activation. KIF1A has been associated with head and neck 
squamous cell carcinoma [54] and has an important role in 
cell division. Pathway analysis of the novel downregulated 
DEGs identified in our analysis revealed a number of 

Figure 7: Overview of the brown4 module. For visualization, the network was imported into Cytoscape. Grey lines reflect edges 
(connections) between hubs (genes).
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enrichments for cell division processes, indicating that 
variation in this pathway may be somewhat important 
in distinguishing MSI-H and MSS/MSI-L tumors. 
Indeed, a failure of the mismatch repair system to verify 
microsatellite repeat counts during cell division leads to 
variation in the length of their sequences. However, it 
remains unclear as to how reduced expression in KIF1A 
may affect MSI-H tumors.

To further interrogate the transcriptomic variation 
between MSI-H and MSS/MSI-L tumors, we performed 
WGCNA [26]. This method employes a level of guilt 
by association. For example, MLH1 was central to the 
structure of blueviolet, the most significantly different 
module identified between MSI-H and MSS/MSI-L 
tumors. Thus, genes within this module may be critical 
to distinguishing MSI-H from MSS/MSI-L tumor biology. 
PTPRD was also found within this module. This gene 
plays an important role in the regulation of cell growth 
and differentiation [30], which make it an interesting 
target for further consideration in poorly differentiated 
tumors. Further, mutations in PTPRD have recently been 
shown to be frequent in T-cell rich B-cell lymphomas that 
display MLH1 haploinsufficiency [55], adding weight to 
the validity of our co-expression analysis. Together, these 
data highlight the potential importance of this gene and its 
interplay with MLH1 in MSI-H tumors. 

The identification of the brown4 module was of 
particular interest given that it contained 15.64% of the 
novel DEGs identified within our single-gene analysis, 
including ZBTB45. ZBTB45 was identified as one of the 
top 20 most significant hub genes for brown4, indicating 
an important role for this gene in a module enriched for 
apoptosis-related pathways. This result was confirmed 
using CHEA3 [32], an online tool that aims to identify, 
rank and prioritize regulatory transcription factors that 
may be affecting a given set of genes. Increased rates of 
apoptosis have previously been reported in MSI-H versus 
MSS or MSI-L tumors [56], where the authors were 
unable to fully attribute the increased apoptotic index 
to an increase in TILs. Improving our understanding of 
transcriptional networks that drive changes in apoptosis 
between tumor subtypes may help to explain the survival 
advantage generally observed in MSI-H tumors [56]. 

There are a number of limitations to this study. 
In our analysis, we used a consensus measure of tumor 
purity to control for tumor heterogeneity across samples. 
However, while we are able to infer the cell types present 
within TCGA-COAD and simulatenously account for 
tumor heterogeneity, we were not able to specify the 
origins of these cell types, i.e., intra-tumoral versus intra-
epithelial. In many instances, our definition of cell type 
populations is also limited to either the resolution defined 
by the scRNA-seq study used for deconvolution [9], or 
the resolution of cell populations that could be delineated 
accurately through deconvolution. Subpopulations of EECs 
could not be defined using our approach. EECs consists of 

multiple sub-lineages, often classified by their principal 
hormone product. These secretory cell populations vary 
in density across the gastrointestinal tract [57]. We also 
do not consider the potentially confounding effects of 
other cancer related molecular pathways in our analysis, 
such as CpG Island Methylator Phenotype (CIMP). There 
is considerable overlap between MSI-H status and high 
levels of CIMP (CIMP-H). However, CIMP-H has also 
been observed in a subset of MSS tumors [58]. Finally, we 
do not consider the role of somatic mutations in driving 
expression. However, adopting such approaches in future, 
larger studies may provide additional insight into MSI-H 
tumors. 

In summary, we employ a machine learning 
approach to deconvolute MSI-H and MSS/MSI-L tumor 
gene expression across TCGA-COAD and two additional 
cohorts. We identify novel changes in cell composition 
for EECs and colonocytes that suggests previously 
uncharacterized roles for these cell populations in 
contributing to MSI-H tumor development. Finally we use 
both single-gene and network analysis to identify several 
novel genes that may play an important role in MSI-H 
tumor biology. 

MATERIALS AND METHODS

RNA-seq data pre-processing 

HT-Seq count and phenotype data were downloaded 
from the R package TCGAbiolinks [59]. For data 
collection, pre-processing and alignment details, please 
refer to the original publications [8, 59, 60]. Single-
cell deconvolution of bulk RNA-seq has been shown to 
perform best on larger datasets [6]. Thus, we first used 
a total 409 samples to estimate cell populations in CRC 
tumors. For the analysis of gene expression differences in 
MSI-H versus MSS/MSI-L tumors, a total of 294 samples 
were considered (MSI-H = 63, MSS = 178, MSI-L = 53). 
Samples were removed if they had missing phenotype 
information for MSI status, consensus purity estimates, 
tumor stage, or lacked specific colon location information, 
i.e., colon location data was labelled either “NA” or 
“colon, NOS”. Cancer stages were broadly categorized 
into main hierarchical groupings (stage 1–4). Samples 
were also broadly categorized into one of three location 
groupings: left (descending, sigmoid, splenic flexure), 
right (ascending, cecum, hepatic flexure) and transverse, 
which were considered based upon the developmental 
origins of colon tissue. Given that the transverse colon 
is derived from either midgut or hindgut (depending on 
which region of the transverse colon), we considered 
this a distinct colon segment. Consensus purity estimates 
were downloaded from a previously published analysis of 
TCGA-COAD [61]. 

We identified a second, smaller CRC cohort with 
available MSI data on June 1st, 2020, by searching 



Oncotarget778www.oncotarget.com

gene expression omnibus (GEO) [62] using keywords 
“MSI” and “colorectal cancer” and only considered data 
generated using RNA-seq. This dataset also contained 
RNA-seq count data for endometrial cancer, which was 
not considered here. Of note, the majority of MSI-H 
individuals considered in this dataset were putative Lynch 
syndrome (32/36), while the majority of TCGA-COAD 
is considered to be sporadic MSI-H tumors. Raw counts 
were downloaded from GEO, accession: GSE146889 for 
downstream analysis. 

For further validation, we also downloaded RNA-
seq count and TPMs from the Broad CCLE website 
(https://portals.broadinstitute.org/ccle). Details for RNA-
seq library generation and pre-processing can be found in 
the original article [11].  

Single-cell deconvolution of bulk RNA-seq data

We downloaded publicly available scRNA-seq 
data derived from normal colon biopsies [9]. To reduce 
heterogeneity in single-cell expression, only cells derived 
from healthy colon were considered for this analysis. 
Transcripts per million (TPM)s were generated using 
scater [63]. Given the size of the dataset, cells were 
randomly downsized to permit upload to CIBERSORTx 
[6]. For model evaluation, cell composition scores were 
correlated to known gene expression markers in an attempt 
to determine relative performance.

The final dataset consisted of 19,567 genes across 
5,412 cells. Multiple similar cell types were merged to aid 
in this analysis, for example: B cells (plasma, germinal 
center, follicular). M cells were removed due to low 
abundance in the original analysis (n = 10). Tuft cells were 
removed after multiple attempts to define population led 
to inadequate identification of cell population markers. 
Secretory TA cells were removed given their similar 
transcriptional profile to mature secretory cell populations 
and cycling TA cells. TA1 and TA2 cell populations were 
also not considered, given their similarity to cycling 
TA cells. Epithelial progenitor cells of goblets and 
colonocytes were also removed in favor of their mature 
cell populations to aid in their distinction from cycling TA 
cells. A total of 19 distinct cell types were considered in 
the final analysis. We note that this represents a reduction 
in granularity from the 51 unique cell types identified in 
scRNA-seq analysis of normal colon [9].

Following upload to CIBERSORTx [6], single 
cells were clustered based upon overall similarity of 
expression using default parameters, with the following 
notable exceptions: minimum expression = 0; number of 
significant genes to define cell type = 150; sampling = 
1, q = 0.001. Following this, TPMs from TCGA-COAD 
samples were imported and cell composition scores were 
estimated. For deconvolution the following parameters 
were set: 500 permutations; quantile normalization was 
disabled; S-mode was set for batch correction; scores 

were generated in absolute mode. Cell scores were then 
centered and scaled about the mean prior to incorporation 
as covariates in a regression model. The same parameters 
were also used for deconvolution of GSE146889 [10].

For colon cancer cell lines [11], a total of 3,988 
cells across four epithelial cell types were considered 
for deconvolution (cycling TA, stem cell, colonocyte 
progenitors and immature goblets). Deconvolution was 
performed as above, with one exception: the number of 
genes used to define cell types was set to a range of 100–
600. 

Regression analysis

Differentially expressed genes DEGs were identified 
through regression analysis performed in DESeq2 [64]. 
Several regression models were used in this study.
Differential expression

For the analysis of cell type agnostic differential 
expression we used the following model: 

Expression ~ Stage + Sex + Consensus Purity 
Estimate + Colon Location + Scores + MSI

Where: expression = gene expression of each 
gene for each individual; score = cell score (continuous 
variable); stage = cancer stage (factored 1–4); sex = 
biological sex; consensus purity estimate = tumor purity 
(continuous variable); colon location = location of biopsy 
taken (factor); MSI = microsatellite instability status.
Cell composition

To analyze differences in absolute cell scores 
between MSI-H and MSS/MSI-L a linear regression 
model was used. 

Score ~ Stage + Sex + Consensus Purity Estimate + 
Colon Location + MSI

Where: score = cell score for each cell type and 
individual (continuous); stage = cancer stage (factored 1-4); 
sex = biological sex; consensus purity estimate = tumor 
purity (continuous variable); colon location = location of 
biopsy taken (factor); MSI = microsatellite instability status.

WGCNA 

Genes with a count of less than 10 in 150 samples 
were filtered, leaving a total of 17,361 genes for 
downstream network analysis. Raw counts were converted 
into counts per million and the effects of tumor stage 
(factor), sex, colon location (factor), tumor purity and cell 
compositon were regressed out prior to WGCNA [26] using 
limma [65]. Heirarchical clustering analysis was used to 
determine outliers based on their average dissimilarity, 
which led to the removal of four samples. A total of 289 
samples and 17,361 genes were therefore used to construct 
the network. WGCNA was performed under default settings 
with the exception of the following parameters: a soft power 
of four was chosen, where the degree of independence was 

https://portals.broadinstitute.org/ccle
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determined to be 0.876; blocksize was set to the number 
of genes used; signed hybrid and pearson correlation were 
preferred; minimum module size was set to 10; deep split 
was set to 3 and strongly correlated modules (r = 0.7) were 
merged prior to association testing. 
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