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ABSTRACT: Machine learning (ML), particularly deep learning (DL), has made rapid and
substantial progress in synthetic biology in recent years. Biotechnological applications of
biosystems, including pathways, enzymes, and whole cells, are being probed frequently with
time. The intricacy and interconnectedness of biosystems make it challenging to design them
with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic
biology can be employed to produce large data sets for training models (for instance, by
utilizing DNA synthesis), and ML/DL models can be employed to inform design (for
example, by generating new parts or advising unrivaled experiments to perform). This
potential has recently been brought to light by research at the intersection of engineering
biology and ML/DL through achievements like the design of novel biological components,
best experimental design, automated analysis of microscopy data, protein structure prediction,
and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this
review into three sections. In the first section, I describe predictive potential and basics of ML
along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In
the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different
challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.

H INTRODUCTION effects. (iv) Learn: Use the test data to discover principles that
direct the cycle toward the desired outcomes more effectively
than a random search might. It frequently involves identifying
errors that result from unintended off-target impacts.

Over the past two decades, biology has undergone a massive
transformation that makes it possible to effectively build
biological systems. The fundamental force behind this abrupt

transition is the genomic revolution," which made it possible to Modification to a pathway can result in a flux redistribution
sequence the DNA of a cell. With CRISPR-based technologies,2 leading to byproducts, toxicity, slower cell growth, or several
it is now possible to accurately modify DNA in vivo, which is other outcomes that must be addressed. The next set of designs
among the newest advances and techniques made possible by can be guided by artificial intelligence (AI), which would
this genomic revolution. Precision DNA editing and high- decrease the number of DBTL repetitions required to attain the
throughput phenotypic data offer an exciting opportunity to desired result. Synthetic biology generally entails genomic
connect phenotypic alterations to underlying code modifica- alterations to urge a cell to produce products or behave in a
tions. The goal of synthetic biology is to develop biological specific manner.

systems that meet specific requirements,” for instance, cells ML has come to light as a promising option to speed up the
responding in a particular way to external stimuli or generating progress in synthetic biology design by uncovering patterns in
the requisite quantity of biofuel. To achieve this, synthetic the data-rich accomplishments provided by systems biology. DL
biologists make use of engineering design concepts to employ generally employs representations with numerous layers of
engineering’s predictability to regulate intricate biological artificial neurons to discover the link between the inputs and
systems. Standardized genetic components and the Design— outputs. Examples comprise frameworks that use sequence

Build—Test—Learn (DBTL) cycle are two examples of
engineering approaches that are applied iteratively to get the
desired result. According to the synthetic biology DBTL cycle,
this discipline goes through the following four stages: (i) Design:
Conjecture a DNA pattern or series of cellular alterations that
can accomplish specified objectives of the plan. (i) Build: This
mainly entails the development of the DNA fragment and its
effective incorporation into a cell. (iii) Test: Provide data to
determine how well the assessed phenotype reaches the desired
outcome and assesses the impact of off targeted or unintended

information to predict the activation of components like
promoters or precise protein structure forecasting algo-
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rithms.*~” One of the main characteristics of DL models is their
ability to gradually extract insights from input data by
systematically transmitting information between layers of an
artificial neural network (ANNs).® For example, early layers of
the network may retrieve low-level properties like vertical or
horizontal edges when examining a microscope image, while the
subsequent layers combine this data to determine the shape or
patterns of cells in the image.”'® DL networks can also encode
intricate nonlinear connections between input values. For
instance, a DL model that infers a protein’s function from its
amino acid sequence can discover that specific combinations of
amino acids operate synergistically to increase activity above
what would be predicted based on the individual amino acids’
contributions."'

There are various obstacles that must be solved to advance
synthetic biology and DL in the future. Synthetic biologists are
not taught DL techniques typically; therefore, it might be
challenging to keep up with two fields that are expanding quickly
at the same time. Moreover, synthetic biology data sets have
discipline-specific limitations. Natural sequence information is
one area where there is a wealth of data, but the diversity of these
data sets is constrained since nonfunctional patterns or those
that have high levels of expression are often underrepresented.
As a result of practical limitations in the execution and
evaluation of synthetic biology components, the quantity of
information available for other applications is greatly limited.

This review seeks to assist synthetic biologists in comprehend-
ing and applying ML and DL strategies in their research by
presenting an overview of techniques and summarizing recent
advances at the nexus of ML/DL and engineering biology
(Figure 1). I begin by describing barriers in the progress of
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Figure 1. An overview of the advances in ML/DL and synthetic biology
since the 1960s.

synthetic biology and the predictive potential of ML in
overcoming these barriers. Then, I have described ML scenarios,
mathematical frameworks, and their applicability in cell, protein,
and metabolic engineering. Afterward, I review prevalent DL
network architectures pertinent to engineering biology
applications. Next, I describe recent advances that leverage DL
to enable synthetic biology, emphasizing examples from
component design, imaging, structure-based learning, and
other fields. Finally, I present challenges pertinent to ML, DL,
and synthetic biology and their possible solutions.

B PREDICTIVE POTENTIAL OF ML

By learning the basic pattern in experimental results, machine
learning can give predictive power without the requirement of
complete mechanistic insight. Training data is employed to
statistically relate a set of inputs to a set of outputs using
sufficiently expressive models that reflect practically any
relationship and is free from assumptions in prior knowledge.
Machine learning has been applied in this context to forecast
pathway dynamics, tune pathways via translational control,
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detect cancers in breast tissues, diagnose skin cancer, and
determine RNA and DNA protein-binding motifs.'*~'* More-
over, machine learning can be utilized to create synthetic biology
systems by understanding the connection between phenotype
and the genetic parts employed in genetic circuits, allowing for
more stable circuits. However, ML algorithms are data hungry.
They require a large amount of data to be trained and be
efficacious. The recent machine learning revolution was enabled
not by new techniques but by (i) increasing computational
power and (ii) the accessibility of massive training libraries.' "¢
Artificial vision would have probably not extended superhuman
performance if it had to be taught on pictures taken on
photographic film and mailed physically from photographers to
Al researchers. The accessibility of vast image libraries facilitated
by automated digital image collecting using charge-coupled
device (CCD) cameras, as well as their distribution via the
Internet, has been vital to its advancement.

B CATEGORIES OF ML METHODS

ML is an Al subset that enables computers to acquire knowledge
from experience. ML algorithms employ computational
approaches to “learn” particulars directly from data without
depending on a preordained equation as a representation. The
ML algorithms advance their performance adaptively in the
presence of excess samples available for learning. In general, the
more the training data, the more accurate and precise the
learned function. Tens of thousands of ML algorithms exist, and
hundreds of new ones are developed annually. When creating an
ML model, input representation, loss function, output variables,
hyperparameters, and model evaluation are significant consid-
erations. The types of ML are described below in brief.

Supervised Machine Learning (SML). SML is the most
fundamental type of ML in which an algorithm is instructed on
the labeled data. SML methods identify patterns of correlation
between input attributes and output variables. The objective is
to learn a task that perfectly delineates the relationship between
the input attributes and output value in labeled data. Generally,
there is direct a relation between the training data and the
accuracy of learned tasks, however, the entailed size of training
data also relies upon the attributes employed for the specific task.
This solution is subsequently deployed for usage with the final
data set, from which it learns in the same way as it learned from
the training data set. In regression type, an output label is real-
valued continuous variables whereas in classification type, the
output label is a discrete variable (Figure 2A).

Unsupervised Machine Learning (UML). UML has the
advantage of working with unlabeled data. The algorithms
employ clustering approaches, clustering data points with
identical attributes into prominent features with little
information loss. Hence, the appraisal generally depends on
fact-finding analysis. These algorithms attempt to apply
approaches to the input data to explore for rules, find patterns,
summarize and cluster data points, derive useful insights, and
better communicate the data to users (Figure 2B). For more
details on SML and UML, I refer the readers to an ML-based
book."”

Reinforcement Learning (RL). RL is directly inspired by
how humans learn from events in their daily lives. It has an
algorithm that uses trial and error to better itself and learn from
new scenarios. Favorable outputs are rewarded, and non-
favorable outputs are rejected. Reinforcement learning, which is
built on the psychological idea of conditioning, works by setting
the algorithm in a workplace setting with an interpreter and
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Figure 2. Schematic representation of machine learning scenarios and mathematical frameworks. (A) SML in which data sets involve ground truth
labels. (B) UML in which data sets do not involve ground truth labels. (C) Reinforcement learning where interaction between an algorithmic agent and
simulated environment takes place. (D) Linear regression/classification that can be employed to fit models in which the output is a scalar value and
data can be predicted by a straight line. (E) Support vector machines locate a separating hyper-plane that parts data into classes. (F) RFs employ the
“bagging” technique to construct complete decision trees (DTs) in parallel using random bootstrap instances of the data sets and attributes. RFs select
the most labels between different randomized DTs. (G) k-NN is employed for both regression as well as classification, and the input comprises the k
nearest training instances in the data set. The output relies on whether the k-NN is employed for regression or classification. (H) NNs generally form a
feedforward network of weights in which inputs trigger the hidden layers which give output. However, NNs also form a feedback network in which NNs

learn by back-propagation through the networks.

rewards. The output result is delivered to the interpreter at every
algorithmic iteration, which decides if the outcome is beneficial
or not. If the result is favorable, the interpreter reinforces it by
rewarding the algorithm whereas, in case of unfavorable results,
the algorithm is compelled to repeat until a better result is found.
Generally, the reward system is closely related to the efficacy of
the outcome. Due to the availability of large training data sets
from simulations under various genetic settings, RL algorithms
can provide an efficient computational method to aid in
decision-making in the DBTL cycle (Figure 2C).

Semisupervised Machine Learning (SSML). By employ-
ing small labeled and large unlabeled data sets, SSML boosts the
efficiency of a supervised model. It can reduce the requirement
for vast amounts of organized and human-labeled data along
with filtering the systemic noise arising in biological measure-
ments due to various experimental variables. Because SSML is
compatible with small training sets, it may have considerable
potential in organisms, particularly metazoans with fewer
experiment-aided genetic interactive gene pairs.

Active Learning (AL). AL is a special case of SML. This
method is used to create an eftective classifier while minimizing
the amount of the training data set by actively organizing the
valuable data points.

Transfer Learning (TL). Standard ML approaches presume
that the training and testing contexts have the same probability
distribution. This assumption, however, does not hold in the
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situation of merging biological data from several platforms. TL
refers to the situation when a classifier is trained on one data set
and then tested on another data set that may have a completely
diverse probability distribution function. Biological data
produced from several platforms and maybe employing various
technologies is an obvious option for transfer learning
approaches. For example, features acquired from the prediction
of yeast growth rate may be transferred to other predictive
tasks,'® including predicting ethanol generation in yeast.

B COMMON ML ALGORITHMS USED IN SYNTHETIC
BIOLOGY

In this section, I discuss a few specific algorithms employed in
synthetic biology applications.

Linear Regression or Classification. The linear regression
algorithm'” is based on SML. It carries out a regression task. In
this algorithm, a linear equation is used to simulate the
connection between inputs and outputs. Linear models are
simple to design and analyze, but the connection between the
objective variable and the attribute in several applications
extends more than a linear function. However, linear regression
is not appropriate for classification since it concerns continuous
values, while classification issues require discrete values. The
second issue is the shifting in threshold value caused by the
addition of new data points (Figure 2D).
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Figure 3. Applications of ML in cell engineering. ML can be employed for (i) improving gene expression, (ii) bettering tools for altering cellular

functions, and (iii) upgrading protein search and design.

Support Vector Machines (SVMs). Several researchers
prefer SVM*’ because it produces substantial accuracy while
using minimal computing power. SVM is useful for both
classification and regression tasks. Nonetheless, it is commonly
employed in classification tasks. The SVM algorithm learns a
collection of ideal hyperplanes that can classify samples. For
each class, it maximizes the distance between the hyperplane and
the closest data point. The data points (support vectors) assist in
developing SVM. Increasing the margin distance gives some
reinforcement, allowing future data points to be classified with
greater certainty. Soft margin SVMs encompass “slack” variables
that permit a few data points to be incorrectly categorized and
are effective when data is not differentiable (Figure 2E).

Random Forests (RFs). Random forest™ is a popular ML
technique that integrates the output of numerous decision trees
to produce a single conclusion. Its ease of usage, flexibility, and
ability to tackle classification and regression challenges have
boosted its popularity. The RF model is composed of several
decision trees (DTs). While DTs are popular SML algorithms,
they might suffer from bias and overfitting. When numerous
DTs create an ensemble in the RF algorithm, the results are
more accurate when the individual trees are not correlated with
one another. The RF algorithm is a bagging method extension
that employs both bagging and feature randomization to
produce an uncorrelated forest of DTs. DTs build tree-like
classifiers by progressively splitting data about specific attributes,
most frequently employing classification performance to
determine which trait and value to split (Figure 2F). RF
techniques have three major hyperparameters that must be
regulated before training. These hyperparameters include node
size, number of attributes sampled, and number of trees. From
there, the RF classifier can be applied to address regression or
classification issues.

k-Nearest Neighbors. The k-nearest neighbors (KNNs)**
technique is a straightforward SML approach that can be used to
address classification and regression issues. However, it is mostly
employed to solve classification difficulties. Most SML methods
use training data to learn a task and predict unknown data, while
NNs preserve the training data and the pairing distances
between them to classify unknown data points with the labels of
close training data points. It is known as a lazy learner since it
does not do any training when given training data. Instead, it
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simply saves the information during the training period and
makes no calculations. It does not create a model until a query is
run on the data set. As a result, KNN is significant for data
mining. Here, “K” refers to the number of nearest neighbors
employed for predicting unknown points (Figure 2G).

Neural Networks. Neural networks (NNs),** also called
simulated neural networks (SNNs) or artificial neural networks
(ANNs), are nonlinear statistical decision-making or data
modeling tools. They can be applied to identify patterns in
data or to model intricate connections among inputs and
outputs. Each node in a NN, which is commonly referred to as a
neuron, is connected to every other node by a link, each of which
is assigned a weight and threshold. The network is referred to as
feedforward when neurons are exclusively connected to other
neurons in succeeding layers. On the contrary, a network is
referred to as recurrent when neurons in the same layer
communicate with one another. The output layer serves as the
last layer that gives the model predictions, while the input layer is
the first layer that receives the representations of each incident as
input. Hidden layers (any layers of neurons) exist in between the
input and output layers. Each neuron multiplies the input by the
link weights and transforms the data using an activation function
to send information to the neurons it is connected to (Figure
2H). Any node whose output exceeds the defined threshold
value is activated and begins providing data to the network’s next
layer. Instead, no data is transmitted to the network’s next layer.
NNs depend on training data to develop and enhance their
accuracy over time (Figure 2H).

B APPLICATIONS OF ML IN BIOSYSTEMS DESIGN

The different ML approaches outlined in the preceding section
stipulate a toolkit to solve the issues related to designing
biological components. An ML model can be used to simulate
synthetic biology applications with input and output variables
that are easily quantifiable. In this section, I shall describe the
assimilation of machine learning in synthetic biology, with a
strong focus on cell and metabolic engineering subfields. I shall
also discuss how this assimilation can help synthetic biology
overcome the current difficulties in understanding the intricacies
of biological systems.”*

Applications in Cell Engineering. Cell engineering is an
area of synthetic biology that involves the assembly of
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biomolecules to form genetic circuits/networks that can
coordinate with internal cell machinery to improve, restore, or
add unique functionalities to a designated host cell.”® The
biological components typically comprise elements that control
transcription, translation, and transcriptional factors that can be
utilized to control the activity of supplemental proteins.

Synthetic biologists have worked to describe the performance
outcomes of recognized biological components, comprehend
their fundamental mode of action, and evaluate the interactions
of all these components inside the host cell by trial-and-error
research protocol.”® Although cell engineering methods have
become more advanced, synthetic biologists still confront
several challenges. Designing innovative biological components
and discovering the interactions among host cell machinery and
engineered features can be difficult due to a lack of under-
standing of design guidelines, causing troubleshooting issues. To
that end, ML provides a way for optimally constructing and fine-
tuning biomolecules in the host cell with predictable
implications. It has multiple applications in gene expression
optimization, cellular function modification, and protein
designing (Figure 3).

Several researchers started to use neural networks to guide the
data-driven design of promoters”*”*® and RBS sequences™ for
regulating gene expression. Meng et al. used neural networks to
estimate promoter strength using altered promoters and RBS
motifs as inputs.’’ Interestingly, their technique outperformed
even mechanistic frameworks based on position weight matrices
and methods of thermodynamics.”' ~**

ML can determine gene expression by optimizing the
biological modules involved in translation and transcription, in
addition to promoters and RBS sequences. Tunney et al
employed a feedforward neural network architecture, in which
information is continuously “fed forward” from one stratum to
the next, mimicking biological processes for predicting ribosome
distribution across mRNA transcripts and translation elongation
speeds from mRNA transcript coding sequences.”* Besides the
development of biological components to control gene
expression, more efficient strategies for changing cell function
are required. This can be accomplished by removing undesirable
genes or permanently incorporating foreign biomolecules into
the cell genome utilizing genome editing systems such as the
CRISPR-Cas system. Even though these tools have transformed
the synthetic biology field, there is still potential to optimize
CRISPR-Cas tools for identifying and optimizing sgRNA
binding to the intended target site while decreasing off-target
binding. Previous research employed the support vector
machine algorithm, a form of supervised ML, to improve
CRISPR-Cas9 efficiency’>*° but was hampered by the small size
and poor quality of training data. The integration of higher-
throughput screening techniques and deep learning, on the
other hand, has enhanced the efliciency of modern sgRNA
activity prediction algorithms. The DeepCpf1 tool, for example,
prognosticates on-target knockout efficiency (indel frequen-
cies)’” using DNNss trained on vast sgRNA (AsCpfl: Cpfl from
Acidaminococcus sp. BV3L6) task data sets.

In cell engineering, ML can be used to identify and describe
protein-encoding genes in the genome. It is beneficial for
creating and constructing metabolic pathways in the production
host cells.”® The hidden Markov model has traditionally been
utilized for this purpose.””*’ Genes are found in the genome
using protein-coding signatures such as the Shine-Dalgarno
sequence and subsequently functionally annotated using a
sequence homology analysis against a database of known

9925

proteins. ML might discover and detect enzymes that can
catalyze new reactions via enzyme promiscuity, in addition to
assessing enzyme function. Chemoinformatic methods, molec-
ular mechanics, and partitioned quantum mechanics, for
example, can be employed to envisage metabolite-protein
correlations in silico.”" These strategies, however, are computa-
tionally complex and necessitate domain expertise. Similarly,
more robust, and eflicient approaches, such as the Gaussian
process model** and support vector machine,** are increasingly
being employed to explore and match promiscuous enzymes to
reactions. These approaches predict protein sequences (for
example, K-mers), reaction signatures (for instance, chemical
transformation properties, functional groups), and protein
substrate affinity (Km values). Metabolic engineers now enjoy
novel approaches to finding enzymes for innovative biochemical
reactions while no recognized enzyme is available. Very recently,
Yu et al.** presented a CLEAN (Contrastive Learning-enabled
Enzyme Annotation) ML algorithm for assigning Enzyme
Commission (EC) numbers to enzymes with improved
reliability, sensitivity, and accuracy compared to BLASTp,
which is a commonly used tool for comparing protein sequences.
The key features of CLEAN include its contrastive learning
framework, which enables it to perform better in several aspects
like (i) annotation of understudied enzymes, (ii) identification
of promiscuous enzymes, and (iii) correction of mislabeled
enzymes. Hence, CLEAN appears to be a promising tool for
enzyme function prediction, leveraging contrastive learning to
enhance accuracy and reliability, making it valuable for
researchers in diverse biological and biotechnological domains.

Another ML application involves the designing and engineer-
ing of proteins. The most prevalent method is directed
evolution, in which proteins undergo repeating processes of
mutation and selection until the intended function and
performance are obtained.”> By lowering the number of
experimental repetitions required to achieve the desired protein,
ML can steer the directed evolutionary process. It entails using
past experimental data, which includes the sequence of each
protein and its functional performance, to produce a library of
variants with more fitness. Wu et al. simultaneously deployed
different ML models and selected the models with the maximum
accuracy to effectively produce nitric oxide dioxygenase and
human guanine nucleotide-binding proteins from Rhodothermus
marinus."® Machine learning-aided directed evolution has also
been employed to boost enzyme output,*” change the colors of
fluorescent proteins,”® and improve the thermostability of
proteins.49

Aside from directed evolution, ML can help with rational
protein design. UniRep, for example, may use neural networks to
learn statistical depictions of proteins (for instance, structural,
evolutionary, functional, and physicochemical properties) from
24 million UniRef50 sequences.”” The method could predict the
stability of a vast proportion of de novo proteins as well as
functional alterations caused by genetic variations in wild-type
proteins. Even with a small pool of training data, Biswas et al.
used UniRep to improve the design of a green fluorescent
protein (GFP) from Aequorea Victoria jellyfish and TEM-1-
lactamase enzyme from E. coli.”" Another study employed neural
networks that had been trained to correlate amino acids with the
spatial orientation of oxygen, carbon, sulfur, and nitrogen atoms
within a protein. The researchers succeeded in recognizing
unique gain-of-function mutations and enhancing the protein
function of three separate proteins.””>’
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Applications in Metabolic Engineering. Rather than
designing and regulating the synthesis of a single protein and
single gene expression, the subfield entails rebuilding pathways
that affect the engineered organism’s metabolism. Metabolic
engineering entails changing cells’ natural chemical interactions
to focus on generating desired biological molecules. It is typically
a multistep process that involves multiple enzymes. While the
cells can synthesize various enzyme pathways and specific
products, they usually require a small group of ubiquitous
metabolites or cofactors.”* Hence, while attempting to maximize
the yields of a particular metabolite, it is vital to consider the
overall cellular state of affairs.”” A single compound, for example,
could be a result of several metabolic pathways.*® While high-
yield pathways have been built via rational design,”” " these
efforts are most effective for simple pathways and necessitate
extensive knowledge of the enzyme processes entailed and
significant experimental expertise.

One big problem for ML in metabolic engineering is
producing large biological data sets for training algorithms. To
address this constraint, Radivojevic et al. created automated
recommendation tool (ART), a machine-learning tool that
combines network optimization with experimental design.”*
The team achieved predictive modeling using 19 constructed
strains in a test cycle by recommending experiment strategies to
fulfill the desired aim. To summarize, ART provides a
technology designed specifically for the demands of synthetic
biologists to use the power of ML to facilitate predictable
biology (Figure 4). By enabling successful inverse design, this
combination of synthetic biology, ML, and automation has the
potential to transform bioengineering,>> >’

Despite their fundamentally distinct foundations, there is
growing interest in combining mechanistic modeling with ML.
In general, this takes advantage of the benefits of both
methodologies to deliver data-driven forecasts and deep insight
into the underlying biology. Imposing model limitations based
on biological settings, for example, have been demonstrated to
improve prediction accuracy by ignoring biologically implau-
sible solution spaces.”
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One avenue being investigated is the use of data derived from
mechanistic representations as input for ML. Because complete
genome sequences are now available, genome-scale models
(GEMs) have gained favor as an engineering tool for forecasting
system-wide events. GEMs are constructed from the ground up,
based on stoichiometry and mass balance concepts, and include
all known genes that contribute to metabolism, allowing for a full
assessment of the metabolic status in a given organism.’”*’
Computer modeling flux estimates, for example, have been
demonstrated to improve the predictive capacity of ML in yeast
and cyanobacteria whole-genome models.”"** Similarly, ge-
nome-scale representations can be employed to recognize
engineering objectives and focus on the realms of machine-
learning algorithms.”> Another technique is to utilize machine
learning to forecast the parameters employed in mechanistic
models. Heckmann et al. demonstrated that enzyme turnover
rates predicted by ML algorithms beat naively earmarked values
at flux estimations.’* In one study, supervised ML algorithms
and FBA were used in tandem to estimate bacterial central
metabolism using input features from 37 different bacteria
species, all of which had C13 metabolic flux data.®

One significant work attempted to comprehend the
metabolism-regulatory mechanism by examining alterations in
the metabolome and proteome of 97 kinase Saccharomyces
cerevisiae mutants. The investigation demonstrated that in the
absence of an underlying molecular framework machine learning
can be employed to map alterations in regular enzyme
expression profiles, which can subsequently be used to
determine the metabolic phenotype.®® Burstein et al. used an
ML and experimental strategy on the genome scale to find 40
new virulent bacterial effectors in Legionella pneumophila.’’
Automation of significant aspects during fermentation is often
unfeasible; however, soft sensors enable correlation between
easily detected offline and online parameters to predict relevant
offline variables in real time. One study employing structure
additive regression (STAR) illustrates a model that can be
created gradually, making it easier to analyze and adjust for
operators.”® Furthermore, novel biosensor development strat-
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Figure S. Applications of ML in metabolic engineering systems. In general, a metabolic engineering venture can be divided into three parts: (i)
metabolic pathway design, (ii) boosting cells for production, and (iii) upgrading industrial operations for product yield. Numerous computing tools
have been developed to direct designing throughout the process. (A) One can design pathways for the synthesis of target products by employing
predicted genomic functions or proven chemical reactions. It can assist in locating hosts with inherent industrial applicability. (B) To increase
production titer, frequency, and productivity, strains are engineered. Mechanistic techniques leverage the understanding of fundamental biology to
predict metabolite synthesis. On the other hand, data-driven methods use patterns found in massive data sets to recommend improvements.
Subsequent initiatives have attempted to integrate the two methodologies to boost predictive power. (C) The output of downstream bioprocesses is
maximized. The time needed to adapt a lab strain for industrial output can be significantly decreased with in silico prediction.

egies have been explored to build new soft sensors with
potentially higher predictive ability over significant oftline
variables.®””"

Data are abundant in industrial bioengineering that is suitable
for data mining and inclusion into ML models. Because of its
capacity to extract the most significant predictors from vast,
overlapping data sets, principal component analysis (PCA) has
proven to be the most popular technique in the field.”" A
significant amount of data in the industry and the literature
needs to be normalized and standardized, which has shown to be
a difficult challenge for biological systems data sets. For instance,
Opyetunde et al. manually collected data containing 1200 cellular
factories from approximately 100 papers to forecast the
efficiency of an E. coli-based cell factory relying on all biologically
significant parameters that were consistent among publica-
tions.”” They emphasized the need for standardization of data.

One of the ultimate goals of metabolic engineering is to merge
pathway design with host strain and culture condition
optimization into a single pipeline (Figure 5). A standard
workflow improves reproducibility, decreases the time required
from project conception to realization,”” and allows for the
usage of experimental automation to enhance throughput.
Despite the benefits of a complete pipeline for metabolic
engineering, there is a paucity of scientific literature explaining
such methodologies. It opens the door for industries to establish
unique techniques for engineering organisms for industrial
purposes and for academics to investigate ways to use ML
algorithms and techniques in streamlining the engineering of
biosynthetic systems in organisms.
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B FUNDAMENTAL BUILDING BLOCKS FOR DL
MODELS

DL is a subset of ML that learns complicated patterns in data
using networks with numerous layers of artificial neurons. An
artificial neuron in ANNs is a mathematical function that
simulates the activity of a biological neuron. ANN models are
employed to classify data, recognize patterns, and accomplish
multiple tasks. Although a single-layer neural network can be
used for making predictions, extra hidden layers are used to
enable optimization and increase accuracy. There are multiple
DL architectures, and in this review article, I cover some popular
ones employed in synthetic biology based applications.
Multilayer Perceptrons (MLPs). A standard ANN
architecture employs a collection of “neurons”, and each neuron
receives a series of numeric inputs. The inputs are multiplied by
weight factors, and a constant termed bias is introduced. This
value is subsequently processed by a nonlinear function to
produce the neuron’s output. Initially, researchers utilized a
sigmoid for the nonlinear function, but for computational
performance, most recent DL network implementations employ
ReLU (rectified linear units) for the neurons within the
network’s hidden layers. There are typically multiple neurons,
with the same inputs multiplied by various weights for each
neuron. For instance, if the inputs are DNA sequence data, the
weights regulate how each nucleotide influences the final output,
including transcriptional activity. When given a multidimen-
sional array as input, it can be unraveled into a vector (for
example, a 4 X 50 matrix peeled into a 200-dimensional vector).
MLPs connect groups of neurons in fully linked networks so
that the output of one layer enters the next. This hierarchical
structure enables the detection of low-level traits in the early
layers and far more complex characteristics in the later layers.
The depth provided by numerous successive layers is where the
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Backpropagation. Backpropagation algorithm is employed to train ANNS by calculating loss functions’
gradients with respect to networks’ weights. It enables the network to modify its weights in response to
mistakes it experiences during training. Here, errors are propagated backwards from output layer to input
layer through the network.

Gradient Descent. Gradient descent is a potent optimization algorithm widely employed in ML and DL. Its
various variants offer a trade-off between stability and computational efficiency.

Activation Function. It involves a weighted summation of the inputs to a neuron and executes a non-linear
transformation to generate the output of the neuron. The output is then utilized as input to the network’s next
layer. The non-linear conversions executed by the activation function permits the network to learn intricate
connections across inputs and outputs. It is significant for several real-world applications.

Loss Function/Cost Function/Objective Function. This mathematical function computes the difference
between predicted and actual output of a model. The loss function imparts feedback to the optimizer,
permitting it to form adjustments that ameliorate the predictions of the model.

Overfitting. In ML, overfitting is a common issue where a model gets highly complicated and fits the
training data very closely. As a result, the model performs well on the training data but poorly on the novel,
untainted data. Overfitting may occur for several reasons, including high variation and low bias, amount of
training data, and too extended model training. Regularization, dropout, and the early termination can be
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used to prevent overfitting.

prefix “deep” in the phrase “deep learning” derives from. Each
neuron’s output is fully linked to all nodes on the next layer
downstream in the MLP architecture. The network’s internal
layers are referred to as hidden layers, while the final layer is
known as the output layer. In contrast to the prior layers, which
have several outputs, the output layer is unique in that it typically
collapses to a single value or a limited number of values. In the
network that delineates promoter data set to transcriptional
activity, for example, the output may be a single integer that
quantifies transcriptional activity.

Convolutional Neural Networks (CNNs). CNNs can save
localized position data about how neighboring data is structured
with one other. Furthermore, they employ a parameter-sharing
approach in which the same model weights are used throughout
the entire input. As a result, CNNs are particularly well suited to
jobs like image processing, where neighboring pixels contain
relevant information, and operations like edge detection must be
executed effectively across the image. The input is convolved
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using a filter (or filters) and then fed through a nonlinear
activating function for every convolutional layer of the network.
Filters are valuable for detecting specific patterns.

Traditional filter-based analytic tasks use hand-selected
numeric values in the filter to define features that a user believes
are likely to be significant, such as edge detection. CNNs, on the
other hand, employ filter parameters as model weights that the
network learns (Table 1). CNNs often undertake sequential
analysis actions that can abstract properties, including color
gradients and patterns, using a set of convolution steps.
Convolution layers are generally sandwiched between layers
that conduct other mathematical functions, including pooling,
which is employed to focus information by lowering data
dimensionality. CNNs can also incorporate components of
other network architectures, such as fully connected layers after
convolutional layers.

Recurrent Neural Networks (RNNs). RNNs are a type of
model that is intended for usage with sequential data. They work
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by iterating through the data set and iteratively updating the
model’s internal representation (or memory) based on the
internal state’s content and the succeeding values in the input
sequence (Table 1). These networks have traditionally been
employed for language comprehension, where the organization
of words is significant for context and interpretation. These
networks are also suitable for analyzing biological time series
information or sequence data. When processing DNA
sequences, for example, the relative location of start and stop
codons is crucial in determining protein expression. Never-
theless, the repetitive nature of these networks has significant
drawbacks. Most crucially, because of the fading gradients issue,
basic RNNs do not acquire long-term relations between
elements that are located far apart in sequence space,”” and
their iterative nature prevents parallelism in execution,
restricting their scalability.

The introduction of LSTM (long short-term memory)
networks significantly improved the performance of RNNs.”
LSTM models were created to improve RNNs’ limited temporal
memory by including a long-term memory state in which the
model must make clear-cut decisions regarding adding or
removing information to the long-term memory. For instance, if
a model is seeking to predict if a protein would be translated
from a particular mRNA, the existence of a stop codon is likely to
be stored in long-term memory until a downstream start codon
is detected. More information on LSTM models is included in
the review by Van Houdt et al,”® and Angenent-Mari et al.”®
provide an example of their use in synthetic biology.

Transformers. The transformer is a more contemporary
model built for sequential data that addresses the problems of
limited memory experienced with RNN variants while also being
computationally more methodical and parallelizable due to
recurrence reduction. The transformer outperformed RNNs and
LSTMs on all sequence-based tasks, demonstrating paradigm-
shifting performance.”” Transformers have even outperformed
CNNs on computer vision challenges,78 despite the fact that
they were not initially designed for such tasks. This transforming
performance is achieved by renouncing the notion of model
memory and instead permitting the model to examine and
produce outputs for every node in the whole sequence of data at
the same time.

The model chooses which sections of the sequence to gather
information from for each output. This is accomplished through
a mechanism known as “attention”, in which the model may
learn what information is relevant at each stage in the sequence
and concentrate on passing that knowledge forward (Table 1). A
model anticipating the behavior of a short RNA that may form
secondary structures, for example, is likely to focus on sequences
that are supporting to the sequence of relevance (e.g., outputs
for “CGA” will contain a significant amount of data from the
other section of the sequence having “UCG”). The mathemat-
ical intricacies of the attention mechanism are outside the scope
of this review article, but readers should read Chaudhari et al.”’
for further information.

Graph Neural Networks (GNNs) and Geometric
Approaches. Learning methods for image and sequence data
take advantage of the data’s methodical Euclidean structure and
the intuitive notion of spatial locality that it provides. These
structural attributes are not shared by other structured data,
including secondary structure graphs of RNA and DNA,
structural formula graphs of molecules, and atomic coordinate
data for proteins. Nonetheless, they possess their own
symmetries and notions of locality that can lead to developing
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learning frameworks. GNNs can expand the sharing of
information in Euclidean neural networks to the graph structure,
offering a scaled and generalized method for conveying
information between nodes via the irregular edge connections
that operate to encode the locality of the structure (Table 1).

It enables the learning of high-quality renderings of a
structured data that can then be employed for edge prediction
tasks or node labeling or pooled across the structure and
supplied into an MLP to conduct re§ression or classification at
the molecular scale. Bronstein et al.”’ provide a thorough and
inclusive primer for understanding ML from a geometric
standpoint, and Zhou et al®' provide a description of the
intricacies of GNN formation.

Generative Models. Generative models®*~** are a class of
artificial intelligence models that aim to learn and replicate
patterns present in the data they were trained on. These models
are trained on a data set and then used to generate new, similar
data. There are various types of generative models, and they
operate in different ways. Some common types include the
following.

Generative Adversarial Networks (GANs). GANs consist
of two neural networks, a generator, and a discriminator, which
are trained simultaneously through adversarial training. The
generator creates synthetic data, and the discriminator’s role is
to distinguish between real and generated data. The competition
between these two networks helps the model generate
increasingly realistic data.*®

Variational Autoencoders (VAEs). VAEs are probabilistic
generative models that learn a probabilistic mapping between
the data space and a latent space.*® They aim to encode input
data into a probabilistic distribution in the latent space, allowing
for the generation of new samples by sampling from this
distribution.

Autoencoders. Autoencoders consist of an encoder and a
decoder. The input data is compressed by the encoder into a
latent space representation, which the decoder then uses to
recreate the original data. While not inherently generative,
variations like variational autoencoders can be used for
generative purposes.

Boltzmann Machines. Boltzmann machines are a type of
stochastic recurrent neural network. They use a network of
binary-valued nodes and learn to model the probability
distribution of the training data.”” They can be used for
generating new samples.

Generative models have various applications, such as image
and text generation, data augmentation, style transfer, and more.
They play a crucial role in unsupervised learning tasks and can be
used to explore and understand the underlying structure of the
data they are trained on.

Bl APPLICATIONS OF DL IN SYNTHETIC BIOLOGY

In this section, I investigate examples of deep learning in
synthetic biology research (Figure 7A). I discuss current
advances in the design of biological parts, imaging applications,
structure-based learning, optimal experimental design, and
implementations of biomolecular neural networks.

Design and Simulation of Biological Components.
Deep learning has recently made substantial progress in
predicting the function of biological components, like ribosome
binding sites (RBSs), promoters, and 3’ and S’ untranslated
regions (UTRs).*’**™" Since these components are fre-
quently constrained in length, for instance, approximately S0
nucleotides for a 5" UTR sequence or approximately three
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Figure 6. Library consists of 280,000 random 50 nucleotide oligomers as 5’ untranslated regions (UTRs) for enhanced green fluorescent protein
(eGFP). (A) Shows the usage of a 5’ UTR to assess the potential of 5" UTR single nucleotide variants (SN'Vs) and engineer state-of-the-art sequences
for prime protein expression. (B) The construction of the library of 280,000 members by the insertion of a T7 promoter accompanied by 25
nucleotides of stipulated 5’ UTR pattern, a random S0-nucleotide pattern, and the eGFP coding sequences (CDSs) into the backbone of a plasmid. In
vitro transcribed (IVT) library mRNA was generated by in vitro transcription from a linear DNA template acquired by a polymerase chain reaction
from the plasmid library. HEK293T cells were transfected with IVT library mRNA; cells were collected after 12 h; and polysome fractions were then
collected and sequenced. In vitro transcribed library mRNA transfected HEK293T cells were recovered after 12 h, and then polysome profiling was
conducted. For each UTR, read counts per fraction were utilized to calculate mean ribosome load (MRL), and the resulting information was employed
to train a CNN. (C) The uAUGs (out-of-frame upstream start codons) decrease ribosome loading (positions that are in frame with the enhanced green
fluorescent protein coding sequences are shown by the vertical lines). Analogous but very weak periodicity was observed in the case of GUGs and
CUGs. (D) Shows the repressive efficacy of all out-of-frame variance of NNNAUGNN. (E) Shows the nucleotide frequencies deliberated for the 20
least repressive (weak) and most repressive (strong) translation initiation site sequences. Adapted with permission from ref 90. Copyright 2019,
Nature Publishing Group.

hundred for a promoter-DNA synthesis can be used to create enzyme commission numbers (EC numbers) quickly and
massive randomized or semirandomized libraries whose precisely.”® EC numbers categorize enzymes according to the
function can be assessed using massively parallelized reporter chemical reactions they catalyze and assist in studying enzyme
assays combined with the next-generation array. The capacity to functions. Alternative EC number prediction algorithms, in
synthesize enormous libraries is an excellent example of how addition to DeepEC, are Cat Fam,'*” DEEPre,'*" ECPred,'”

synthetic biology methods may produce training sets for data- DETECT v2,'” PRIAM,'** and EFI CAz2.5.'"
hungry models. Sample et al.”’ created Optimus 5-Prime, a DL model that
Deep learning algorithms have recently been utilized to precisely predicts how the 5" UTR sequence regulates ribosome
detect”®”” and potentially interpret protein sequences’® in loading (Figure 6). Even though data sets relating sequence to
genomes from superior-quality experimental data sets. Deep- translation performance from endogenous human §° UTRs
Ribo, a deep neural network (DNN)-based technique that uses exist,'*'%” these innate data sets are not best suited for model
increased ribosome profiling coverage indicators and potential training since sequences with detrimental effects are plausible to
open-reading frame patterns to map and detect translated open- be underrepresented in innate illustrations, and endogenous
reading frames in the prokaryotes is one approach currently transcript data are not diverse enough to capture a wide range of
being used to locate protein sequences. REPARATION, a expression profiles. To address these concerns, Sample et al.
similar tool, uses a random forest classifier to do the same task.” synthesized and evaluated data from a 280,000-member library
After discovering new proteins, functional interpretation of their of random S50-nucleotide 5" UTR segments upstream of the
sequences can be accomplished using DNN-based techniques green fluorescent protein coding region (Figure 6). The
such as DeepEC, which uses a protein sequence to determine Optimus 5-Prime model was trained using data from transfected
9930 https://doi.org/10.1021/acsomega.3c05913
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reverse to produce new designs.

HEK293T cells, with inputs being one-hot encoding renditions
of the 5" UTR sequencing and the output being the average
ribosome load values. The researchers utilized CNN, and the
model performed admirably, predicting up to 93% of the test
set’s average ribosome loading values.

For promoter designs, similar strategies that integrate DNA
synthesis, DL, and massively parallel reporter assays have been
applied. Traditionally, synthetic biologists have used a restricted
number of native regulators in their construction designs.
Although there are artificial promoter libraries,'**~"'" they are
typically variants of existing sequences, like those obtained
through mutagenesis, limiting diversity. Moreover, because they
are underrepresented in natural situations, there is a scarcity of
strong promoters. Kotopka and Smolke” used massively parallel
reporter tests to characterize a promoter variant library. The
design kept the conserved sequences within the promoter and
randomly generated the rest (~80% of the sequences).

It demonstrates a potential method for accessing bigger
sequence spaces by combining sensible and randomized designs.
The researchers utilized a blend of high-throughput DNA
sequencing (FACS-seq) and fluorescence-activated cell count-
ing to categorize cells based on their expression levels, then
sequenced the promoter regions within every bin. These data
were utilized to train a CNN, which takes a DNA sequence as
input and predicts activity. Generally, the model predictions
translated well to test data, with R2 values greater than 0.79 for
all libraries, a noteworthy achievement given the complexity of
the sequences. This method of employing massively parallel
reporter assays is broadly applicable. Jores et al.''' created
synthetic promoters for plant species such as Arabidopsis,
sorghum, and maize, and instructed a CNN to forecast promoter
strength. MPRA (Massively parallel reporter assays) are not the
only technique to create big data sets, and alternative ways may
be less prone to processing biases. Hollerer et al. employed
genetic reporters to generate a large data set that correlates
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directly sequence to function, which they then used to design a
deep learning model that accurately predicts the translation
pursuit of an RBS.”" The researchers constructed a library of
300,000 bacterial RBSs and inserted them upstream of a site-
specific recombinase, which flips a specific DNA sequence in a
region close to the recombinase.

The researchers were able to test function by assessing the
proportion of constructs that had undergone recombination for
each RBS variant by sequencing the area comprising both the
RBS and the recombinase domains. This data set was utilized to
instruct a ResNet53 (a CNN version), which resulted in a model
that prognosticated the RBS function with inflated accuracy (R2
=0.927). It is worth mentioning that the basic approach utilized
to construct a physical DNA-recorded linkage between DNA
sequence and gene regulatory element functionality is not
limited to RBS optimization but could also be used for
translational or transcriptional biosensor design or promoter
sequence optimization. Despite the high promise of employing
synthetic sequences to produce diverse libraries, this strategy has
certain limitations. Deep learning studies have repeatedly
encountered the difficulty that employing purely randomized
sequences sequels a large number of sections that do not work.
On the other hand, because natural elements are biased in their
depiction, exclusively random parts are likewise prone to fail.
Researchers have worked around this issue by adopting
semirational strategies, including interspersing regulatory
elements believed to give functional regulators with randomized
sequences” and then employing model predictions to choose
libraries augmented for elements with an intermediary or strong
activity."'>”" Furthermore, the sequence length will eventually
limit the library’s diversity. The capability to synthesize and
sequence larger sections may sequel reduced coverage and
biased data quality in the case of lengthier sequences.
Furthermore, researchers must negotiate between sequencing
read length, sequencing depth, and library size.
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The advantages of emphasizing particular sequence areas as
“modules” must be balanced against the reality that gene
regulation is complicated. Zrimec et al.''” demonstrated the
importance of interactions between coding and noncoding
domains in ascertaining gene expression levels. However, they
illustrated that DNA sequences can be utilized to assess mRNA
abundance straight with some precision (R2 = 0.6 on the mean
across a wide range of model organisms, such as Saccharomyces
cerevisiae, Arabidopsis thaliana, Homo sapiens, and others), the
interplay between regulatory motifs, rather than the motifs
themselves, ascertained mRNA abundance. These findings serve
as a straightforward reminder that biological components do not
function in isolation.

Generative Strategies for Novel Synthetic Compo-
nents. Synthetic biology applications are typical prerequisites
for a model to be predictive as well as generative (Figure 7B).
Nondeep learning applications have been highly beneficial to the
engineering biology field. The RBS calculator,'*® for example,
may produce unique designs based on a thermodynamic
framework, and synthetic 5 UTR sequences have been
auspiciously generated using genetic algorithms.”® Mechanistic
modeling techniques are very potent; nevertheless, they require
the professional expertise of which attributes contribute to
performance. Deep-learning-based generative techniques are an
attractive field of research, as these tools approach the capacity
to work backward, for example, from translation efliciency
specifications to candidate sequence designs. Kotopka and
Smolke” employed a CNN model to execute sequence-design
approaches in their research on yeast promoters, demonstrating
that the best algorithms provided potent synthetic constitutive
and inducible promoters.

Traditional techniques to design optimization, on the other
hand, might be vulnerable to practical drawbacks such as
computing inefliciency and a proclivity to become stuck at
classical optimization minima. Moreover, these algorithms have
no limitations on sequencing diversity, which might be
troublesome for generating a large number of distinct library
variants. Deep generative models, which include models such as
variational autoencoders, generative adversarial networks, and
autoregressive models, have the capability to fill these gaps.
Linder et al."'* built a deep exploration network framework as an
example of this method. They used a similarity metric that
discourages sequence similarities that surpass a threshold to
maximize fitness for the intended function while simultaneously
explicitly emphasizing sequence diversity. Generative models
have also shown success in the field of peptide engineering for
simple challenges involving short-chain peptides, such as
antibacterial peptide design.'' "'

Applications Based on Structure. Rapid advancements in
the field of geometric DL have facilitated a surge in exploration
into structure-to-function learning in the field of biotechnology.
The AlphaFold2 protein structure predicting model,''” which
promises protein structure prediction fidelity high enough to be
used as a successor for costly and time-taking protein
crystallography, is perhaps the most high-profile example. As
inputs, the model uses the protein sequence and several
sequence alignments akin to proteins to learn about three
separate data structures: (i) a sequence-level representation, (ii)
a pairwise nucleotide interaction representation, and (iii) the
protein’s atom-level three-dimensional (3-D) structure produc-
tion. The 3-D structure is depicted as a cloud of unconnected
nodes that correspond to the backbone constituents of each
nucleotide and their respective amino acid side chains. To make
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use of the translational and rotational symmetries inherent in 3-
D space geometry, a geometric equivariant attention mechanism
is applied. Protein sequence-function mapping and engineerin
are further aspects of interest in the protein arena.''®™'"”
Gelman et al.'" reported that on receiving training on data from
deep mutational scanning tests, deep networks, including
convolutional networks, can effectively predict function for
new unidentified sequence variants.

When compared to the protein folding problem, the lack of
known structural data makes predicting the 3-D RNA structure
more difficult. Although over 100,000 protein structures have
been identified, only a few RNA structures have high-fidelity
structures. Townshend et al."** used an intriguing strategy to
overcome this restriction, in which they reframed the task as one
of scoring the structural predictions given by the FARFAR2
algorithm rather than predicting the structure of RNA end-to-
end with a DL model. It allowed for a substantial augmentation
of the available data set, which only contains 18 RNA structures.
It is insignificant to build thousands of proposed structures for
every RNA molecule in the training data set, instead of learning
to identify the similarity between proposed structures and the
rational truth. The learned structural scoring function, termed
the Atomic Rotationally Equivariant Scorer (ARES), outper-
forms existing nonmachine learning procedures in terms of
accuracy. In recent years, structural modeling on small-molecule
graphs has grown fast in the realms of drug discovery'**'*> and
drug repurposing.'*® Stokes et al,,'*’ for example, used graph
neural networks (GNNs) in tandem with screening assays to
predict antibiotic activity in small molecules, identifying a new
medication termed halicin as an efficient antibiotic in animal
models.

Protein engineering entails either synthesizing new proteins
or altering the sequence and structure of existing proteins.'**
Large DL models are splendidly capable of learning various
properties of proteins.'*”'*” Better wild-type templates can be
generated by employing structural data. The usage of a local
structural environment for identifying sites suitable to optimize
wild-type proteins is one promising approach for this purpose.
Recent research based on plastic degrading enzymes showed the
power of this strategy.l‘0 For determining which sites, the
estimated probabilities of wild-type AAs (amino acids) were
relatively low, and Lu et al."*° employed the MutC~ompute131
algorithm. This suggests that certain alternative AAs may be
more “suited” to the appropriate structural microenvironment.
Dauparas et al. trained ProteinMPNN (a graph based NN) on
19,700 high resolution single chain structures from PDB. They
demonstrated that ProteinMPNN can extricate different failed
designs by advising optimized protein sequences for the given
templates.">” In a recent study, SoluProt'** and the enzyme
miner integrated pipeline were employed for mining industrially
pertinent haloalkane dehalogenases'** and fluorinases.'*

Applications for Imaging and Computer Vision. DL has
enabled unprecedented development in computer vision."*®
Imaging applications in synthetic biology can involve automated
detection of appropriate ties within an image, including colony
growth on a plate or microscopy data analysis. Classification (for
example, determination of the existence of a colony) and
segmentation (for example, identifying the sets of pixels related
to each cell in an image) are two examples of image analysis
tasks. Classification is the simplest of these tasks, and basic CNN
al$orithms from comgputer vision, such as AlexNet,">” LeNet-
5,"*® and ResNets,"”” were developed for it. Deep neural
networks with numerous parameters (for example, AlexNet
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makes use of approximately 60 million parameters) were usually
used in these classical algorithms. To decrease this complexity,
smaller versions, including MobileNetv2'* (approximately 3
million parameters), have been developed, providing a realistic
alternative.

Locating the exact position of an entity within an image is a
more complicated task that is especially useful for quantification.
Segmentation, for example, can be used to locate the position of
cells within microscope images so that fluorescence measure-
ments can be retrieved. With the advent of the U-Net
algorithm,141 a CNN that performed extraordinarily well on
biological data, the field witnessed a big advance. DeepCell,142
YeaZ,'** DeLTA,"**'* CellPose,'** and MiSiC'*” are some
significant DL algorithms that are applicable for single-cell
resolution data.'** Image analysis algorithms can also handle
more powerful analytics tasks, including monitoring cells from
frame to frame in time-lapse photos and dealing with 3D image
data.

Optimal Experimental Design. When compared to other
domains, data tagging for synthetic biology challenges is
frequently quite expensive, requiring professional knowledge
of the subject and, in some cases, sophisticated laboratory-based
data-gathering systems. This cost is especially problematic for
deep learning models requiring outstanding training data. It
increases interest in ensuring practitioners do not squander time
and resources in classifying data, not adding much to a model.
The selection of appropriate data to label or tests to run is an
optimum experimental design termed active learning in the ML
community. The usage of this method to solve DL problems can
greatly minimize data set development costs."**"*’

DL algorithms for optimal experimental design are not yet
extensively employed in engineering biology; nonetheless, the
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ability of laboratory automation and initial findings based on
simulation indicates that this is a viable area for future research.
Treloar et al.'>* employed deep reinforcement learning for
controlling a simulated chemostat representation of a microbial
coculture developing in a continuous bioreactor. The authors
showed that by running five bioreactors in tandem for 24 h a
reasonable control policy can be gained and that deep
reinforcement learning can be employed to determine the best
pattern of inputs and control actions to pertain to a continuous
chemostat to increase the product performance of a microbial
coculture bioprocess. It is a computational example of a DL-
driven optimal experimental design in which reinforcement
learning is employed to estimate near-optimal patterns of
bioreactor inputs to manage a complicated system (Figure 8).
Future work in optimum experimental design can rely on
existing ML algorithms, such as those used in metabolic
engineering applications,* ¢3! 7153

Biomolecular Applications of DL Networks. Although
DL models are generally executed using computers, new
research has shown that ANN mimics can be built utilizing
biomolecular elements. These designs create biochemical
systems and live cells that can compute and “learn” to resolve
simple benchmark optimization issues. One of the primary
reasons for this is that inducible gene expressions to chemical
inducers often resemble a sigmoidal function of the inducer
concentration and can therefore act as the nonlinear function in
the neuron model.

On this basis, Moorman et a introduced the theoretical
design of a biomolecular neural network which is a dynamical
chemical reaction network that reliably executes ANN
computations and illustrated its applicability for classification
tasks. The authors emphasized the significance of molecular
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entrapment in attaining negative weight values and the
sigmoidal activation function in its elementary unit known as a
biomolecular perceptron. Samaniego et al.”>"'** theoretically
showed that interlinked phosphorylation/dephosphorylation
cycles can function as multilayer biomolecular neural systems.
From an application point of view, they created signaling
networks that potentially function as linear and nonlinear
classifiers.

Sarkar et al.'*® experimentally applied a single-layer ANN in
Escherichia coli (E. coli) cells. They demonstrated the application
of engineered bacteria as ANN-empowered wetware capable of
performing complex computing operations, including multi-
plexing, demultiplexing, majority functions, encoding, decoding,
and Feynman and Fredkin gates. In another study, Li et al.">’
applied ANNS to a consortia of bacteria interacting via quorum-
sensing molecules. They employed these engineered bacteria to
identify 3 X 3 binary patterns. Sarkar et al.** used elementary
genetic circuits dispersed across different bacteria to solve
chemically derived 2 X 2 maze issues by selectively articulating
four distinct fluorescent proteins, illustrating the feasibility of
using engineered bacteria to conduct distributed cellular
computing and optimizations (Figure 9A). van der Linden et
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Figure 9. (A) Application of the distribution of simple genetic circuits
among bacterial populations to solve chemically produced 2 X 2 maze
issues by selectively articulating four distinct fluorescent proteins.
Reproduced with permission from ref 158. Copyright 2021, American
Chemical Society (https://pubs.acs.org/doi/10.1021/acssynbio.
1c00279, further permissions related to the material excerpted should
be directed to the ACS). (B) Synthetic in vitro TxTl-based perceptron
comprised of WSO linked to a thresholding function. Reproduced with
permission from ref 159. Copyright 2022, American Chemical Society
(https://pubs.acs.org/doi/10.1021/acssynbio.1c00596, further per-
missions related to the material excerpted should be directed to the
ACS).

al."*” used genetic engineering to create a perceptron competent
of binary classification. It was accomplished by constructing a
synthetic in vitro transcription and translation (TxTl)-based
weighted sum operation (WSO) circuit linked to a thresholding
function employing toehold switch riboregulators. The synthetic
genetic circuit was employed for binary classification, which
involves expressing a single output protein only if the necessary
minimum of inputs is exceeded (Figure 9B).
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Pandi et al."® described a method for biological computing
using metabolic components applied in whole-cell and cell-free
systems. The implementation depends on metabolic trans-
ducers, which are analog adders that perform a linear
combination of the concentrations of numerous input
metabolites with customizable weights and are used to generate
metabolic perceptrons. Relying on this, the authors constructed
two four-input metabolic perceptrons for binary classifying
metabolite combinations, providing the framework for quick
and scalable multiplex sensing using metabolic perceptron
networks. Faure et al.'®' recently demonstrated that artificial
metabolic networks may be utilized to create RNNs that can be
trained to anticipate growth rates or an organism’s consensual
metabolic behavior in response to its surroundings. Because the
proposed artificial metabolic networks can improve multiple
objective functions, they might be employed to find optimal
solutions in a variety of industrial applications, including finding
the best media for the bioproduction of desired compounds or
engineering microorganism-based judgment devices for multi-
plexed identification of metabolic biomarkers or environmental
contaminants. Such biological evidence of ANNs and ML
paradigms executed at the biomolecular level opens routes for
novel research into the engineering of living cells for resolving
complex computing, governing, and optimization problems.

B CHALLENGES

Al has started to find its way into many synthetic biology
applications, but significant sociological and technological
barriers remain between the two sectors. Large volumes of
high-quality data are needed for machine learning to train
algorithms. Getting these data is the major challenge in synthetic
biology. Large-scale data generation is a serious difficulty in
synthetic biology sectors where deep learning models are known
to be notoriously data hungry. Training data, imbalanced data,
uncertainty scaling, catastrophic scaling, overfitting, and
vanishing gradient problem are some of the issues' ™' of DL.

Technological Challenges. The technical hurdles of
applying Al to synthetic biology (Figure 10A) are as follows:
(i) data is dispersed across multiple modalities, hard to combine,
nonstructured, and generally lacks the scope in which it was
gathered; (ii) models likely require more data than is typically
gathered in a single trial and inadequate predictability and
turmoil quantification; and (iii) there are no measurements or
benchmarks to accurately assess prediction accuracy in the
higher range task to be performed. Moreover, investigations are
typically planned to investigate only positive outcomes,
confounding or biasing the model’s judgment.

Data Challenges. The first big obstacle to combining AT and
synthetic biology is the lack of adequate data sets. To use Al for
synthetic biology, massive amounts of classified, organized, high-
quality, and context-rich data from investigations are required.
Despite advancements in establishing databases,'®® including
varied biological sequences (like whole genomes) and character-
istics, there remains a dearth of labeled data. I refer to “labeled
data” as phenotypic data that has been mapped to assessments
that capture its bioactivity or cellular responses. The inclusion of
such metrics and labels, as in other sectors, will accelerate the
maturation of AI/ML and synthetic biology solutions to surpass
human competency. The issue of irreproducibility in scientific
research is indeed a serious concern that has garnered increasing
attention in recent years. Irreproducibility refers to the inability
of other researchers to replicate the results and findings of a
study using the same methods and data. This problem
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undermines the reliability and credibility of scientific research, as
reproducibility is a fundamental principle of the scientific
method. Numerous research reports claim a significant out-
come; however, their results cannot be reproduced. Studies
showing that research is frequently not repeatable have drawn
more attention to this issue in recent years. For instance, a 2016
Nature survey'°® found that over 70% of scientists in the field of
biology alone were unable to replicate the results of other
scientists, and almost 60% of researchers were unable to
replicate their own findings. Addressing irreproducibility
requires a collaborative effort from researchers, institutions,
journals, and funding agencies to establish a culture of
transparency, rigor, and accountability in scientific research.

Alack of funding in data engineering is partly to blame for the
scarcity of suitable data sets. Artificial intelligence advancements
typically eclipse the computing infrastructure needs that
underpin and ensure its success. Data engineering is a prime
component of the basic infrastructure often regarded as the
pyramid of needs'®” (Figure 10B) by the Al community. Data
engineering includes the phases of experimental design, data
gathering, organization, accessing, and interpretation. Most Al
application examples include a consistent, systematic, reprodu-
cible data engineering process. While we can currently collect
biological data on an unprecedented scale and in unprecedented
detail,"®® this data is not always instantly suited for machine
learning. Many barriers remain in the way of the acceptance of
society standards for storing and sharing measurements,
experimental procedures, as well as other metadata that would
render them more accessible to Al approaches.'>'* To make
such norms quickly deployable and to encourage shared metrics
of data performance analysis, intensive formalization work and
agreement are required. In brief, Al models necessitate reliable
and comparable measurements throughout all trials, which
lengthens the experimental timeline. This prerequisite adds a
tremendous burden to experimentalists, following intricating
protocols to produce scientific breakthroughs. As a result, the
long-term demands of data collection are sometimes sacrificed
to achieve the short timelines that are frequently placed on such
initiatives.

It frequently leads to sparse data sets that reflect only a portion
of the various layers that comprise the omics data stack. Data
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representation has an increasing impact on the capacity to merge
these siloed sources for modeling in these circumstances. Today,
tremendous effort is expended across a wide range of industry
verticals to gather and organize unmanageable digital data for
analysis through data cleansing, data set alignment, extraction,
transformation, and load operations (ETL). These tasks
consume nearly half to 80% of a data scientist’s time, reducing
their potential to extract insights.'”* Coping with a wide range of
data forms (data multimodality) is problematic for researchers
of synthetic biology, and the intricacy of pretreatment tasks
increases considerably as data variety increases compared to data
volume.

Algorithmic/Modeling-Based Challenges. Several efficient
models driving current Al developments (for example, in natural
language processing and computer vision) are not flavorful when
examining omics data. When used for data obtained in a given
experiment, common approaches of these models can undergo
the “curse of dimensionality”. For instance, a single researcher
can generate proteomics, transcriptomics, and genome data for
an entity under a specific circumstance, yielding over 12,000
observations (dimensions). For such a study, the number of
annotated events (e.g., failure or success) typically ranges from
tens to hundreds. For such wide data types, the system dynamics
(time resolution) are rarely recorded. These measuring gaps
make drawing conclusions about complicated and dynamic
systems difficult.

Although omics data has similarities and contrasts with other
data types, including text data, sequential data, and network-
based data, traditional approaches are not always relevant.
Positional encoding, constraints, and complicated interaction
patterns are examples of shared data properties. However, there
are significant distinctions, including basic representation, the
context needed for relevant analyses, and the accompanying
normalizations among modalities to create biologically mean-
ingful comparisons. As a result, finding sturdy classes of
generative models (like stochastic block models'”" or Gaussian
models) that can effectively classify omics data is difficult.
Moreover, biological sequencing and networks are intricate
encodings of bioactivities, but few systematic ways exist to read
these encodings in the same manner that humans understand
semantics or context from written language. These disparities
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make it difficult to gain insights from data exploration and
construct and test ideas. Engineering biology entails the problem
of knowing about a black box entity, in which we can witness
input and output but have little knowledge of the system’s inner
workings. Given the immense combinatorial parameter space in
which these biological systems work, Al applications that
strategically and effectively organize experiments to explore and
scrutinize biological systems for the generation and verification
of hypotheses present an enormous need and opportunities in
this sector.'”>"”?

Finally, many prominent Al technological solutions do not
account for uncertainties and lack effective mechanisms for
controlling errors in the face of input perturbation. Given the
inherently stochastic nature and chaos in the natural (biological)
systems I am attempting to engineer, this fundamental gap is
crucial in the synthetic biology realm.

Metrics/Evaluation-Based Challenges. Traditional Al eval-
uation metrics relying on prognosis and accuracy are inadequate
for synthetic biology applications. Metrics like 2P for regression
analysis or precision for classifying models do not consider the
complexity of the underlying biosystems I am attempting to
represent. In this subject, additional metrics that evaluate the
extent to which a model can reveal the internal workings of a
biological system and preserve a preexisting knowledge base are
equally significant. To that aim, Al systems that integrate the
principles of transparency and interpretability are crucial in
promoting iterative and transdisciplinary research. Furthermore,
the ability to accurately measure uncertainty necessitates the
creative development of innovative metrics to assess the efficacy
of these approaches.

Metrics are also required for proper experimental design.
Model evaluation and validation in synthetic biology may
necessitate further experiments, necessitating additional re-
sources. Even a minor error or misclassification can have a
significant effect on the research goal. To depict the actual
impact of a misclassification, these costs should be included in
objective functions or the assessments of Al algorithms.

Sociological Challenges. In harnessing Al to benefit
synthetic biology, sociological barriers may be more challenging
to conquer than technical ones (and vice versa). Many
difficulties, in our opinion, originate from an absence of
coordination and comprehension among the many varied
cultures involved. While some projects have begun to address
these issues, it is worth noting that recurrent themes remain
troublesome in industry and academia.

Genesis of Sociological Challenges. Sociological challenges
stem from the necessity of blending expertise from two distinct
groups: bench scientists and computational scientists. Bench
and computational scientists receive quite different training.
Computing scientists are trained to focus on abstractions, to be
enthralled by automation and computational efficiency, and to
embrace disruptive techniques. They are naturally inclined
toward task specialization and seek ways to delegate repetitive
duties to an automated computing device. Bench researchers are
practical, have been trained to work with tactile observations,
and favor explainable analyses to precisely characterize an
experiment’s outcome.

The bench and computational worlds have distinct cultures,
which are reflected not only in how they handle problems but
also in which problems they believe are worth solving. For
example, there is a constant tension between the amount of work
spent to establish the infrastructure that enables broad research
and the amount of effort devoted to studying a specific research
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subject. The computational researcher prefers to provide a
trustable infrastructure that can be relied on for a range of tasks
(for instance, an automated stream for strain development or a
centrally controlled database gathering all pertinent informa-
tion), whereas bench researchers typically concentrate on the
end goal (for instance, generating a desired molecule in
commercially valuable amounts), even though that means they
rely on bespoke strategies that can only be valid in that particular
instance. Computational researchers want to create mathemat-
ical models that describe and predict the activities of biological
systems, while bench researchers prefer to generate qualitative
ideas and test them empirically as soon as feasible (at least while
experimenting with microorganisms, as those investigations can
be finalized rapidly: 3—5 days). Besides that, computational
scientists are often only enthusiastic and invigorated by noble,
blue-sky goals such as bioengineering lifeforms to terraform
Mars, trying to write a life compiler capable of creating DNA to
accomplish an optimum setting, reengineering trees to embrace
contour, bioengineering dragons in actual situations, or Als
looking to replace researchers. Bench researchers perceive these
grandiose ambitions as “hype”, are burned by prior examples of
computational types overpromising and underdelivering, and
would rather only explore goals that can be achieved with
existing technology.

Taking on Sociological Challenges. The remedy to the
social challenges is to value multidisciplinary teams and needs.
To be sure, creating this inclusive atmosphere may be easier in a
corporation (where the team succeeds or sinks together) than in
an academic setting (where a graduate or postdoc pursues
research just to get some first-author publications to get a job,
without collaboration with other disciplines). Developing cross-
training courses where computer researchers are trained in
experimental research and bench researchers are trained in
programming and ML is one viable path for this integration.
Finally, both groups provide something valuable, distinct, and
significant to the board. The sooner everyone involved
understands this, the faster synthetic biology can progress. In
the long run, university curricula that integrate biological and
bioengineering with automation and arithmetic are required.
Though several projects are already ongoing, they are only a
drop in the ocean of the required manpower.

B LATEST DL METHODS TO ADDRESS THE
CHALLENGES AND OUTLOOK

In this section I have presented the latest DL methods and
perspectives for addressing the above-mentioned challenges.
Pretrained Self-Supervised Models for Alleviating the
Challenge of Data Insufficiency. Pretrained models can
achieve state-of-the-art performance on various natural langua%e
processing (NLP) tasks. Pretrained models like BERT,"*
GPT,"”°~""7 and others are trained on massive corpora of text
data. They are exposed to a vast amount of diverse language
patterns, which helps them learn rich and contextualized
representations of words and sentences. The pretraining process
in these models involves self-supervised learning tasks, such as
masked language modeling and causal language modeling.
These tasks require the model to predict masked or next tokens,
forcing it to learn contextual relationships within the text.
Pretrained models exhibit strong transfer learning capabilities.
They can be fine-tuned on specific downstream tasks with
relatively small amounts of labeled data. The pretrained
knowledge about language and context, captured during
pretraining, acts as a powerful template for these downstream

https://doi.org/10.1021/acsomega.3c05913
ACS Omega 2024, 9, 9921-9945


http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

EVE

tasks. Pretrained models can be updated and adapted to new
data without retraining from scratch. This ability to perform
continual learning allows them to stay relevant and adapt to
changing data distributions.

The pretrained models for processing biological sequences,
particularly protein and DNA sequences, are inspired by
transformer-based architectures, like BERT, but adapted to
handle the unic;ue characteristics of biological data. For instance,
Rives et al.'’® developed ESM-1b (Evolutionary Scale
Modeling) which is a 33-layer Transformer model with 650
million parameters developed for protein sequence modeling. It
is trained using BERT-like masked language modeling on a large
data set of 250 million protein patterns from Uniref 50,"”% which
contains clusters of patterns with 50% similarity in the UniProt
Archive. By fine-tuning small data sets, downstream classifiers
achieve strong performance on tasks like predicting protein
secondary structure and contact map. DNABERT'®" is
developed for DNA sequence modeling and is based on a 12-
layer BERT-base'’* Transformer model with 110 million
parameters. It is pretrained on the k-mer portrayal of the
human genome using masked language modeling, where the
human genome is tokenized into k-mers. DNABERT exhibits
similar or superior performance compared to other models on
various sequence classification tasks, including promoter
recognition, functional genetic variant classification, splice site
prediction, and TF binding site prediction. Additionally,
DNABERT demonstrates cross-species transfer learning capa-
bility by predicting mouse TF binding sites. The MSA
Transformer'®' (Multiple Sequence Alignment Transformer)
extends the transformer model to handle MSAs of amino acid
sequences. By leveraging contextual information within
individual sequences and across homologous sequences, the
MSA Transformer shows even better performance on down-
stream tasks like protein secondary structure and contact map
prediction compared to ESM-1b.

Overall, the use of language modeling as a pretraining
objective enables pretrained models to efficiently learn from vast
amounts of diverse and unlabeled biological sequence data.
Language modeling can create context-dependent representa-
tions which can be used to improve performance on various
biological prediction tasks. For instance, LM of proteins can
develop context-dependent representations, and these repre-
sentations can be employed to improve the performance of
several protein prediction tasks. Moreover, with the under-
standing of protein likelihood, a researcher can filter,
autocomplete, and generate new proteins. However, for this
goal, language models should be capable of generating high
contextual understanding related to protein sequencing from all
domains of interest.

This approach has significantly advanced the field of
bioinformatics and computational biology, providing powerful
tools for biological sequence analysis and prediction tasks.

Few-Shot or/and Meta-Learning Mechanisms Result
in Data Efficient DL Models. The challenge of data
insufficiency can also be tackled by developing a DL model
that uses data efficiently. Meta-learning is useful in scenarios
with limited labeled data, few-shot or one-shot learning settings,
and tasks with high variability. DeeReCT-TSS'® is a deep
learning model designed for predicting transcription start sites
(TSS) in different cell types. The authors applied a gradient-
based meta-learning algorithm called Reptile to facilitate fast
adaptation of the TSS prediction model to multiple cell types.
The use of Reptile allowed the model to quickly adapt to new
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cell types with minimal labeled data from each cell type. Mutual
information maximization meta-learning (MIMML)'®® is a
novel meta-learning framework designed specifically for
predicting the function of bioactive peptide. It leverages the
Prototypical Network, which is a few-shot learning approach
used for classification tasks, to perform predictions for a total of
16 different peptide functions.

Benefit Modeling by Including Structural Information.
The sequence-only models are limited to explicitly consider
transacting factors. Such factors usually depend on protein—
protein'**~'*” and protein—nucleic acid interactions at a
molecular level. Hence, to accurately model these factors in
gene regulation, it is essential to incorporate structural
information from both cis-acting and trans-acting counterparts.
Indeed, recent breakthroughs in protein structure prediction,
particularly the development of AlphaFold2, have significantly
advanced our understanding of protein structures. "~ Alpha-
Fold2, developed by DeepMind, demonstrated remarkable
accuracy in predicting protein 3D structures during the Critical
Assessment of Structure Prediction (CASP) competition. This
breakthrough has enriched our resource for protein structures
and has the potential to transform the field of structural biology.
Additionally, progress has been made in predicting secondary
structures of RNA and 3D structures of the genome.'*~"** The
availability of accurate structural information for proteins, the
genome, and RNA opens new possibilities for systematically
incorporating this structural information into deep-learning
models for gene regulation. By integrating structural data with
deep-learning approaches, researchers can create more
comprehensive and precise models of gene regulation at the
molecular level.

Incorporating structural information from protein 3D
structures into DL models has the potential to enhance our
understanding of complex biological processes and regulatory
networks. By leveraging the insights gained from MaSIF'** and
dMaSIF,"”* researchers can explore new avenues for modeling
gene regulation, protein—protein interactions, protein—ligand
interactions, and other molecular interactions, ultimately
leading to advancements in proteomics and systems biology.
Indeed, NucleicNet'” is an excellent example of a tran-
scriptomic-level model that incorporates structural information
to predict binding specificities of RNA-binding proteins (RBPs).
By representing the binding 3-D structure of protein as a 3-D
grid with physicochemical possessions and using a CNN with
residual connections, NucleicNet achieves accurate predictions
of RBP binding preferences for different RNA constituents.

Multiomic Model Development. Indeed, biologists often
employ multiple experimental techniques to strengthen the
validity and reliability of their findings. By using different
methods, they can cross-validate their results and reduce the
likelihood of errors or biases. The work by Chaudhary et al.'”* is
an excellent example of utilizing multiomics data and DL
techniques for the prediction of survival of patients with
hepatocellular carcinoma (HCC). The model was trained
employing 230 samples from TCGA (The Cancer Genome
Atlas) with RNA-seq data, DNA methylation profiles, and
microRNA-seq data. The process of autoencoder-based
dimensionality reduction,'”” feature selection, and concatena-
tion helps to mitigate the challenges posed by high-dimensional
omics data and enhances the model’s ability to capture relevant
biological signals. The integration of multiomics data with
concepts from multimodal machine learning'”® holds great
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potential for driving innovations in precision medicine and
personalized healthcare.

The MOMA'"*” (Multi-Omics Model and Analytics) model is
a sophisticated approach used to predict multiomics quantities
of E. coli based on different growth conditions. MOMA
combines RNN-based DL and LASSO (Least Absolute
Shrinkage and Selection Operator) regression to achieve its
predictions. The model acquires a layer-by-layer process to
predict proteomic, transcriptomic, metabolomic, phenomic, and
fluxomic quantities sequentially, while considering the influence
of quantities from previous omics layers on the current
prediction. The Deep Structured Phenotype Network
(DSPN)*® is a powerful model designed to predict brain
phenotypes using several functional genomic data modalities.
The DSPN utilizes a hierarchical conditional deep Boltzmann
machine (DBM) architecture’® for its predictions. This
approach allows the model to capture complex interactions
and dependencies between different genomic data types and
their relationships to brain phenotypes.

Usage of Single-Cell Profiles. The advanced single-cell
omics technologies have greatly expanded our understanding of
cellular diversity, developmental processes, disease mechanisms,
and the complexity of various tissues and organs. They continue
to be refined and applied in diverse fields, from developmental
biology and immunology to cancer research and regenerative
medicine. Single-cell ATAC-seq (scATAC-seq)”">*** for
chromatin accessibility profiling, single-cell RNA-seq (scRNA-
seq) for gene expression level profiling, single-cell reduced
representation bisulfite sequencing (scRRBS-seq)”** for meth-
ylation profiling, single-cell bisulfite sequencing (scBS-seq),”"”
Smartseq”’° for full-length transcriptome profiling, and single-
cell Ch IP-seq (scChIP-seq)*”” for protein—DNA binding
profiling are some of the key single-cell omics profiling
technologies that have seen substantial improvements. Current
DL-based gene regulation models use single-cell profiles
basically in two different ways. One operates at the genuine
single-cell level, while the other operates at the pseudobulk level.

Current DL-based gene regulation architectures generally
employ single-cell profiles in two divergent ways. The first works
at the pseudobulk level. The model assembles single-cell
assessments of each cell cluster into a single profile. The
assembled pseudobulk profiles are then used by the model in a
manner like how bulk omics profiles are used. Regardless of loss
of information during aggregation, the employment of
pseudobulk profiles still has an advantage over real bulk omics
profiles as they depict evaluations from pure cell types without
interference from others. The utilization of pseudobulk profiles
in the context of single-cell omics analysis has advantages over
real bulk omics profiles, despite the information loss that occurs
during the aggre%ation process. The study conducted by
Cusanovich et al.””® involved single-cell ATAC sequencing
(scATAC-seq) on around 100,000 somatic cells of mature mice.
The researchers aimed to predict chromatin accessibility for
each identified cell type using a multitask learning approach
based on the Basset architecture. They trained the model based
on aggregated pseudobulk profiles inside each cell cluster.
Recently, based on DeepMEL, Janssens et al. presented
DeepFlyBrain model for predicting chromatin coaccessible
areas in the Drosophila brain.”"”

DeepCpG”'? is a deep learning model designed for imputing
methylation status in low-coverage single-cell DNA methylation
profiles. The model was trained on scBS-seq (single-cell bisulfite
sequencing) and scRRBS-seq (single-cell reduced representa-
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tion bisulfite sequencing) data from multiple mouse and human
tissues. The model architecture combines CNNs with bidirec-
tional Gated Recurrent Units (GRUs). SCALE*"" is a DL model
designed for imputing low-coverage single-cell ATAC sequenc-
ing (scATAC-seq) profiles. The model is based on a
combination of variational autoencoder (VAE) and Gaussian
mixture models (GMMs). It is specifically tailored to address the
challenge of handling sparse and missing data in scATAC-seq
profiles. DL approaches have also shown promising results in
making inferences on gene regulation networks employing
single-cell RNA seque (scRNA-seq) data. CNNC>'” is one such
example of a DL model designed for inferring the causality
between two genes in a gene regulatory network. Many latest
methods and perspectives to overcome the challenges have been
summarized in table format*'*~*** (Table S1).

Bl CONCLUSIONS AND FUTURE PERSPECTIVES

The widespread adoption of Next Generation Sequencing”*®
has facilitated the generation of enormous data sets, but they are
constrained to evaluations in chromatin accessibility, genomic
data, and transcriptome profiles. Other biological scale assess-
ments, including metabolomics proteomics, are gradually
catching up to the data quantities generated by NGS-based
approaches. Biological diversity is often difficult to manage since
it is caused by random mutations that occur throughout
generations. This inconsistency is not usually handled and can
induce noise in quantified biological data. This repetitive noise,
combined with transcriptomic variability, has an influence on
data reproducibility and can degrade model fitting quality.
Technigues like denoising filters can help to overcome this
barrier.”*”*** Unsupervised learning can be vital in determining
hidden relationships among elements in intricated high-
dimensional biological data.

In synthetic biology, ML algorithms already play a crucial role
in supporting the Learn part of the DBTL*****° cycle. By
learning more systematically from the training data set of newly
generated mutants, these models can reduce the turnover time
of each DBTL cycle by obtaining additional expertise for every
round and creating better trials sequentially. The use of
automation in experimental biology can expedite the emergence
of fully automated DBTL cycles which are autonomous of
human involvement. ML has apparent uses in standard
optimization tasks for driving strains toward desired targets,
but developing framework modeling to achieve a basic biological
system perspective is a less evident challenge. A union of
machine learning, mechanistic models, and automated bio-
foundries will almost certainly result in some of the most
significant discoveries in synthetic biology shortly.

The combination of synthetic biology with deep learning
research promises the development of new sequences and
constructs, data analysis automation, optimal experimental
designs, and multiple other applications. The DL study
emphasizes that basic models can have significant advantages.
Owing to several parameters and the complexity of the
frameworks involved, DL models can practically be black
boxes, decreasing the model’s interpretability.

Before moving on to DL models, it is often vital to experiment
with basic ML approaches to better understand their perform-
ance. Sample et al.”’ examined a linear regression model on the
5" UTR data set, which provided a good point of comparison to
their CNN-based findings. It will also be beneficial to
comprehend the trade-offs between efficiency and complexity
for diverse applications, and research into this area is likely to be
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beneficial. For example, Nikolados et al.”>' evaluated the ability
of models of complexity to determine protein production from
DNA sequence. Eventually, the amount of available data also has
a significant impact on whether DL strategies are viable because
deep models need large training sets. Many of the latest DL
methods are efficient to overcome the challenges of ML/DL in
biosystems and have been summarized in table format (Table
S1).

Overall, ML and DL strategies have had a considerable impact
on the synthetic biology field, and I foresee significant progress
in this area in the future. In this review, I attempted to present an
overview of ML and DL methodologies and applications in
synthetic biology. I have also addressed the challenges and
opportunities for dealing with biological data sets, with the
purpose of assisting professionals in incorporating ML and DL
approaches, and insights into their arsenal.
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