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It is estimated that the rate of epigenetic changes may be orders of magnitude higher than that of genetic
changes and that purely epigenetic mechanisms may explain why cancers arise with few or no recurrent
mutations. However, supporting evidence remains limited, partly due to the cost of experimentally
studying genome-wide epigenetic dysregulation. Since genome modification enzymes are recruited by
long noncoding RNAs (lncRNAs) to specific genomic sites, analyzing differentially expressed genes and
differentially methylated regions (DMRs) at the DNA binding sites of differentially expressed lncRNAs
is important for uncovering epigenetic dysregulation. We performed RNA-seq and MeDIP-seq on a set
of colorectal cancer (CRC) and normal colon samples and developed an analysis pipeline for combined
analyses of gene expression, DNA methylation, and lncRNA/DNA binding. The genes identified in our data
and important for CRC agree with widely reported findings. We found that aberrantly transcribed non-
coding transcripts may epigenetically dysregulate genes, that correlated gene expression is significantly
determined by epigenetic dysregulation, that differentially expressed noncoding transcripts and their
epigenetic targets form distinct modules in different cancer cells, and that many hub lncRNAs in these
modules are primate-specific. These results suggest that lncRNA-mediated epigenetic dysregulation
greatly determines aberrant gene expression and that epigenetic dysregulation is highly species-
specific. The analysis pipeline can effectively unveil cancer- and cell-specific modules of epigenetic
dysregulation, and such modules may provide novel clues for identifying diagnostic, therapeutic, and
prognostic targets for epigenetic dysregulation.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background

Mutations in genes and regulatory sequences in cancer cells
accumulate as cancer grows. For years, researchers have hypothe-
sized that mutations cause cancers and drive cancer evolution and
have tried to identify them in different cancers [1]. This hypothesis,
however, is not supported by many cancer genome sequencing
studies. One study reported that only approximately 36% of muta-
tions are expressed in primary triple-negative breast cancers [2].
Feinberg and colleagues recently estimated that 99.9% of
mutational changes in cancers are not driver mutations [3].
Meanwhile, abundant long noncoding RNAs (lncRNAs) identified
in mammalian genomes indicate that aberrant gene expression
can be caused by lncRNA-mediated epigenetic dysregulation. Up
to 40% of differentially expressed genes between humans and
nonhuman primates may result from interspecies epigenetic dif-
ferences [4], genomic regions enriched in noncoding RNAs and
cis-regulatory elements host the majority of disease-related
genetic variations [5], and growing evidence indicates that
lncRNAs decisively regulate gene expression [6,7]. These findings
call for a systematic analysis of epigenetic dysregulation based
on newly generated and publicly available cancer sequencing data.

Many lncRNAs can bind to DNA sequences and recruit DNA and
histone modification enzymes to their binding sites [8–10]. Their
genomic binding sites therefore determine their epigenetic target
genes and transcripts [11,12]. Since lncRNA sequences and DNA
duplexes form DNA:RNA triplexes following noncanonical base-
pairing rules [13], lncRNAs’ DNA binding motifs (also called
triplex-forming oligonucleotides, TFOs) and genomic binding sites
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(also called triplex-targeting sites, TTSs) are predictable [14]. Thus,
combining the analysis of gene expression, DNA methylation, and
lncRNA/DNA binding is critical to uncovering the key players and
extent of lncRNA-mediated epigenetic dysregulation in cancers.

Colorectal cancers (CRCs) occur widely in both developed and
developing countries and cause many deaths annually [15]. Muta-
tions and critical differentially expressed genes have been exam-
ined [16–18], but how and to what extent epigenetic
dysregulation contributes to tumorigenesis and to cancer subtypes
remains unclear. For example, a recent study by Merry and col-
leagues identified a lncRNA that regulated gene expression and
DNA methylation in CRC but did not unveil how the lncRNA recog-
nized its target genes [19]. In this study, we performed RNA
sequencing (RNA-seq) and methylated DNA immunoprecipitation
sequencing (MeDIP-seq) on 12 CRC samples and 3 normal colon
tissue samples, analyzed aberrantly transcribed and differentially
expressed coding and noncoding transcripts, analyzed differen-
tially methylated regions (DMRs), and for the first time, explored
the association between the aberrant transcription/differential
expression of noncoding transcripts and the aberrant transcrip-
tion/differential expression of protein-coding transcripts. We also
examined several single-cell RNA-seq (scRNA-seq) datasets of
CRC and found that the differential expression of lncRNAs and their
potential epigenetic targets were highly correlated. Our analysis
pipeline consists of widely used programs (Fig. 1). Our findings
support each other, and well-known CRC-related genes were found
to be dysregulated in our samples. The obtained results suggest
that some aberrantly transcribed noncoding transcripts may have
epigenetic regulatory functions, that epigenetic dysregulation
greatly determines the correlated differential expression of genes,
and that distinct epigenetic regulatory modules exist in different
cancer cells. Since lncRNA expression and epigenetic regulation
are highly tissue-specific, a combined genome-wide analysis of
gene expression and lncRNA/DNA binding alone based on abun-
dant publicly available RNA-seq data makes much sense.
2. Materials and methods

2.1. Sample collection

Samples were provided by the Department of Pathology of Nan-
fang Hospital (The First Affiliated Hospital of Southern Medical
University). Samples were collected from patients (regardless of
age and sex) without any treatment during tumorectomy. Written
informed consent to collect tissue samples during tumorectomy
was obtained from all patients, and the study was performed in
accordance with the Declaration of Helsinki and the Regulations
of the Ethical Committee of Nanfang Hospital. Fifteen samples (3
normal and 12 tumor) with high library preparation quality were
sequenced. The mean RNA integrity number (RIN) of the samples
was 8.275, with a standard deviation (s.d.) of 0.5559, tested on
an Agilent 2100 Bioanalyzer. According to the cell differentiation
grades, 4 tumor samples (T19A, T50A, T95A, and T85A) were clas-
sified as grade 1 (high differentiation), 4 tumor samples (T111A,
T132A, T160A, and T162A) as grade 2 (medium differentiation),
and 4 tumor samples (T13A, T14A, T18A, and T2C) as grade 3
(low differentiation).
2.2. cDNA library construction and RNA-seq

Total RNA was extracted from each of the samples, rRNAs were
removed from the total RNA using the TruSeq PE Cluster Kit, and
purified mRNAs were fragmented using fragmentation buffer.
Short fragments were used to synthesize first-strand cDNA with
the addition of random hexamer primers, and second-strand cDNA
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was synthesized using buffer, dNTPs, RNase H, and DNA poly-
merase I. Short double-stranded cDNA fragments were purified
using the QIAquick PCR Extraction Kit and ligated with sequencing
adapters. DNA fragments ranging from 100 to 500 bp were gel-
purified and amplified by PCR. The amplified library was
sequenced in paired-end reads on an Illumina HiSeq 2000 instru-
ment. Library preparation and sequencing were performed by
BGI Shenzhen (Shenzhen, China).

2.3. MeDIP library construction and MeDIP-seq

First, genomic DNA was extracted and sonicated to 100–500 bp.
Second, DNA fragments were repaired to contain a 30-dA overhang,
and adapters were ligated at the ends using the Paired-End DNA
Sample Prep Kit (Illumina). Third, DNA fragments were denatured
and immunoprecipitated with 5-mC antibody using the Magnetic
Methylated DNA Immunoprecipitation Kit (Diagenod), and q-PCR
was performed to validate the enrichment efficiency of immuno-
precipitation. Fourth, immunoprecipitated DNA fragments ranging
from 100 to 500 bp were gel-purified and quantified using an Agi-
lent 2100 Bioanalyzer. Finally, the qualified immunoprecipitated
DNA library was sequenced in paired-end reads on an Illumina
HiSeq 2000 instrument. Library preparation and sequencing were
performed by BGI Shenzhen (Shenzhen, China).

2.4. RNA-seq read filtering, read mapping, and transcript assembly

Clean reads were obtained by using the SOAPnuke program
(v1.5) to remove reads with adaptors and reads of low quality
[20]. The SOAPnuke parameters for controlling read quality were
Q � 10 and 10% ‘N’s (reads with either more than 50% of bases with
Q � 10 or >10% ’N’s were removed). The mean number of clean
reads was 84,802,601 (s.d. = 13,391,825).

We used the HISAT2 package to map reads to the human gen-
ome build hg19 and used the hg19 GTF file (version GRCh37.75)
from the Ensembl website to improve the mapping quality. The
mean map rate and mean unique map rate was 96.67% and
71.05% (s.d. = 1.71% and 3.78%), respectively. Known splice sites
and exons were extracted from the hg19 GTF file using hisat2_ex-
tract_exons.py and hisat2_extract_splice_sites.py. The hisat2-build
program (with options ‘--ss’ and ‘--exon’) was used to index the
reference genome hg19 using known splice sites and exons. The
clean reads of each sample were mapped to hg19 using the HISAT2
program (v2.0.3, with default parameters) [21].

Upon transcript and gene annotation in hg19, we used StringTie
(v1.2.2, with the ‘-G’ option to use the hg19 GTF file as the refer-
ence annotation file) [22] to assemble the aligned reads into tran-
scripts in each sample. The assembled transcripts in all 15 samples
were merged into a nonredundant set of transcripts using the
‘Transcript merge mode’ of StringTie (with the ‘--merge’ option
and other parameters set to default values). To facilitate the use
of edgeR to analyze differential expression, we used the prepDE.
py program (with default parameters) in the StringTie package to
calculate the read count of each transcript directly from the files
generated by StringTie.

2.5. MeDIP-seq read filtering and read mapping

The SOAPnuke program (v1.5) was used to remove reads with
adaptors and reads of low quality. The parameters for controlling
read quality were Q � 20 and 10% ‘N’s (reads with either more than
50% of bases with Q � 20 or >10% ‘N’s were removed). Each sample
has 102,040,816 clean reads. The clean MeDIP-seq reads were then
mapped to hg19 using the Bowtie2 program (v2.2.5, with the
options ‘-sensitive’ and ‘-end-to-end’) [23]. The mean map rate



Fig. 1. The data analysis pipeline. Orange boxes indicate programs; blue and green boxes indicate inputs and outputs. ‘‘N”, ‘‘L”, ‘‘M”, and ‘‘H” indicate the normal colon tissue
group and low/medium/high differentiation CRC groups. For each sample, we used HISAT2 to align clean RNA-seq reads, used StringTie to assemble aligned reads into
transcripts and genes (StringTie uses MSTRG to label unannotated transcripts and genes), used a script in the StringTie package to calculate the read count of each transcript,
and used slncky to detect novel long noncoding transcripts from MSTRG transcripts. The combined use of StringTie and slncky identified four kinds of transcripts: MSTRG RT,
RT, MSTRG PT, and PT (see abbreviations below). Then, the read counts of the four kinds of transcripts allowed edgeR to identify differentially expressed transcripts in each
tumor sample and in each tumor group by performing a 1:3 comparison and a 4:3 comparison against the 3 normal samples. For each differentially expressed RT and MSTRG
RT in each tumor sample, a simple script was used to identify the genomic region containing this RT and its nearby differentially expressed PTs/MSTRG PTs. With the
differentially expressed and MSTRG-labeled RTs and PTs in each tumor group, WGCNA was used to identify the modules of coexpressed transcripts. A total of 271 genomic
regions were identified in 12 tumor samples, and 9 modules were identified in 3 tumor groups. LongTarget was used to predict the TTSs of the differentially expressed and
MSTRG-labeled RTs in each of the 271 genomic regions and the TTSs of the differentially expressed and MSTRG-labeled RTs in each module. Meanwhile, Bowtie2 was used to
align the clean MeDIP-seq reads in each sample, and MEDIPS was used to identify DMRs in each tumor sample and in each tumor group by performing a 1:3 comparison and a
4:3 comparison against the 3 normal samples. The analyses following this pipeline thus unveil and verify correlated and epigenetically dysregulated gene expression in
different genomic regions and in different cancer cells. For convenience, we sometimes use PT/MSTRG PT/RT/MSTRG RT indiscriminately to denote both genes and transcripts
(and do not italicize gene names). Abbreviations: RT: lncRNA transcripts; PT: non-lncRNA transcripts (most are protein-coding transcripts); MSTRG RT: unannotated RT;
MSTRG PT: unannotated PT; DMRs: differentially methylated regions; TFOs: triplex-forming oligonucleotides; TTSs: triplex-targeting sites; TF: transcription factor. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and mean unique map rate was 89.91% and 59.37% (s.d. = 1.31%
and s.d. = 2.43%), respectively.
2.6. Identifying annotated and unannotated coding and noncoding
transcripts

When assembling the aligned reads into transcripts and genes,
StringTie uses MSTRG to label unannotated transcripts and assem-
bles MSTRG transcripts into MSTRG genes. To investigate the epi-
genetic dysregulation mediated by both differentially expressed
and aberrantly transcribed lncRNAs, we analyzed MSTRG RTs (both
transcripts and genes). To do so, we used the slncky program (v1.0,
with default parameters) [24] to identify novel (unannotated) long
noncoding transcripts from other MSTRG transcripts upon gene
annotation in the hg19 GTF file (in the study, other kinds of non-
coding RNAs were not analyzed and here, annotated and unanno-
tated noncoding transcripts mean those whose length is
>200 bp). To examine whether MSTRG transcripts and genes were
annotated in hg38, we used the liftOver function in the UCSC Gen-
ome Browser to transfer their genomic coordinates between hg19
and hg38.

The combined use of StringTie and slncky enabled us to identify
four kinds of transcripts: annotated non-lncRNA transcripts (called
PTs, because most of them are protein-coding transcripts), anno-
tated long noncoding transcripts (called RTs, i.e., RNA transcripts),
unannotated non-lncRNA transcripts (called MSTRG PTs), and
unannotated long noncoding transcripts (called MSTRG RTs).
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2.7. Detecting differentially expressed genes

We used prepDE.py (with default parameters) in the StringTie
package to calculate the read count of each transcript in each sam-
ple (see Section 2.4), and the files of the read count matrix were
used as the inputs for the edgeR program (v3.2.1) [25]. We used
the exactTest function in edgeR to identify the differentially
expressed genes in each tumor sample by comparing the read
counts of transcripts in this sample against the read counts of tran-
scripts in the 3 normal samples. We used the generalized linear
model function in edgeR to identify differentially expressed genes
in each tumor group by comparing the read counts of transcripts
in this group against the read counts of transcripts in the 3 normal
samples. In both situations, a transcript was assumed to be differ-
entially expressed relative to the 3 normal samples if the criteria of
FDR-adjusted p < 0.05 and absolute fold change > 2 (|FC|>2.0) were
met.
2.8. Detecting DMRs

Compared with the DNA methylation signals in the 3 normal
samples, the DMRs in each tumor group were identified using
the MEDIPS program (window size = 300, p.adj = BH, diff.
method = edgeR) with the criteria of FDR-adjusted p < 0.1 and
|FC|>1.0 [26]. The DMRs in each tumor sample were identified
using the same MEDIPS parameters and the same criteria. If some
DMRs overlapped with each other in multiple tumor samples, they
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were merged into one region. A simple script was used to extract
the DMR signals in a genomic region in each CRC group (and in
each CRC sample) into a specific file (DMR track file, in bed format),
which can be uploaded onto the UCSC Genome Browser as a cus-
tom track. To display the DMR tracks, display mode was set to
dense.

2.9. Detecting coexpressed modules of differentially expressed
transcripts

Upon identifying the differentially expressed genes in each of
the 3 tumor groups, we used the WGCNA R package (v1.49) to con-
struct coexpression networks and identify modules of highly inter-
connected genes following the step-by-step network construction
and module detection approach [27]. We used 1 and 0 to encode
tumor and normal samples, and only one trait (the sample is
CRC) was defined in the trait file. We used the pickSoftThreshold
function to calculate the scale-free topology fit index R2 for multi-
ple soft-thresholding powers, used the dynamic tree cut to detect
modules, and performed module merging to merge modules with
highly similar expression profiles. During the process, the parame-
ters in the example of the R tutorial were used (e.g., deepSplit = 2,
minClusterSize = minModuleSize = 30, and height cutoff = 0.25). GS
(gene significance) and MM (module membership) were computed
for every RT and PT in each module. GS and MM are the absolute
values of the correlations between the transcript and CRC (the
trait) and between the transcript and the module eigengene,
respectively. With the settings GS > 0.7 (with p < 0.05) and
MM > 0.7 (with p < 0.05), WGCNA identified 9 modules of coex-
pressed differentially expressed genes, including the H1, H2, and
H3 modules in the high differentiation group, the M1, M2, and
M3 modules in the medium differentiation group, and the L1, L2,
and L3 modules in the low differentiation group. Connectivity mea-
sures the connection of a gene to all other genes in a module. We
used the softConnectivity function to identify the most connected
genes in each module.

2.10. Predicting the TTSs of RTs and MSTRG RTs

For each differentially expressed RT/MSTRG RT in each tumor
sample, a simple script was used to identify the local genomic
region in which this RT/MSTRG RT may play a regulatory role.
The genomic region stretches from this RT/MSTRG RT upstream
and downstream until either a normally expressed PT or another
differentially expressed RT/MSTRG RT was met. If an RT/MSTRG
RT was differentially expressed in multiple tumor samples, its local
genomic regions in these samples were merged. In 12 tumor sam-
ples, 271 regions were identified, and we used LongTarget (v1.0,
default parameters) to predict the TTSs of these RTs and MSTRG
RTs in each of these regions [14]. This examines the epigenetic dys-
regulation in specific genomic regions of interest.

For each module of coexpressed genes identified by WGCNA in
the 3 CRC groups, we used LongTarget (v1.0, default parameters) to
predict the TTSs of RTs and MSTRG RTs in the genomic regions (in-
cluding the promoter region +3500 bp upstream of the transcrip-
tion start site) of PTs and MSTRG PTs. This examines the
genome-wide epigenetic dysregulation in specific tumor cells.

LongTarget generated three files for each lncRNA/DNA binding
prediction. Two class files (class1 and class2, in bedGraph format)
describe the TTS distributions, and one sorted file contains the
sequences of TFOs, coordinates of TTSs, and the rules of Hoogsteen
and reverse Hoogsteen base pairing. We used the BLAT function in
the UCSC Genome Browser to search the TFO sequence against the
human genome hg19, and the hit perfectly matching the sequence
pinpointed the TFO position. The class files and the DMR track files
(see Section 2.8) were uploaded onto the UCSC Genome Browser as
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custom tracks. To display the TTS tracks, display mode was set to
full, track height was set to 50, and other parameters were set to
their default values.
2.11. Human transcription factors

To analyze the contribution of transcription factors to the dys-
regulation of gene expression, a list of 1978 human transcription
factor genes (13849 transcripts) was obtained from a recent study
[28]. We computed the ratio of differentially expressed TF tran-
scripts to total TF transcripts and used LongTarget to predict how
many differentially expressed TF transcripts were targets of differ-
entially expressed RTs.
2.12. Analyzing scRNA-seq datasets

To verify our conclusions using scRNA-seq data, we downloaded
multiple datasets of CRC tissue cells, CRC cell lines, and normal
colon cells generated by a recent study [29]. We determined differ-
entially expressed genes with |logFC|>1 and Q-value < 0.1, used the
R program pheatmap to draw a heatmap of the lncRNA gene
expression in different cells, and used LongTarget to predict the
lncRNA TTSs in protein-coding genes in the two groups of data.
The first group consisted of differentially expressed lncRNA genes
and protein-coding genes in tumor cells, and the second group con-
sisted of 90 highly expressed lncRNAs and all protein-coding genes
in all cells. We also calculated the Spearman correlation between
every lncRNA and every protein-coding gene in tumor cells to
determine whether the correlation has any relationship with epi-
genetic regulation.
2.13. Detecting MSTRG RT expression in cell lines

We cultured cells of three cell lines, including FHC (ATCC� CRL-
1831TM, a normal human colon epithelial cell line), SW480 (ATCC�

CCL-228TM, a cell line derived from a grade 3–4 colon adenocarci-
noma), and HCT116 ( ATCC� CCL-247TM, a human colorectal carci-
noma cell line ). Total RNA was extracted with Trizol and the
concentration and purity were determined by OD260/280 using a
Nanodrop (Agilent Technologies, Palo Alto, CA, USA). 1 lg RNA
was reverse-transcribed into cDNA according to the manufac-
turer’s instructions (RR420A, Takara, Guangzhou, China). qRT-PCR
was performed according to the manufacturer’s instructions
(RR420A, Takara, Guangzhou, China) using a 7500 Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). Real-time quan-
titative PCR was performed to detect MSTRG.40340.1 and
MSTRG.38311.2 mRNA expression in the FHC, SW480, and
HCT116 cell lines. The primer sequences were as follows:
MSTRG.40340.1, forward, 50- TGACGTCCGATTAATCTCC-30; MSTRG.
40340.1, reverse, 50-GTTGTTTGGACAAGCTAACA-30; MSTRG.38311.
2, forward, 50-GAGGCATTGCTAATCTAGAAG-30; MSTRG.38311.2,
reverse, 50-CGTAAATCCCCTCCATTATGTG-30.
2.14. Availability of data and codes

The sequencing data can be downloaded from the NCBI GEO
website (https://www.ncbi.nlm.nih.gov/geo) under the accession
number GSE109204. LongTarget and MEDIPS results can be down-
loaded from the authors’ website (http://lncRNA.smu.edu.cn (in
the OtherCodeData page)).

https://www.ncbi.nlm.nih.gov/geo
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3. Results

3.1. Aberrantly transcribed long noncoding transcripts may
dysregulate gene expression

To explore genome-wide lncRNA-mediated epigenetic dysregu-
lation in CRC, we performed RNA-seq and MeDIP-seq on 12 CRC
samples and 3 normal colon tissue samples. After obtaining RNA-
seq data, we identified annotated and unannotated transcripts
and differentially expressed transcripts. StringTie uses ‘MSTRG’ to
label unannotated genes (e.g., MSTRG.38311) and transcripts
(e.g., MSTRG.38311.2). MSTRG transcripts are assumed to be
assembly artifacts or transcriptional noise [30], and in most stud-
ies, they are unexplored.

We evaluated the coding potential of all MSTRG transcripts
using slncky [24] and classified all transcripts into four classes:
annotated non-lncRNA transcripts (called PT, because most were
protein-coding), annotated lncRNA transcripts (RT), unannotated
non-lncRNA transcripts (MSTRG PT), and unannotated lncRNA
transcripts (MSTRG RT) (for convenience, we sometimes also use
PT/MSTRG PT/RT/MSTRG RT to denote genes) (Fig. 1). Many MSTRG
genes (identified by StringTie upon gene annotation in the genome
build hg19) overlapped with annotated genes in hg38 (Supplemen-
tary Table 1), indicating that some MSTRG transcripts are unanno-
tated normal transcripts. However, some MSTRG transcripts had
exons that were obviously different from the annotated exons,
indicating that they were aberrantly transcribed. After the identifi-
cation of differentially expressed transcripts by edgeR [25] and the
four classes of transcripts, we examined four kinds of epigenetic
dysregulation: RT ? PT, RT ? MSTRG PT, MSTRG RT ? PT, and
MSTRG RT ? MSTRG PT, by predicting the TTSs of RTs/MSTRG
RTs in specific genomic regions and in genes that form coexpres-
sion modules with these RTs/MSTRG RTs (see Section 3.3) [27]
and by analyzing the DMRs in these genomic regions and genes.

An impressive case of MSTRG genes is MSTRG.38311. This
MSTRG gene was detected in 12 CRC samples, overlapped with
the CRC-related lncRNA genes CCAT1 (colon cancer-associated
transcript 1) and CASC19 (cancer susceptibility 19) [31–33], and
comprised 9 transcripts (2 CASC19 transcripts and 7 MSTRG RTs)
(Fig. 2). Specifically, MSTRG.38311.2 was not expressed in normal
samples but was highly expressed in tumor samples, and some
of its exons were much longer than CASC19 exons. These results
indicate that some transcripts of MSTRG.38311 are aberrant tran-
scripts instead of assembly artifacts or transitional noise. To make
a further check, we used RT-PCR to detect the expression of
MSTRG.38311.2 in one normal colon cell line and two CRC cell
lines, and found that it was also highly expressed in the two CRC
cell lines (Supplementary Fig. 1). We used LongTarget [14] to pre-
dict the TTSs of MSTRG.38311.2 in differentially expressed PTs and
MSTRG PTs that were coexpressed with MSTRG.38311.2, and the
results indicate that MSTRG.38311.2 has TTSs in many differen-
tially expressed transcripts and MSTRG transcripts. Notably, the
TFO of many TTSs was in an aberrant exon, and DMRs were
detected in genomic regions of these differentially expressed tran-
scripts and MSTRG transcripts (Fig. 2).

Next, we examined whether RTs and MSTRG RTs regulated
nearby differentially expressed genes. In the 12 CRC samples, 271
differentially expressed noncoding transcripts (180 RTs and 91
MSTRG RTs) were identified, and centered on the genes of these
transcripts, 271 local genomic regions were defined (see Sec-
tion 2.10) (Supplementary Table 2). In many cases, regions of the
same range were identified in multiple samples, and DMRs were
identified in the genes in these regions. We examined whether
these RTs and MSTRG RTs caused the aforementioned four kinds
of epigenetic dysregulation in these regions. Many RTs and MSTRG
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RTs had clear TTSs in these regions (Supplementary Figs. 2–4). An
impressive case is H19 and its target gene IGF2 (Fig. 3). The lncRNA
H19 has been assumed to be a tumor suppressor because it regu-
lates the imprinting of IGF2 [34]. However, H19 actually regulates
many genes, and some recent findings indicate that H19 promotes
oncogenesis [11,35]. Our data indicate that both H19 and IGF2were
upregulated in multiple CRC samples, with DMRs in the local geno-
mic region. These findings are consistent with reports that IGF2 is a
driving factor in tumorigenesis and that the loss of imprinting on
IGF2 occurs in CRC [36–38].

If a dysregulated gene encodes a transcription factor (TF) or a
lncRNA, it may intensify gene dysregulation by regulating its
downstream targets. To evaluate this hypothesis, we computed
the ratios of differentially expressed RTs to total RTs, differentially
expressed PTs to total PTs, and differentially expressed TF tran-
scripts to total TF transcripts, and further predicted how many dif-
ferentially expressed RTs, PTs, and TF transcripts were targets of
differentially expressed RTs. While only 0.548% RTs, 1.03% PTs,
and 0.643% TF transcripts were differentially expressed, a large
proportion of them had TTSs of the differentially expressed RTs
(87.02%, 93.28%, and 91.01%, respectively) (Supplementary
Fig. 5). These results indicate that the differential expression of
many lncRNA genes and TF genes may be caused by lncRNA-
mediated epigenetic dysregulation.

3.2. Epigenetic dysregulation is polymorphic

Compared with the patterns of mutations in cancers [38], to
what extent epigenetic dysregulation varies in patients has been
less explored [39]. To address this question, we examined differen-
tially expressed transcripts and DMRs in the 12 tumor samples.
Few differentially expressed transcripts and DMRs were found in
many samples, and many differentially expressed transcripts and
DMRs were found in few samples. The upregulation of RTs and
MSTRG RTs was more prominent than the upregulation of PTs
and MSTRG PTs, and the loss of DNA methylation was more promi-
nent than the gain of DNA methylation (Supplementary Fig. 6–7;
Supplementary Table 3–8). These findings indicate the highly poly-
morphic nature of epigenetic dysregulation and help explain the
high intratumor heterogeneity of CRCs [18,40].

3.3. Epigenetic dysregulation significantly determines correlated gene
expression

Many studies have examined the correlation between differen-
tially expressed genes, but few have explored to what extent the
correlation is determined by epigenetic regulation and dysregula-
tion. To address this question, we first used edgeR to identify dif-
ferentially expressed transcripts and then used WGCNA to
identify modules of coexpressed differentially expressed tran-
scripts [27]. WGCNA identified 9 modules of coexpressed tran-
scripts, including the H1, H2, and H3 modules in the high
differentiation group, the M1, M2, and M3 modules in the medium
differentiation group, and the L1, L2, and L3 modules in the low dif-
ferentiation group. These 9 modules consist of 49,849 RT-PT (in-
cluding MSTRG RTs and MSTRG PTs) pairs. To examine how
many RT-PT pairs have a potential epigenetic regulation relation-
ship, we predicted the TTSs of RTs in the genomic region of PTs.
In 11,806 pairs (23.7%), the RT had a TTS in the PT (Supplementary
Table 9), indicating that a great portion of correlated differential
expression was determined by epigenetic dysregulation.

Specifically, we identified the foremost epigenetic regulators
(the RTs that have TTSs in most PTs) and the foremost epigenetic
targets (the PTs that contain TTSs of most RTs), which may reflect
key features of epigenetic dysregulation in CRC. Four H19



Fig. 2. The expression levels, transcripts, exons, genomic position, and potential epigenetic targets of MSTRG.38311. (A) Multiple transcripts of MSTRG.38311 are highly
expressed only in tumor samples. (B) MSTRG.38311 comprises 2 CASC19 transcripts and 7 MSTRG RTs. The TFO (indicated by the green bar) of many TTSs in differentially
expressed transcripts and MSTRG transcripts is in an aberrantly transcribed exon. (C) MSTRG.38311 overlaps with the CRC-related lncRNA genes CASC19 and CCAT1. (D) The
TTSs of MSTRG.38311.2 are predicted in differentially expressed PTs (including G3BP1, TUSC1, SUN1, and ARFRP1) and MSTRG PTs (including MSTRG.5546.1 and
MSTRG.33277.1), and DMRs are detected in these PTs and MSTRG PTs. MSTRG.38311.2 and these PTs and MSTRG PTs are in the same coexpression module. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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transcripts (H19-002, H19-003, H19-004, and H19-015) had 1499
RT-PT pairs, in line with previous findings that lncRNA H19 is a
master epigenetic regulator [11,35]. Other RTs with TTSs in many
PTs included AC010127.3, RP11-698N11.4, MSTRG.38311 (see
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Fig. 1), MSTRG.32134 (which overlaps the cancer-related micro-
RNA gene MIR146A [41]), MSTRG.11306, and MSTRG.23870. PTs
containing TTSs of most RTs included GNB2L1 [42], MUC4 [43,44],
VEGFA [45], CA1 [46], PDE9A, SLC35F2 [47], SLC6A19 [48], MDFI



Fig. 3. Some differentially expressed RTs have TTSs in their local genomic regions. From top to bottom in the two panels are tracks of the UCSC Genome Browser, including (a)
the genome coordinates, (b) NCBI RefSeq genes, (c) TTSs (marked by the cycle) of the RT, (d) upregulated (in red) or downregulated (in blue) transcripts in specific tumor
samples, and (e) DMRs (in red and blue, indicating increased and decreased methylation, respectively) in specific tumor samples. ‘‘H”, ‘‘M”, and ‘‘L” in sample names (e.g., H-
T50A and L-T13A) indicate different tumor groups. (A) In the H19/IGF2 region in several tumor samples, H19 has a TTS in the last exon of IGF2, multiple H19 and IGF2
transcripts are upregulated, and six DMRs are detected in tumor samples. (B) In the SATB2-AS1/SATB2 region in several tumor samples, SATB2-AS1 has a TTS in the promoter
region of SATB2, SATB2-AS1 expression is downregulated, multiple MSTRG.23082 transcripts are generated, and two DMRs are detected. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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[49], and OAZ1 [50]. All of these genes are reported to be involved
in CRC or other cancers. MSTRG.11306 and MSTRG.38311 are two
impressive RT genes because nearly all of their targets have high
WGCNA gene significance and module membership values
(GS > 0.7 with p < 0.05 and MM > 0.7 with p < 0.05). Gene
3513
significance and module membership measure the correlation of
the expression of a gene with CRC and with other genes in the
module, respectively. MSTRG.11306.1 and MSTRG.38311.2 have
TTSs at CDK4-005 and CLN3-001 that encode two cell cycle pro-
teins, and MSTRG.11306.1 has TTSs at VEGFA-009, VEGFA-012,
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and VEGFA-023 that are widely involved in cancers [51,52]. These
results support that there is a strong link between coexpressed and
epigenetically regulated genes in RT-PT pairs.

Furthermore, we examined whether epigenetic dysregulation
has distinct features in CRCs of different differentiation grades.
Of the 11,806 RT-PT pairs, 105 had the same expression change
in all three tumor groups (Supplementary Table 10).
MSTRG.11306.1 was co-upregulated with 36 target transcripts,
and MSTRG.38311.2 was co-upregulated with 37 target transcripts.
We examined RT-PT pairs that are specific to different cell differen-
tiation grades and identified the most featured ones. An interesting
case is the upregulated MYC transcript ENST00000520751. The
TTSs of 9 RTs (including the four H19 transcripts, MSTRG.11306.1,
MSTRG.38311.2, and three other RTs) were predicted in this MYC
transcript. In the L2 module, the MYC transcript ENST00000520751
was coexpressed with 8 of the 9 RTs, but in none of the H modules
was it coexpressed with these 9 RTs. Another case is the two SPEF2
transcripts ENST00000282469 and ENST00000440995. The TTSs of
31 RTs were predicted in the genomic regions of the two tran-
scripts. Of note, all of the RT-ENST00000282469 pairs were in the
L1 module, while all of the RT-ENST00000440995 pairs were in
the H3 module. These results indicate that distinct RT-PT pairs
are present in different cancer cells. To identify the key RT-PT pairs
in the 9 modules, we used theWGCNA parameter Connectivity > 0.7
(together with GS > 0.7 and MM > 0.7) to obtain the top 30% most
connected RTs and PTs. The results indicate that specific highly
connected RTs are enriched in the H, M, and L groups (Table 1).

3.4. Distinct epigenetic regulatory networks in cells of different
differentiation grades

After identifying 9 modules of coexpressed differentially
expressed genes in the 3 tumor groups, we used different condi-
tions to filter the RTs, PTs, MSTRG RTs, and MSTRG PTs in each
module to identify critical RT-PT pairs. First, we used the WGCNA
parameters GS > 0.7 and MM > 0.7 to identify transcripts highly
related to CRC and highly connected to other genes in specific
modules. This condition filtered out considerable RTs and PTs in
the H2, H3, M1, and L1 modules but few RTs and PTs in the other
modules (Table 2). Second, we used the condition that an RT has a
TTS in at least one PT. Notably, this condition, which identifies RTs
and PTs with potential epigenetic regulation, did not influence any
modules, indicating that differentially expressed transcripts in
coexpression modules were greatly determined by epigenetic reg-
ulation (Table 2). Furthermore, we combined the two conditions to
filter RT-PT pairs in each module. No or few pairs were removed
from the H1, M2, L2, and L3 modules under the combined condi-
tions (Table 2). For example, the H1 and L2 modules comprised
29 RTs + 489 PTs and 28 RTs + 346 PTs before filtering and com-
prised 25 RTs + 486 PTs and 25 RTs + 334 PTs after filtering. These
results indicate that the link between correlated transcripts and
epigenetically regulated transcripts is especially strong in these
modules.

Motivated by the above results, we tried to identify the hub RTs
in each module by further filtering RTs and PTs using the WGCNA
parameter Connectivity > 0.7. Six networks consisting of hub RTs
and their potential epigenetic targets were obtained. Using the
DAVID database [53], we found that these epigenetic target tran-
scripts are enriched in specific biological functions, such as cell
locomotion and cell adhesion (Fig. 4; Supplementary Fig. 8). Inter-
estingly, some hub nodes were MSTRG RTs, supporting that these
MSTRG RTs are unlikely transcriptional noise or assembly artifacts,
and most hub RTs may be primate-specific lncRNAs (Supplemen-
tary Fig. 9), suggesting that a great portion of differentially
expressed genes between humans and other species may result
from interspecies epigenetic differences [4]. These findings suggest
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that epigenetic dysregulation is also, to a great extent, species-
specific.
3.5. Analysis of differentially expressed genes in single-cell RNA-
sequencing datasets

To examine and verify whether lncRNAs significantly dysregu-
late gene expression in CRC, we analyzed the datasets from a
recent single-cell RNA-seq (scRNA-seq) study [29]. The expression
levels of lncRNAs varied greatly across cells (Fig. 5A). We detected
differentially expressed genes in tumor cells under the conditions
of |logFC|>1 and Q-value < 0.1, predicted the TTSs of differentially
expressed lncRNAs in differentially expressed protein-coding
genes, and found that the lncRNA RP11-254F7.2 in myeloid cells
has TTSs in nearly all of the differentially expressed protein-
coding genes. RP11-254F7.2 is also a simian-specific lncRNA (Sup-
plementary Fig. 9). Furthermore, we predicted the TTSs of lncRNAs
that have the highest expression in some tumor cells in protein-
coding genes, calculated the Spearman correlation between the
expression of these lncRNAs and the expression of the protein-
coding genes that have TTSs and found that the correlation is very
strong in many cells (Fig. 5B; Supplementary Table 11). This corre-
lation, together with the cell-specific expression of lncRNAs, sup-
ports the conclusion that lncRNA-mediated epigenetic
dysregulation occurs distinctly in cancer cells.
4. Discussion

How gene expression is epigenetically dysregulated in cancers
has drawn increasing attention [39,54–56]. As multiomics
sequencing data are being generated at an unprecedented pace
and many lncRNAs epigenetically regulate gene expression by
recruiting enzymes such as DNA methyltransferases (DNMTs)
and polycomb repressive complex 2 (PRC2) to specific genomic
sites, it is important to combine the analysis of sequencing data
with the analysis of lncRNA/DNA binding. In this study, we per-
formed RNA-seq and MeDIP-seq on a set of CRC samples and
normal colon tissues and developed an analysis pipeline to per-
form the combined analysis. In the pipeline, MeDIP-seq data
can be replaced by RRBS-seq (reduced-representation bisulfite
sequencing) or WGBS-seq (whole-genome bisulfite sequencing)
data. Focusing on which lncRNAs possibly regulate which target
genes in colorectal cancer cells, we obtained four novel findings.
First, some aberrantly transcribed noncoding transcripts may epi-
genetically dysregulate gene expression. Second, lncRNA-
mediated epigenetic dysregulation greatly determines the corre-
lated differential expression of genes. Third, distinct epigenetic
regulatory modules exist in different CRC cells. Fourth, many
hub lncRNAs in these modules are primate-specific. These find-
ings indicate important yet unexplored roles of MSTRG tran-
scripts in CRC and other cancers and indicate that epigenetic
dysregulation is highly species-specific. The identified critical
RT-PT pairs, especially hub RTs and their targets, should be
promising diagnostic, therapeutic, and prognostic targets of can-
cers. An important question to be further examined is to what
extent critical RT-PT pairs and epigenetic regulatory modules
are cancer-specific.

Our results agree with and are supported by reported experi-
mental findings. First, aberrantly transcribed genes were detected
in CRC in a previous study (which were called ‘‘differentially
spliced genes” and ‘‘tumor RNA-seq reads”) (see Supplementary
Fig. 6, 7 in [17]) but were not analyzed. Second, many MSTRG
RTs highly expressed in CRC samples overlapped with annotated
genes; an example is MSTRG.38311, which overlapped with the
two important CRC-related lncRNA genes CCAT1 and CASC19 [31–



Table 1
Numbers of RT-PT pairs of highly connected RTs and PTs in specific groups (Supplementary Table 9).

Specific RTs Specific PTs

Ensembl ID (Gene name) PT number Ensembl ID (Gene name) RT number

H M L H M L

ENSG00000260495 (RP11-55K13.1) 86 0 0 ENSG00000065328 (MCM10) 4 1 1
ENSG00000261589 (CTC-462L7.1) 40 0 0 ENSG00000008300 (CELSR3) 5 0 0
ENSG00000188206 (HNRNPU-AS1) 0 0 40 ENSG00000141002 (TCF25) 3 0 1
MSTRG.11306 (MSTRG.11306) 0 38 0 ENSG00000004866 (ST7) 4 0 0
ENSG00000259959 (RP11-121C2.2) 0 35 0 ENSG00000135451 (TROAP) 4 0 0
ENSG00000251363 (RP11-129M6.1) 0 0 27 ENSG00000173467 (AGR3) 4 0 0
ENSG00000272841 (RP3-428L16.2) 25 0 0 ENSG00000147140 (NONO) 4 0 0
ENSG00000259969 (RP11-999E24.3) 21 0 0 ENSG00000177606 (JUN) 4 0 0
ENSG00000259886 (U82695.10) 14 0 0 ENSG00000050426 (LETMD1) 0 0 2
ENSG00000185186 (LINC00313) 0 0 6 ENSG00000169710 (FASN) 0 0 2

Table 2
Number of correlated and epigenetically regulated RTs and PTs in modules under different filtering conditions.

H1 H2 H3 M1 M2 M3 L1 L2 L3

RTs/PTs 29/489 19/146 17/288 10/173 7/185 7/54 37/348 28/346 26/247
RTs/PTs #1 29/489 9/67 2/51 1/11 7/182 7/51 0/23 27/340 21/224
RTs/PTs #2

Pairs
25/486
3274

14/83
238

15/266
1535

8/171
727

6/170
385

4/21
34

36/346
3471

25/340
2784

23/223
653

RTs/PTs #1#2

Pairs
25/486
3274

6/40
72

2/18
22

0/0
0

6/167
380

4/20
33

0/0
0

25/334
2748

17/202
452

#1: The condition is GS > 0.7 and MM > 0.7.
#2: The condition is that an RT has a TTS in at least one PT.

Fig. 4. A network consisting of differentially expressed hub RTs and differentially expressed PTs, which have potential epigenetic regulation, exists in each module. Shown is
the network in the L2 module. This network contains the top 30% most connected RTs and their target PTs. Orthologous sequences of LINC00313 exons are identified only in
simians, and HNRNPU-AS1 has a region conserved in mammals and a new primate-specific region (Supplementary Fig. 9). Gene enrichment analysis revealed that these PTs
are involved in cell locomotion, cell adhesion, the cell cycle, and metabolic processes.
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33]. Third, many epigenetic targets of the differentially expressed
RTs and MSTRG RTs were CRC-related or tumorigenesis-related.
Specifically, the epigenetic targets of MSTRG.11306.1 and
MSTRG.38311.2 include the transcripts of CDK4, CLN3, and VEGFA,
which are widely involved in cancers. In addition, some MSTRG
3515
RTs were highly connected to other transcripts in coexpression
modules; this can unlikely occur by chance.

When a cell divides, downstream proofreading is also required
for faithful mitotic transmission of DNA methylation and histone
modification. This proofreading causes a genome-wide lag



Fig. 5. LncRNA-mediated epigenetic regulation contributes to dysregulated gene expression in single cells. (A) Heatmap of lncRNA expression (the FPKM data are log-
transformed) in different kinds of cells, indicating lncRNA cell-specific expression profiles. (B) Several examples showing that the expression levels (Y-axis) of lncRNAs and of
their target genes in different cells (X-axis) are highly correlated (indicated by red and green dashed lines). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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between the copying of genetic and epigenetic information, and
this lag not only causes inconsistency between the genome and
epigenome but also amplifies and propagates epigenetic errors
[57]. In addition to this lag of epigenome proofreading, our finding
that aberrantly transcribed noncoding transcripts may epigeneti-
cally dysregulate gene expression further supports the estimate
that the rate of epigenetic changes may be orders of magnitude
higher than that of genetic changes [58] and the viewpoint that
purely epigenetic mechanisms may explain tumors that arise with
few or no recurrent mutations [39].

Experimentally revealing the lag of epigenome proofreading
and the function of MSTRG transcripts is difficult; thus, computa-
tionally unveiling in what cells and to what extent epigenetic reg-
ulation goes wrong with publicly available sequencing data is
valuable. Two notes on using the pipeline to perform more analy-
ses are as follows. First, since many MSTRG genes and transcripts
overlap genes and transcripts annotated in the genome build
hg38, fewer MSTRG genes and transcripts would be reported if
hg38 is used to assemble transcripts. Second, since lncRNA expres-
sion and epigenetic regulation are highly tissue-specific, the com-
bined RNA-seq data analysis and lncRNA/DNA binding analysis
alone (without DNA methylation data) may be satisfactorilly
reliable.
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