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INTRODUCTION

Feedforward (FFD) – feedback (FBK) cortical processing ultimately needs to be considered in the
context of whole-brain activation, including interactions with cortico-thalamo-cortical, callosal,
and the excitatory and inhibitory intrinsic cortical circuits. For the non-human primate (NHP)
brain, however, identifying cell types and deciphering the patterns and metrics of axon convergence
and divergence is challenging (cf. Rockland, 2019, 2020) and, at the level of detail approachable in
the mouse brain, may still be years away. Many of the comments put forth here are not novel and
echo previous reports (including my own, Rockland, 1997). My goal has been to briefly re-consider
what have become key features of FFD-FFK connections in the early visual cortical pathway, with
emphasis on the cellular and dendritic circuitry components. Owing to sparsity of data in NHP
concerning the role of interneuron subpopulations in microcircuitry, these are not discussed. For
detailed reports on visual cortical connectivity and physiological response properties (see Bullier,
2004; Douglas and Martin, 2007; Shipp, 2007, 2016; Markov et al., 2014a,b; Angelucci et al., 2017;
Vanni et al., 2020; Vezoli et al., 2021, among others).

Although area V1 is a canonical “start point” for discussing FFD-FBK cortical processes, it is
actually something of an outlier; that is, there are cortico-thalamic, but not cortico-cortical FBK
projecting neurons in V1; and FFD terminations are of thalamic, but not cortical origin. There are
few or no callosal connections. Thus, a strict comparison of cortical FFB and FBK connections is
better addressed in extrastriate areas V2, V3, V4, MT, or TEO. Much of the following discussion is
written as applying to V2.

Neurons of Origin
As repeatedly summarized in the literature (e.g., Kennedy and Bullier, 1985: Rockland, 1997, 2019;
Douglas and Martin, 2007; Markov et al., 2014a,b; Anderson and Martin, 2016; Angelucci et al.,
2017, among others), FFD projecting neurons from V2 (to V4 and MT) and FBK projecting neurons
(to V1) are differentially located in deeper layer 3 (FFD) or layers 2, 3A, 5, and 6 (FBK). The
FFD-FBK laminar dissociation, despite a minor degree of laminar intermingling, has been largely
confirmed by injections of two distinguishable retrograde tracers in V1 and V4 (Markov et al.,
2014b; and see Figure 1), where less than 1% of cortically projecting cells in V2 (and 2.2% in V3)
were double labeled (i.e., had branching collaterals to both V1 and V4). The further characteristics
of these bifurcating, link neurons, and their postsynaptic targets, are unknown. Are they more
frequent in the less investigated peripheral visual representation of V2, or for other combinations
(e.g., injections in V1 and MT)?

The most numerous FBK population is in layer 6 (see estimates in Table 3 in Rockland,
1997; Markov et al., 2014a,b). Along with the smaller number of layer 5 FBK neurons, this
infragranular distribution overlaps with that of several cortico-subcortical projecting populations
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(cortico-collicular, cortico-striatal, or cortico-thalamic projecting
neurons in layer 5, and cortico-thalamic or cortico-claustral
neurons in layer 6; summarized in Shipp, 2007). Appropriate
double retrograde tracer experiments have not been done
to probe for collateralization of cortico-cortical and cortico-
subcortical axons. Whether these neuronal subpopulations are
spatially clustered or distributed in a salt-and-pepper pattern has
not been established (but see Hawken et al., 2020 for “functional
clusters” in V1).

Neuronal Subtypes
Feedback and feedforward neurons are excitatory pyramidal
neurons, although a small number of GABAergic FBK neurons,
probably positive for nitric oxide or somatostatin, are found
in the supragranular layers of V2 after viral infection in V1
(Tomioka and Rockland, 2007). Pyramidal subtypes can be
more finely distinguished, in part by dendritic morphology.
Supragranular neurons extend their apical dendrite into layer 1.
For layer 6 neurons and many layer 5 FBK neurons, the apical
dendrite extends only into layer 3. A subset of layer 5 neurons
send apical dendrites to layer 1 (Golgi stains: Lund et al., 1981);
and intracellular fills of tracer identified FFD projection neurons
demonstrated about half (4 of 9 neurons) having apical dendrites
that extend to layer 1 (Markov et al., 2014b). Soma depth is
significant, in that shorter apical dendrites, even of neurons
in the same layer, are reported to be less excitable (in mice:
Galloni et al., 2020).

By comparison, five subtypes of morphologically distinct
cortico-geniculate (CG) neurons in V1 and at least three subtypes
in V2 have been identified (Briggs et al., 2016). Heterogeneity of
CG neurons is supportive of some degree of parallel processing
(“...not one circuit, but rather a collection of distinct circuits
conveying unique [visual] feature information and operating on
a corresponding variety of timescales”; Briggs, 2020); and this
may apply as well to FFD and FBK processes (“...a multiplicity
of feedback pathways involved in a wide range of cognitive
functions”; Vezoli et al., 2021).

Other anatomical evidence of neuron diversity includes input
diversity (for V1: Sawatari and Callaway, 2000); soma size [FBK
neurons in layer 6, but not necessarily layer 5, are smaller
(Rockland, 2004; Berezovskii et al., 2012)], and the observation
that some but only some layer 6 FBK neurons use synaptic
zinc (Ichinohe et al., 2010), an activity related neural modulator
(McAllister and Dyck, 2017). Some but only some neurons in
V4, TEO, or MT branch to both V2 and V1, as demonstrated
by single axon reconstructions (Rockland et al., 1994; Rockland
and Knutson, 2000), and by double retrograde tracer injections
in V1 and V2 (Kennedy and Bullier, 1985). Transcriptomic
investigations are likely to reveal further criteria of diversity, as
already reported for neurons in layer 6 of V1 (Hawken et al., 2020;
and proposed as a general rule: Cembrowski and Spruston, 2019).

Axon data are more sparse than data for dendrites, but
differences in myelination, axon caliber, and the topology of the
distal arbors are consistent with there being multiple neuronal
subpopulations (see comments in Rockland, 2020). Area V2
axons (laminar source not known) terminating in V1 are
(1) slender (0.3 µm in diameter), unbranched, unmyelinated,

and uniformly covered with boutons terminaux, or (2) thick
(>1.0 µm), branched, heavily myelinated, and forming separate
small clusters of large, multisynaptic boutons (Anderson and
Martin, 2009). Divergent and/or clustered terminal arborizations
are similarly reported by reconstructions of single axons
projecting to V1 from V2 (Rockland and Virga, 1989) or
from MT (Rockland and Knutson, 2000). Some V4 axons are
reported to terminate in V2 with clustered boutons between
myelinated lengths, while others are unbranched and have a
continuous distribution of boutons with no intercalated myelin
(Anderson and Martin, 2006).

Axon Interactions
Feedback and feedforward connections are part of a rich
nexus that includes thalamo-cortical, callosal, amygdalo-cortical
(Freese and Amaral, 2005), claustro-cortical, excitatory intrinsic
collaterals, local inhibitory terminations, and neuromodulatory
projections (Kravitz et al., 2013; Rockland, 2019, 2020; Vanni
et al., 2020, and further references therein). Inactivation
experiments provide evidence that FBK connections have specific
functional influence, but not how this comes about. Physiological
perturbations have been demonstrated in V2 following separate
inactivation of areas V4, MT, or pulvinar (Correia et al., 2021;
and for V2 to V1: Nassi et al., 2013; Nurminen et al., 2018).
Putative interaction with excitatory intrinsic connections, to
give another example of FBK influences, has been documented
by simultaneous recordings in V1 and V4. Contour-related
neuronal responses are found to emerge initially in V4, following
∼40 ms later in V1, and then continuing to develop in
parallel in both areas (Chen et al., 2014). This was proposed
as an incremental process, where visual contour information
accumulates in parallel over multiple areas, presumably both
cortical and subcortical. This process could be carried out by
direct FBK from V4 to V1, a polysynaptic V4-V2-V1 routing,
and/or interactions of FBK signals with horizontal intrinsic
connections in V1 (Liang et al., 2017).

What are the cellular and microcircuitry substrates of FFD-
FBK processes? Relevant anatomical data are woefully lacking, as
surveyed above, and answers remain on the order of what we’d
like to know. This includes:

(1) Specific data on intrinsic inter- and intralaminar pyramidal
cell collaterals, for identified FBK and FFD projecting
neurons. From intracellular fills (in cat: Gilbert and Wiesel,
1983; Martin and Whitteridge, 1984), these are known
to be spatially extensive, with hundreds to thousands of
terminations, and can be inferred to converge, within and
across layers, with multiple extrinsic connections and other
collaterals. The range of collaterals (2–12 per neuron?)
and degree of neuron-to-neuron variability is unknown,
although excitatory intrinsic terminations are recognized
to be the numerically major synaptic subpopulation (80%
of the total), as opposed to any of the extrinsic cortical or
subcortical connections (e.g., Anderson and Martin, 2016).

(2) What are the postsynaptic targets: do FFD and FBK
projecting neurons preferentially target other FFD and
FBK neurons? Always or in what proportion? Does this
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differ topographically within areas or across different
areas? Electron microscopic (EM) investigations in NHP
establish that FFD terminations from V1 to V2, FBK
terminations from V2 to V1, and FBK from V4 to V2
target both GABergic profiles (∼14%) and dendritic spines
(Anderson and Martin, 2006, 2009). FFD axons from
V2 to MT terminate on dendritic spines in layer 4 and
layers 1, 2 (respectively, 67 and 82% of the postsynaptic
pool; Anderson and Martin, 2002). The dendritic spines
presumably belong to pyramidal neurons, but which
neurons, and is there functionally significant synaptic
clustering (for ferret: Scholl et al., 2021)?

(3) Dendritic location and pattern of identified synapses.
Calcium imaging allows visualization of individual
synapses on identified dendrites and is beginning to

FIGURE 1 | Above: Schematic sketch (V2) of FFD (in red) and FBK
terminations (in black) in relation to potential postsynaptic dendrites (black) of
FFD (red soma) and FBK (black soma) projecting neurons. FFD teminations in
layer 4 (red arrows) potentially contact small pyramidal cells or interneurons in
layer 4, basal dendrites of FFD neurons, and distal dendrites of FBK neurons.
FBK or other terminations in the infragranular layers (black arrow) might
access more proximal apical dendrites of infragranular neurons. Included for
reference, a typical, multilaminar pulvino-cortical (PC) axon (in green) (And see
Federer et al., 2021: terminations in V1 after viral infection of V2). Not shown:
layer 5 neurons, inhibitory neurons (except for the representative neurons at
upper left), intra- and interlaminar intrinsic connections, and the additional
afferent inputs to layer 1 or other layers. Below: Predominant segregation of
FFD (in red) and FBK (in black) projecting neurons in V2, as demonstrated by
double retrograde injections in V1 and V4, with a small number (in green) of
double labeled (DL) neurons (modified from Figure 10 in Markov et al., 2014b).

provide spatiotemporal synaptic maps. Orientation-
and chromatic-selective inputs have been mapped for
superficial pyramidal neurons in V1, with evidence of a
wide scattering of functional properties, perhaps reflecting
dendritic integration within and across visual feature
domains (Ju et al., 2020). Further results are needed at this
level of resolution.

Feedforward-Feedback Reciprocity
Area-to-area reciprocity has been a hallmark feature of FFD-
FBK processes (e.g., predictive coding Shipp, 2016; Pennartz
et al., 2019), and reciprocity has recently been extended to
investigations at the level of neuron-to-neuron. Viral mediated
monosynaptic circuit tracing demonstrates FBK inputs from V2
to some V1 neurons that send FFD projections to V2 (i.e.,
“looped neurons,” Siu et al., 2021). The frequency of such neuron-
to-neuron loops is not yet known, nor the specific details of
synaptic number and location. FBK axons have hundreds of
terminations, of which only a small, and presumably variable
number (1–10?) contact any single neuron. Thus, an important
aspect of neuron-to-neuron reciprocity is how this is elaborated
in relation to a putative assembly of multiple locally adjacent
neurons, many of which are likely to be themselves directly and
indirectly interlinked by the network of intrinsic collaterals.

Feedback axons have repeatedly been reported as spatially
divergent (Rockland, 1997; Anderson and Martin, 2016; Vezoli
et al., 2021) with a spatially asymmetric axonal distribution in
relation to the territory occupied by retrogradely labeled FFD
cells (“reciprocal asymmetry,” Shipp and Zeki, 1989). Divergent
FBK axons often carry small clusters of terminations, and
this “hybrid” spatial distribution might indicate a combination
of topographically reciprocal and asymmetrical connections
(Rockland and Virga, 1989; Angelucci et al., 2017).

Area-to-area reciprocity, despite the attractiveness of the idea,
is evidently not an obligatory feature of FFD-FBK connections.
There are cortical connections which would be considered
as FBK (i.e., not projecting to layer 4), but which are not
reciprocated; namely, unidirectional projections to V1 from
TEO, TE, TF, and TH (Kennedy and Bullier, 1985; Rockland
and Van Hoesen, 1994; Suzuki et al., 2000; Kravitz et al., 2013;
Markov et al., 2014a), and there are unidirectional projections to
the peripheral field representations of V1 and V2 from auditory
(Falchier et al., 2002; Rockland and Ojima, 2003) or parietal areas
(Borra and Rockland, 2011). “Leapfrog” connections have been
identified in the FFD visual pathway (V2 to TEO; summarized
in Kravitz et al., 2013).

Laminar Signatures
From the perspective of presynaptic and postsynaptic neuropil,
the distinction between FBK-dominated layer 1 and FFD-
dominated layer 4 is not clearcut (Figure 1). The soma location is
only a provisional predictor of segregated dendritic inputs distant
from the soma. That is, apical dendrites of both supragranular
FFD and supragranular FBK neurons access potentially common
inputs in layer 1. Input to layer 4 is accessible to both FFD and
FBK neurons, but at different dendritic locations; namely, basal
dendrites of FFD projecting neurons in lower layer 3, or distal
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apical dendrites for infragranular FBK neurons, in addition to
indirect interlaminar relays from layer 4 neurons potentially to
both populations.

There is also common within-area axon collateralization
across multiple layers. In V2, pulvinocortical axons (“FFD”
by analogy with geniculocortical axons in V1) are typically
multilaminar (Rockland et al., 1999). FFD axons from V2 to MT
terminate in layers 1 and 4 (Anderson and Martin, 2002). FBK
axons from both V2 and MT to V1 frequently have collaterals,
usually in layer 5 (Rockland, 1997; Anderson and Martin, 2016).
The relative frequency of multilaminar collateralization of a
single axon and the postsynaptic targets are not known.

Cortical Networks and Hierarchy
In this Opinion, I have shared my view of “what we’d like to
know” or, more precisely, what we need to know for better
understanding of functional organization (also, Rockland, 2019,
2020). This is in part (1) more detail (better definition of cell
types, more data on microcircuitry) but also (2) a broader context,
of how FFD and FBK processes interact with multiple extrinsic
and intrinsic connections under different conditions.

The FFD and FBK architecture has been closely associated
with cortical hierarchy, serving to some extent as a
proxy of rank-ordering. The nature of “hierarchy” itself,
however, continues to generate discussion (e.g., Pessoa, 2018;
Hilgetag and Goulas, 2020; and for recent review of rodent

and NHP: Gamanut and Shimaoka, 2021). Other ideas have
been raised: parallel streams of hierarchical processing that
overlap in space and time (Lamme and Roelfsema, 2000);
multiregional coordination (“coordination dynamics,” Tognoli
and Kelso, 2014); hierarchical heterogeneity of cross-area
intrinsic local properties (Demirtas et al., 2019); multiple, parallel
and asynchronously operating task- and stimulus dependent
hierarchies (Zeki, 2016, 2020), among others. As suggested almost
twenty years ago, “different cues are processed with different
priorities and interact in a complex fashion [such that] processing
involves many areas of the hierarchy at the same time, with
information flowing in the feedforward as well as the feedback
direction” (Bullier, 2004).
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