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Abstract: Filtering half masks belong to the group of personal protective equipment in the work
environment. They protect the respiratory tract but may hinder breath and suppress speech. The
present work is focused on the attenuation of sound by the half masks known as “filtering facepieces”,
FFPs, of various construction and filtration efficiency. Rather than study the perception of speech by
humans, we used a generator of white noise and artificial speech to obtain objective characteristics
of the attenuation. The generator speaker was either covered by an FFP or remained uncovered
while a class 1 meter measured sound pressure levels in 1/3 octave bands with center frequencies
100–20 kHz at distances from 1 to 5 m from the speaker. All five FFPs suppressed acoustic waves from
the octave bands with center frequencies of 1 kHz and higher, i.e., in the frequency range responsible
for 80% of the perceived speech intelligibility, particularly in the 2 kHz-octave band. FFPs of higher
filtration efficiency stronger attenuated the sound. Moreover, the FFPs changed the voice timbre
because the attenuation depended on the wave frequency. The two combined factors can impede
speech intelligibility.

Keywords: filtering half masks; suppression; voice; protective measures; speech intelligibility

1. Introduction

Airborne dust in the working environment is a health risk factor, e.g., in mining [1],
wood and furniture [2,3], and construction industry, as well as in the welding and grind-
ing [4] and biomass processing [5]. Half masks covering the nose, mouth, and chin are
personal protective equipment against harmful physical and biological agents. A European
standard EN 149:2001+A1:2009 specifies three classes of the half masks called filtering
facepieces (FFP): FFP1, FFP2, and FFP3 [6]. These are mechanical filter respirators with
various filter efficiency, equipped or not with inhalation or exhalation valves. Healthcare
workers use FFPs as protection against bacteria and viruses, SARS-CoV-2 in particular [1,7].
World Health Organization recommends several types of masks for the public to reduce
the transmission of viruses [8]. However, the recommendations are not entirely followed
even in hospitals, although the situation in the COVID-19 wards is better than in others [9].

Although it improves safety, personal protective equipment may cause work to be
uncomfortable. For this reason, workers sometimes do not obey the rules of personal
protection in small and medium-sized enterprises in particular [3]. The respirators may
cause difficulty in breathing due to clogging by dust [10]. Therefore, they are temporary
rather than permanent protective equipment [11]. Indeed, obstructed breathing is a serious
problem if a physical effort is required to perform work. Albeit the difference between
resting energy expenditures measured for the subjects wearing and not wearing FFP2
masks proved statistically insignificant, the oxygen consumption and the carbon dioxide
production were slightly higher with the filtering masks [12]. Choi et al. [13] found that the
energy cost of a single inhalation varied depending on the type of a half mask in the range
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up to 10 mJ. That was about 7.1 mJ for half masks with a valve, and discomfort was rated
4.6 on a 6-point scale. Thus, the effort needed to inhale air contributes significantly to the
comfort of wearing a half mask [13].

Another question is the impact of mask-wearing on speech clarity. Interest in this
subject has increased as the masks as a countermeasure against the spread of COVID-19
have been adopted. Probably everyone noticed difficulty in verbal communication when
wearing a mask. In particular, users of hearing aids and cochlear implants have to put more
effort to understand the speech of mask-wearing persons [14]. However, Cohn et al. [15]
reported that speakers with half-masks were more intelligible than those without the masks,
provided they spoke clearly as to someone who might have trouble understanding the
speaker. That was an exception rather than a rule. Masks worsened the intelligibility of
casual and emotional speech [15]. Perception of speech in classrooms depended on the
mask type used by the speaker apart from the speaker–listener distance [16]. An experiment
involving twenty healthcare workers showed that speech recognition was decreased by 7%
on average when speakers wore half-masks [17].

The reported works dealt mainly with speech perception by individuals. Apart from
that, Oren et al. [18] studied the perception of the singing voices. Moreover, they analyzed
changes in spectra of acoustic chirp signals caused by masks of several types: neck gaiter,
disposable surgical mask, N95 mask (an equivalent of the FFP2 according to EN 149-2001
standard), and acoustic foam. In general, suppression and amplification of waves of
particular frequencies depended on the mask type. N95 respirator suppressed acoustic
waves of frequencies between 2 and 5 kHz and above 6 kHz. The authors concluded that
the N95 respirator most strongly disrupted the auditory perceptual characteristics of the
singing voice.

The SARS-CoV-2 pandemic spurred the development of filtering masks. The number
of patents in March and April 2020 increased by about 100% compared with the period
before the pandemic [19]. New designs improved the filtration efficiency and the wearing
comfort [20–22]. However, we are not aware of the improved acoustic characteristics of
the new masks despite the crucial role played by verbal communication in the life and
work environment.

A majority of the studies reported in this brief review dealt with the perception of the
human voice. Investigations of objective parameters, such as attenuation of sound waves
by filtering masks, were scarce. We decided to fill that gap at least partially. Thus, we
studied FFPs of various types using a calibrated source of the acoustic signal and sound
level meter and analyzer.

2. Experimental
2.1. Research Material

We tested five convex-shaped disposable filtering half-masks of the FFP type, CE0194
certified according to EN 149:2001+A1:2009 standard [6] (Figure 1). All the masks were
from one manufacturer, made of synthetic fiber, and equipped with an adjustable nose
clip. The FFP1 and FFP2 were anti-dust half-masks without bactericidal inserts, while the
FFP3 was a half-mask with such insert. The “+” sign in the FFP marking denoted a mask
equipped with an exhalation valve for better breathing. Table 1 contains information about
the filtering efficiency and applications of the studied half-masks.
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standard [24]. Bedrock TalkBox BTB65 provided the acoustic signal. All apparatus used 
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m long, 6.2 m wide, and 3.2 m high. The reverberation time in the room was assessed for 
0.3 s for the furniture and equipment arranged for this study, as that was for the standard 
classroom arrangement. 

The microphone and TalkBox stood on tripods 1.6 m above the floor, which is the 
average mouth location of a standing adult human according to anthropometric data ap-
plied, e.g., in the C50 speech clarity measurements [25]. The speaker–microphone distance 
was from 1 to 5 m, and they were aligned using the built-in laser pointer of the TalkBox. 
SVAN 979 m analyzed and recorded the acoustic signal from the TalkBox in 1/3 octave-
wide bands. The generated total sound pressure levels were 60 and 72 dB. Background 
level noise of ca. 28 dB was sufficiently small to neglect it. Sound pressure levels in 1/3 
octave bands with center frequency from 100 Hz to 20 kHz were considered in further 
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In the first series of measurements, the TalkBox emitted white noise, while in the 
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covered the speaker. What may seem to be a gap between the box and the mask is a part 
of the box made of grey plastic. 

Figure 1. Filtering half masks—the research material. In columns: FFP1, FFP2, FFP1+, FFP2+, FFP3+.

Table 1. Filtering half masks—research material, Reprinted/adapted with permission from Ref. [11].

Type/
Mark

Filtration
Efficiency (%) Recommended Application

FFP1 80 Construction, public works, heavy industry, healthcare

FFP2 94 Construction, public works, heavy industry, healthcare

FFP1+ 94 Agriculture, horticulture, construction, public works,
renovation, crafts, light industry, healthcare

FFP2+ 99 Construction, public works, renovation works, crafts, light
industry, healthcare

FFP3+ 99 Construction, public works, renovation works, crafts, light
industry, healthcare

2.2. Apparatus and Methodology

Svantek SVAN 979 class 1 sound and vibration analyzer compliant with the IEC 61672-
1: 2013 standard [23], equipped with a GRAS 40AE 1/2” microphone, was used in the
measurements of sound pressures. Before and after each measurement series, the meter
was checked with the class 1 Sound Calibrator SV36 according to the IEC 60942: 2017
standard [24]. Bedrock TalkBox BTB65 provided the acoustic signal. All apparatus used in
the measurements had valid calibration certificates.

The measurements were carried out in a medium-sized laboratory room, about 11.7 m
long, 6.2 m wide, and 3.2 m high. The reverberation time in the room was assessed for
0.3 s for the furniture and equipment arranged for this study, as that was for the standard
classroom arrangement.

The microphone and TalkBox stood on tripods 1.6 m above the floor, which is the
average mouth location of a standing adult human according to anthropometric data
applied, e.g., in the C50 speech clarity measurements [25]. The speaker–microphone
distance was from 1 to 5 m, and they were aligned using the built-in laser pointer of the
TalkBox. SVAN 979 m analyzed and recorded the acoustic signal from the TalkBox in
1/3 octave-wide bands. The generated total sound pressure levels were 60 and 72 dB.
Background level noise of ca. 28 dB was sufficiently small to neglect it. Sound pressure
levels in 1/3 octave bands with center frequency from 100 Hz to 20 kHz were considered in
further calculations.

In the first series of measurements, the TalkBox emitted white noise, while in the
second, it simulated human speech defined by IEC 60268-16:2020 standard [26]. The
measurements were carried out for the TalkBox speaker uncovered and covered by each of
the five FFPs. Figure 2 shows the TalkBox with a tested mask on the speaker. The masks
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fully covered the speaker. What may seem to be a gap between the box and the mask is a
part of the box made of grey plastic.
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3. Results
3.1. White Noise

In this measurement series, TalkBox emitted white noise and its immission was
recorded by the SVAN 979.

Each measurement of the sound pressure levels lasted 60 s, divided into six 10 s-long
intervals. In this manner, six sets of the sound pressure level values in 1/3 octave-wide
frequency bands, Lf,10s, were recorded for each experimental arrangement. The latter
included: the TalkBox speaker (covered by one of the five FFPs or without cover), the
speaker–microphone distance (d = 1 m or 5 m), and the white noise pressure level (Lwn = 60
or 72 dB). The raw Lf,10s results are in the attached Supplementary Files: “White noise 1 m”
and “White noise 5 m”. Since the Lf,10s values for the given experimental arrangement
and center frequency f were equal within the uncertainty range, they were averaged for
the 60 s-long measurement time. Finally, the Lf,60s values were calculated for octave-wide
bands to match the frequency bands of the ANSI speech spectrum [27].

Attenuation of sound by the FFP in the octave band of center frequency f is the
following difference between the respective Lf,60s values:

∆Lf,60s = Lf,60s (no FFP) − Lf,60s (with the FFP). (1)

Four sets of ∆Lf,60s values were obtained for each FFP studied from Equation (1). They
are reported in Table 2, together with respective average values calculated according to
the additivity rule for the squared sound pressures. The averaging was possible because
the particular ∆Lf,60s(d,Lwn) values for given f were equal within the measurement uncer-
tainty limits for the class 1 m. The latter is ±1.1 dB for f = 1 kHz and is higher for other
frequencies [23].
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Table 2. Attenuation of sound in octave bands with center frequency f by the five FFPs, ∆Lf,60s,
measured at two speaker–microphone distances and two white noise decibel levels, and the respective
averaged values.

Mask f (Hz)
∆Lf,60s (dB)

1 m, 60 dB 1 m, 72 dB 5 m, 60 dB 5 m, 72 dB Average

FFP1 125 0.7 0.4 0.2 0.1 0.4
250 0.8 0.9 0.3 1.0 0.8
500 −0.8 −0.9 −0.4 −0.9 −0.7

1000 2.7 3.2 2.1 2.0 2.5
2000 7.6 7.8 6.9 7.0 7.3
4000 4.5 4.8 5.0 4.8 4.8
8000 3.8 4.0 4.2 4.2 4.1

16,000 5.9 5.8 5.2 5.8 5.7

FFP2 125 1.0 0.7 −0.1 0.0 0.4
250 0.3 0.8 1.0 0.7 0.7
500 −0.4 0.0 −0.4 −0.6 −0.4

1000 2.5 2.6 1.6 2.1 2.2
2000 9.2 9.1 7.9 8.3 8.6
4000 5.8 6.4 5.7 5.6 5.9
8000 6.1 6.6 6.1 6.0 6.2

16,000 7.7 7.9 6.5 7.8 7.5

FFP1+ 125 0.2 0.3 0.6 −0.1 0.3
250 0.6 1.4 1.0 1.0 1.0
500 0.5 0.3 0.1 −0.1 0.2

1000 2.2 2.3 1.6 1.6 2.0
2000 8.6 8.7 7.1 8.2 8.2
4000 5.5 5.5 5.6 5.3 5.5
8000 6.0 6.0 6.6 6.7 6.3

16,000 10.9 11.0 8.2 10.1 10.2

FFP2+ 125 0.6 0.4 0.7 −0.1 0.4
250 −0.1 0.0 0.7 0.9 0.4
500 −0.1 −0.1 −0.4 −0.7 −0.3

1000 3.0 3.2 2.0 2.1 2.6
2000 10.3 10.3 9.3 9.9 10.0
4000 5.1 5.0 6.4 6.4 5.8
8000 4.9 5.0 7.3 7.4 6.3

16,000 11.5 11.9 8.8 11.3 11.0

FFP3+ 125 1.3 1.6 1.6 1.0 1.4
250 0.6 0.5 0.7 0.5 0.6
500 0.6 0.4 0.4 0.5 0.5

1000 3.6 3.7 2.9 2.8 3.3
2000 10.7 10.7 9.9 10.4 10.5
4000 6.5 6.6 7.1 7.1 6.8
8000 6.5 6.5 7.3 7.9 7.1

16,000 12.0 12.4 8.4 10.9 11.2

The ∆Lf,60s are plotted in Figure 3. Note that small negative values of ∆Lf,60s are within
the measurement uncertainty limits and do not prove the signal amplification.
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Figure 3. Attenuation of sound by the five FFPs in octave bands with center frequencies f. Points—
averaged values ∆Lf,60s (cf. Table 2), whiskers—minimum-maximum range. Lines are guides for the
eye only. Plus sign in the FFP symbol denotes a mask with an exhalation valve.

3.2. Simulated Speech

The primary goal of the second experiment was to collect data for a comparison of the
speech disruption predicted from the FFPs attenuation characteristics with the results of
direct measurements. The measurements regime was similar to the previous one, except
that TalkBox emitted simulated human speech defined by IEC 60268-16:2020 standard [26]
rather than white noise.
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The speaker–microphone distance d was 1, 2, 3, 4, or 5 m, the emitted maximum sound
pressure level Lhs was 72 dB, and the averaging time of the measured sound pressure levels
was 1 s, while the total measurement time was 10 s in each run. The SVAN 979 meter
analyzed the acoustic signal and recorded the sound pressure levels in 1/3 octave bands.

Three samples of each FFP type were tested for within-subject variability. The Shapiro–
Wilk test evidenced that distributions of the acoustic pressures in 1/3 octave-wide frequency
bands differed from the normal distribution at the 5% level of significance. However, the
distributions for each FFP type did not show statistically significant differences in the
Kruskal–Wallis ANOVA test, and respective median values of the sound pressure levels
also did not.

For consistency with the FFPs attenuation characteristics, the 1/3 octave sound pres-
sure levels were summed up in each octave-wide band with center frequencies from 125 Hz
to 16 kHz. In this manner, 120 experimental time series of the Lf,1s for each FFP were ob-
tained. Further, they could be compared with the Lf,1s series calculated from the attenuation
characteristics of the FFPs, ∆Lf,60s reported in Table 2, according to the following formula:

Lf,1s (with the FFP) = Lf,1s (no FFP) − ∆Lf,60s. (2)

Lf,1s (no FFP) in Equation (2) represents the sound pressure level measured for the
uncovered TalkBox speaker. All of the time series are reported in five Supplementary Files
“Speech_72dB_FFP”. Figures 4 and 5 illustrate the results for FFP1 and FFP3+ and octave
bands with center frequencies from 250 Hz to 8 kHz. A slight horizontal mismatch of the
calculated and measured values may result from the sound recordings being not perfectly
in phase. Examples of such mismatch are in the Supplementary Files.
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Figure 4. Time series of the sound pressure levels for the FFP1 in octave bands averaged for 1 s-long
intervals. Five 10 s-long samples of the simulated human speech emitted by the TalkBox and recorded
at distances (from left to right): 1 m, 2 m, 3 m, 4 m, and 5 m. Points—measured values, vertices of the
broken lines—values calculated from the FFP attenuation characteristics; the lines themselves are
guides for the eye only.
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4. Discussion

The white noise experiments showed that all the studied FFPs suppressed acoustic
waves from the octave bands with center frequencies of 1 kHz and higher (Figure 3).
Xue et al. [28] showed that the frequencies above 1 kHz in human speech are crucial for
vowels articulation, thus for a proper understanding of the speech. According to French
and Steinberg [29], four octave-wide bands with center frequencies from 1 to 8 kHz account
for 20, 30, 25, and 5% of the perceived speech intelligibility (the numbers were calculated
from the data reported by French and Steinberg in Table III of their paper and they are
probably valid for non-tonal languages). Thus, the FFPs affected the speech transmission
in the frequency range where 80% of the information is transferred, notably in the octave
band with the center frequency of 2 kHz. As could have been expected, the better the
filtration efficiency, the stronger the suppression. The exhalation valve mounted in the
mask slightly increased the attenuation, particularly in the 16 kHz octave band. This
frequency range is of no importance for speech intelligibility. It seems reasonable to
suppose that suppression depends on the density and thickness of the mask material, such
as the non-woven synthetics in the studied FFPs. Many such materials are in general use.
For this reason, the reported attenuation characteristics can be inappropriate for other FFPs,
even those of the same types. Thus, a generalization would be premature at this stage of
the study.

The simulated speech experiments evidenced that the time series of the speech cal-
culated from the attenuation characteristics of the FFPs were very close to those mea-
sured directly (Figures 4 and 5). Thus, human voice suppression can be analyzed semi-
quantitatively based on a normalized speech spectrum, such as that reported in ANSI
3.5-1997 standard [27]. Figure 6 illustrates the disruptions caused by FFPs on the ANSI
speech spectra expressed as the sound pressure levels at the one-meter distance in front
of the speaker’s mouth. FFPs substantially decrease the speech loudness in the 2, 4, and
8 kHz-octave bands. To compensate for the change, the speaking person would have to
raise the normal voice or even shout rather than speak loud where it is necessary. That
would result in an increased share of low-frequency waves in the disrupted speech spec-
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trum. Thus, FFPs not only attenuate the speech but change the timbre of voice. The latter is
crucial for proper interpersonal communication. The changed voice timbre discloses the
stress level and emotional arousal [30]. Non-verbal information in audible spectra influ-
ences emotional responses to speech. Disrupted speech could be particularly annoying for
people with partial hearing loss [31]. As presbycusis impedes speech understanding [32],
the attenuation of high-pitch tones by an FFP covering the speaker’s mouth could cause
additional discomfort for elderly listeners. This ailment affects about one-third people of
age between 65 and 74 years and almost half of those older than 75 [33]. Of course, louder
speech requires more effort in inhaling the air, which causes additional discomfort for the
mask wearer. Thus, an attenuation characteristic of masks would be a piece of welcome
information for potential users.
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5. Conclusions

1. All the studied FFPs suppress acoustic waves from the octave bands with center
frequencies of 1 kHz and higher, i.e., in the frequency range responsible for 80% of the
perceived speech intelligibility. In particular, FFPs significantly attenuate the acoustic
waves belonging to the 2 kHz octave responsible for 30% of the intelligibility.

2. The better the mask filtration efficiency, the stronger is the sound suppression. The
masks with exhalation valves suppress sound slightly more than their counterparts
without such equipment; the difference is little except in the octave band with the
center frequency of 16 kHz. The latter, however, has no practical importance for the
understanding of speech.

3. The speaker–listener distance does not influence the characteristics of the speech
deterioration significantly. To compensate for the FFP attenuation, a speaking person
would have to raise the voice by one “loudness level” of the speech as defined in
ANSI 3.5-1997 standard. Different attenuation in octave bands causes a change in the
voice timbre. That can impede speech understanding.

The above conclusions suggest that the agencies for safety and health at work should
consider including objective speech attenuation measurements in the relevant standards.
Good communication is crucial for safety and comfort in the work environment.
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