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Unfavorable Individuals in Social 
Gaming Networks
Yichao Zhang1, Guanrong Chen2, Jihong Guan1, Zhongzhi Zhang3,4 & Shuigeng Zhou3,4

In social gaming networks, the current research focus has been on the origin of widespread reciprocal 
behaviors when individuals play non-cooperative games. In this paper, we investigate the topological 
properties of unfavorable individuals in evolutionary games. The unfavorable individuals are defined 
as the individuals gaining the lowest average payoff in a round of game. Since the average payoff 
is normally considered as a measure of fitness, the unfavorable individuals are very likely to be 
eliminated or change their strategy updating rules from a Darwinian perspective. Considering that 
humans can hardly adopt a unified strategy to play with their neighbors, we propose a divide-
and-conquer game model, where individuals can interact with their neighbors in the network with 
appropriate strategies. We test and compare a series of highly rational strategy updating rules. In 
the tested scenarios, our analytical and simulation results surprisingly reveal that the less-connected 
individuals in degree-heterogeneous networks are more likely to become the unfavorable individuals. 
Our finding suggests that the connectivity of individuals as a social capital fundamentally changes 
the gaming environment. Our model, therefore, provides a theoretical framework for further 
understanding the social gaming networks.

In recent studies of game theory, two focal topics attract most attention. One is to find the origin of coop-
eration in the structured populations, such as social gaming networks1,2,3–19. The other is to determine 
whether a strategy updating rule will succeed in a unstructured population20–23,24. As of now, the studies 
on which strategy updating rule is better in social networks25–28 are rather limited. In a well-mixed pop-
ulation29 or an unstructured population22, a better strategy in a two-player iterated game, such as the 
recently proposed ‘zero-determinant’ strategy20–22, can neither guarantee its dominance in the population 
nor existence in the population as an ‘evolutionarily stable strategy’ (ESS)22,24. In social networks25–28, 
however, a strategy updating rule alone can hardly determine whether it is dominant or an ESS. A dom-
inant strategy updating rule in the unstructured population may be dominated in social networks, if the 
individuals adopting this strategy do not possess enough social capital30. In the social networks, the social 
capital can be represented by an individual’s topological property.

In this paper, we investigate the unfavorable individuals (UI) in social gaming networks. The UIs are 
defined as the individuals gaining the lowest average payoff in a round of game. Since the average payoff 
is usually defined as an individual’s fitness22, the UIs are very likely to be eliminated or change their 
strategy updating rules in evolutionary games guided by Darwinian selection31. Thus, further under-
standing the topological property of the UIs is nontrivial. In this paper, the UIs are not defined by the 
accumulated payoff, since otherwise the less-connected individuals’ fitness is simply proportional to their 
degrees from a mean-field prospective. In this scenario, the evaluation system based on the accumulated 
payoff is apparently unfair to the less-connected individuals. On the other hand, the UIs are different 
from the ‘dead’ individuals in the Moran process7,32. In the Moran process, a randomly picked neighbor 
of a selected individual with a high payoff will be eliminated in each round7. Thus, the ‘dead’ individual 
is eliminated by a high-fitness neighbor, while the UIs are eliminated for their own low fitness.
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To keep consistent with previous works3–11, we investigate the UIs in a standard non-cooperative game 
called the Prisoner’s Dilemma (PD). In a 2 ×  2 game, i's strategy against j is denoted by Ωij, which takes 
vectors ( , )1 0 tr and ( , )0 1 tr for the cooperative and defective strategies, respectively. For convenience, ( , )1 0 tr 
and ( , )0 1 tr are denoted by ΩC and ΩD hereafter. In one round of the game playing with the other indi-
vidual j, the payoff Gi can be rewritten as

= Ω






Ω .

( )
G R S

T P 1i ij ji
tr

For the PD game, R, S, T and P in Eq. 1 are normally set to satisfy two inequalities: > > >T R P S 
guarantees that the Nash equilibrium of the game is mutual defection, whereas > +R T S2  makes 
mutual cooperation the globally best outcome20–22.

For structured populations, on the other hand, most existing game models3,4–10,11 are based on an 
assumption that all individuals adopt a unified strategy to play with their neighbors. Recently, inspired by 
the interesting behavior in public good games33, Wardil et al. proposed a game model in which each indi-
vidual adopts simultaneously different strategies against different opponents34. In the model, the strategy 
updating rule is based on the respective accumulated payoffs of the two players on a link. Respecting the 
strategy updating rule, a recent result in evolutionary game theory suggests that rational individuals only 
need their experience in the last round to update their strategy to a neighbor20,21. When playing with 
a neighbor, an individual’s experience in the last round must be one of the four possible cases, namely, 
cooperating with a cooperator (CC), cooperating with a defector (CD), defecting a cooperator (DC), and 
defecting a defector (DD).

Inspired by the probing works mentioned above, we propose a divide-and-conquer game model 
where individuals play independent games with their neighbors. They have two strategies, to cooperate 
or to defect. To each neighbor, an individual adopts a particular strategy. For all neighbors, therefore, 
the individual has a pure strategy set, which is randomly initiated with a certain cooperative probability. 
We call this probability “the original cooperative will”. In this scenario, we set all the individuals to adopt 
the same strategy updating rule based on the experience of the last round to guarantee that the gaming 
environments are fair to them. Thus, the only difference among individuals is their topological property. 
We will show that this small difference fundamentally changes their fortune.

Results
Unfavorable individual distribution in social gaming networks. In a degree-heterogeneous net-
work, such as ‘Facebook’, ‘Twitter’, ‘Flickr’, scientific collaboration networks35–38, among others, degree 
distribution ( ) ∝ γ−P k k , where γ is normally confined to interval2,3 (see25,26). Given such a degree dis-
tribution, less-connected individuals are significantly more than highly-connected individuals. From a 
mean-field perspective, the average expected payoff should be identical for all the individuals. Considering 
that neighbors’ strategies of each individual can’t be evenly initiated, the failure of an individual should 
be the outcome of stochastic fluctuations. Thus, the degree distribution of the UIs should be the same as 
the degree distribution of the network. Actually, they are rather different. In social gaming networks, the 
probability of a UI having degree k is given by
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where α and β (α, β ∈ , )[0 1]  are two finite-size factors, which are less than 1 in small networks. For 
scale-free networks25,26, kmin is the only solution to

( ) ( )( − ( ))
( )≤ ≤
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which is the minimum degree of the network. For large networks, where ( ) ( ) ( − ( )) ≥NP k q t q t1 1k k
min

min min , 
the UI may receive the lowest average payoff S (see Eq. 1 in Methods). In smaller networks, conversely, 

( ) ( ) ( − ( )) <NP k q t q t1 1k k
min

min min . In this case, a UI with the lowest average payoff S may not exist, 
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since δ δ( ) = ( )
≤ ≤

k kmax
k k k

min
min max

 is too small. One then needs to adjust α to raise δ ( )kmin  as shown in the 

second row of Eq. (2). For a certain N, α can be derived from
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to make Eq. (2) applicable to the relatively better cases, in which the UI’s average payoff may be higher 
than S. If the size of the network is so small such that ( )( − ( )) <NP k q t1 1k

min
min , a proper β is needed, 

which can be obtained from
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In Eq. (2), the factor ( ) ( )( − ( ))P k q t q t1k k for a less-connected individual is clearly higher than that 
of his/her highly-connected counterparts. This feature brings a sort of latent but significant difficulty to 
the less-connected individuals, which has not been reported in the literatures yet. Given Eq. (2), one can 
derive the degree distribution of UIs from

δ
δ
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In a degree-homogeneous network, such as the the Watts-Strogatz small-world network (WSSN)39, 
one can also derive L(k) from Eq. (2). Note that the degree distribution of the WSSN is
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where Q denotes the rewiring probability of links40. For large networks, where 
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Let ⁎k  be the solution, which is clearly determined by ( )q t  and ( )P k . With certain ⁎k  and N, α can be 
derived from
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With β, one can derive δ ( )k  and ( )L k  at last.
For the PD game, an individual receives the lowest average payoff when s/he cooperate and all his/

her neighbors defect in one round. For the snow-drift game (also known as the hawk-dove or chicken 
game)41–44, an individual receives the lowest average payoff when s/he suffer the mutual defection in 
every game with his/her neighbors. Thus, the probability of a UI having degree k is given by 

( )δ ( ) = ( )∑ ( − ( ))γ
γ

=⌈ ⌉k P k k
i

q t1i k
k k

2
2 . In this scenario, the way of identifying γ is simpler than that 

of identifying α and β in the PD game, while the expression is not so intuitive as that in the PD game. 
In the above equation, the term 2γk can effectively adjust the UI’s condition from the worst case, γ =  1, 
to better cases, γ<1. Let ⁎k  be a solution to ( ( )( − ( )) )

≤ ≤
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2 . In the Barabási-Albert scale-free network (BASN)45, the 

less-connected individuals are likewise trapped in an unfavorable condition. In a WSSN, however, the 
least-connected individuals are protected in a statistical sense, since their portion in the population is 
considerably small.
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Numerical experiments. To clarify the behavior mentioned above and verify our analytical results, 
we run extensive simulations on the BASNs and WSSNs. We initially generate a network of 1,024 indi-
viduals. In the network, we randomly set Ωij to ΩC and ΩD with a certain probability ( )q 0  and − ( )q1 0 , 
respectively. Note that Ωii (i =  1, 2, …, N) will never be used, since self-connection doesn’t exist in these 
networks. Thus, we uniformly set Ω = 0ii . With Eq. (11), we can derive ( )q t  at a certain time step. 
Inserting ( )q t  into Eq. (2), we can derive δ ( )k . Finally, the degree distribution of UIs is given by Eq. 7. 
To be consistent with the previous studies, we adopt the PD game as the game model. The parameters 
of the game, T, R, P, S, are set to 1.5, 1, 0, and − 0.5, respectively.

Recently, Press and Dyson proposed an interesting strategy updating rule, called the zero-determinant 
(ZD) strategy20–22. This strategy updating rule enables each individual to unilaterally extort its opponent’s 
payoff in an iterated 2 ×  2 game. The extortion is implemented by building an enforced connection 
between two individuals’ payoffs. This strategy updating rule is a current focal topic in the communities 
of game-theory researchers21, although probabilistic memory-one iterated game is not a new topic46–48.

For the rational population with ZD strategies, we test two scenarios: − = ( − )S R S R2A B  and 
− = ( − )S P S P2A B , respectively. S A and SB denote A and B’s payoff in each game, respectively. 
− = ( − )S R S R2A B  guarantees that individual A can obtain a higher payoff than B in mutual cooper-

ations. − = ( − )S P S P2A B  guarantees that individual A can obtain a higher payoff than B in mutual 
defections. Since the values of ( )G k  are identical for all k in the stationary states of the two scenarios, we 
measure ( )L k  from the beginning of the evolution so as to investigate the transitional states. Details 
about the ZD strategies and the corresponding simulation settings are shown in the Supplementary 
Information.

Figure  1 shows the results of both scenarios in a BASN. In the BASN, ( )L k  decays quickly with k 
monotonously. The individuals with small degrees, in particular the least-connected ones, are more likely 
to be UIs. This behavior is striking, since the expected average payoff for all the individuals is the same 
from a mean-field perspective, namely, = ( ) + ( )( − ( ))( + ) + ( − ( ))G q t R q t q t S T q t P1 12 2 . 
Why the less-connected individuals are more likely to be UIs? This unexpected behavior can be well 
explained by the analytical solutions of Eq. (2). For a certain ( ) ∈ ( , )q t 0 1 , δ ( )ki  is much greater than 

( )δ k j  if <k ki j. The behavior is fading as ( )q t  approaches 0 or 1. Note that the disadvantage of 
less-connected individuals universally exists in various social gaming networks, which doesn’t depend on 
the strategy updating rule. Thus, the behavior shown in this paper is just a paradigm.

In a WSSN, the number of the less-connected UIs, in − = ( − )S R S R2A B  with φ = 2
7

, is slightly 
more than their highly-connected counterparts, as shown in Fig.  2. Interestingly, more less-connected 
individuals become UIs in (b). This behavior originates from the fact that the values of ( )q t  are closer to 
0 in (b). Since the gap between ( )L k  and ( )P k  decays with ( )q t , it should be rather small when ( )q t  
approaches 0. Admittedly, the mean-field approximation provides an analytical solution to ( )L k , while it 
also brings some observable deviations as shown in (d). Although protected by the degree-homogeneity, 
the less-connected individuals in the WSSN are still in greater danger if the system has to eliminate the 
UIs.

To test our conclusion in real social networks, we run extensive numerical simulations on a real social 
network based on a data set of ‘Facebook’49. Figure 3 shows the results of both scenarios in the Facebook 
network. F cc denotes the average frequency of reciprocal pairs. Figure 3(a) shows the evolution of F cc. 
The two ZD strategies lead to two completely different outcomes. − = ( − )S R S R2A B  leads the popu-
lation to a stationary state full of mutual cooperations, while − = ( − )S P S P2A B  leads it to mutual 
defections. For both scenarios, ( )L k  decays quickly with K. Figure 3(b) shows the UI’s distribution in the 
‘Facebook’ network. One can observe that the less-connected individuals are likewise more likely to be 
the UIs, although the head of the degree distribution ( )P k  is more flattened than that in the BASN. 
Figure 4 visualizes the UIs in one round of Monte-Carlo simulation on the ‘Facebook’ network for both 
scenarios with φ = 2

7
, respectively. In Fig.  4, the size of a circle represents an individual’s degree. One 

can observe that the UIs’ sizes are typically small. Thus, one can hardly observe them without zooming 
in. This observation intuitively confirms the statistical results shown in Fig. 1.

Disscusions
Since the evolutionary game theory becomes a focus in the studies of social networks, much effort has 
been devoted to finding the origin of the widespread cooperative behaviors. For an individual, however, 
mindless cooperating with his/her neighbors in a social network can hardly guarantee a high payoff in 
fierce competitions. Thus, one has to understand how to survive in the network first. In terms of social 
network structures, dynamical social gaming networks are closer to real scenarios50 and beneficial to 
cooperative behaviors51. Nevertheless, the system in question evolves too fast compared to the evolution 
of social networks, then there is no need to model it as a dynamical or temporal network52.

After investigating the disadvantage of the less-connected individuals in the social networks with 
degree heterogeneity, one may see that they are also more likely to receive the highest average payoff. 
The polarization of their average payoffs indicate that the lonely souls face not only challenges but also 
chances in social gaming networks. Thus, they may be invaded by the strategy updating rule of hubs 
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and simultaneously invade the hubs if their fitness are based on their average payoffs. This interesting 
behavior happens to explain why the hubs’ strategy updating rules can hardly keep invariant although 
they are not UIs.

(a) (b)

)d()c(

Figure 1. UI distributions in the BASN. (a,b) show the simulation results (circles) of ( )L k  for 
− = ( − )S R S R2A B  with φ = 2

7
 and φ = .0 01, respectively. (c,d) show the simulation results (circles) of 

( )L k  for − = ( − )S P S P2A B  with φ = 2
7

 and φ = .0 01, respectively. The crosses correspond to the 
analytical solutions of Eq. (2). The experiments are visualized in the corresponding panels. The left (right) 
inset shows the result of the first (last) time step. The UIs are shown in red. In the BASN, the degree 
distribution should be ( ) ∝ −P k k 3 when the size of network is large. Considering the size of the tested 
network is relatively small, the degree distribution is set to ( ) ∝ − .P k k 2 5 in our mathematical derivations. 
The dashed line in (a) is the fitting curve of the degree distribution ( )P k  (solid line) of the BASN. One can 
see that the power exponent of ( )P k  in the tested network is − 2.5. In our mathematical deviations, the 
individuals’ degrees are distributed in the range ,[3 100]. In our simulations, = .T 1 5, =R 1, P =  0, and 

= − .S 0 5. ( ) = .q 0 0 1 and 0.9 for − = ( − )S R S R2A B  and − = ( − )S P S P2A B , respectively. In this case, 
the expected average payoff is ( )q t . The BASNs are generated by = =m m 30

45. Here, m0 denotes the size of 
the initial fully-connected network and m denotes the number of links among a new node and the existing 
individuals in the network.
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In a nutshell, we have proposed a divide-and-conquer game model. In this model, each individual 
possesses a specific strategy to interact with a neighbor in the network. After each round of the game, 
individuals update their strategies following a certain rule. In this scenario, our analytical and simulation 
results surprisingly reveal that the less-connected individuals in a degree-heterogeneous network are 
more likely to become the unfavorable individuals, who are the individuals gaining the lowest average 
payoff in a round of game.

In the scenarios investigated in this paper, the strategy updating rules, initial conditions, and evalua-
tion criteria are designed to guarantee that the gaming environments are fair to all the individuals. From 
a mean-field perspective, the expected average payoff for each game between two connected individuals 
should be identical. Our results, however, reveal that less-connected individuals are always trapped in 
an unfavorable condition. Since most existing social networks possess a strong degree heterogeneity, an 

(a) (b)

(c) (d)

α,
 β

k*

α,
 β

k*

α,
 β

k*

α,
 β
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Figure 2. UI distributions in the WSSN. (a,b) show the simulation results (circles) of ( )L k  for 
− = ( − )S R S R2A B  with φ = 2

7
 and φ = .0 01, respectively. (c,d) show the simulation results (circles) of 

( )L k  for − = ( − )S P S P2A B  with φ = 2
7

 and φ = .0 01, respectively. The crosses correspond to the 
analytical solutions of Eq. (2). In the insets, solid squares and circles denote α and β, respectively. Hollow 
stars denote ⁎k . The WSSNs are generated by randomly rewiring 10% (Q =  0.1) of the links in the initially 
regular networks, which are formed by 1,024 identical individuals of degree 6. Note that the average degree 
of the WSSN equals that of the BASN with m =  3. In the WSSN, the individual degrees are distributed in the 
range ,[3 10]. The simulation settings of games are consistent with Fig. 1.
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individual’s topological properties in such a network may determine whether s/he can survive in fierce 
competitions. This disadvantage may be further amplified by his/her smaller degree if the evaluation 
criteria is based on an individual’s accumulated payoff, which is the sum of payoffs gained in each round 
of the game. Thus, the drastic growth of individual connectivity in social networks seems to be a conse-
quence of Darwinian selection.

As a social capital, the impact of the individual connectivity on reciprocal behaviors has been exten-
sively discussed in the existing literatures. Its influence on individuals’ fitness has not been analytically 
investigated as far as we concern. Our analytical results indicate that the difference of the connectivity 
brings the individuals in the social gaming networks with high degree heterogeneity a remarkable but 
invisible inequity. Thus, we believe that our model should provide a more realistic theoretical frame-
work for understanding the influence of complex topologies on social cooperation and competition. 
Our analytical techniques may also be helpful for further analytical studies on social gaming networks. 
In addition, our conclusion provides a new perspective to the understanding of the evolution of social 
networks in general.

Methods
The divide-and-conquer game model. We take the iterated Prisoner’s Dilemma (IPD) game as 
example. In the IPD, individuals have two strategies: to cooperate or to defect. To each neighbor, an 
individual adopts a particular strategy. For all neighbors, therefore, the individual has a strategy set, 
which is randomly initiated with a certain cooperative probability. We call this probability ‘the original 
cooperative will value’. Each entry of an individual strategy set evolves respectively with time, following 
a certain strategy updating rule. Assume that an individual has k neighbors and plays a game with each 

Figure 3. Average frequency of reciprocal pairs and UI distributions in the ‘Facebook’ network.  
(a) shows the evolution processes of the average frequency of reciprocal pairs Fcc for both cases in the 
‘Facebook’ network. (b) shows the simulation results of ( )L k  for − = ( − )S R S R2A B  and 

− = ( − )S P S P2A B  in the ‘Facebook’ network. Solid circles and triangles (squares and diamonds) are the 
square of the analytical solutions of Eq. (12) (Eq. (13)) in Methods with φ = 2

7
 and 0.01, respectively.
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t=1 t=2

t=3 t=4

t=5 t=6

t=7 t=8

t=9 t=10

t=5

t=7

t=1

t=3

t=9

(b)(a)

t=2

t=4

t=6

t=8

t=10
Figure 4. Visualizations of UIs in the iterated PD with the ZD strategies in the ‘Facebook’ network. The 
UIs are denoted by red circles. (a,b) show the UIs in the ‘Facebook’ network for − = ( − )S R S R2A B  and 

− = ( − )S P S P2A B  with φ = 2
7

, respectively. The size of a circle is proportional to an individual’s degree. 
Note that the sizes of the UIs are magnified 5 times since a large number of circles are overlapped. The 
simulation settings of the games are consistent with Fig. 3.
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neighbor. In each round of the game, the individual has to play a total of k times of the game with its k 
neighbors. We define ( )q t  as the average frequency of cooperation in all the strategy sets. Clearly, ( )q 0  
equals the original cooperative will value. If a social network is degree-heterogeneous25, one can take it 
as a heterogeneous organization of two-player pairs. For each two-player pair, two individuals simulta-
neously update their strategies based on their experience gained from the previous round of the 
game20–22,53–56.

When two connected individuals play a game, each individual has to experience one of the four pos-
sible cases, namely, cooperating with a cooperator (CC), cooperating with a defector (CD), defecting a 
cooperator (DC), and defecting a defector (DD). We define a strategy updating rule Φ by 
(Φ , Φ , Φ , Φ )CC CD DC DD , which is a vector composed of the probabilities of cooperation after experienc-
ing each of the four cases, respectively. For different individuals, their updating rules should be different, 
while we set them to the same to guarantee that they are equally intelligent. With a mean-field approx-
imation, the evolution of ( )q t  satisfies the following equation:

( ) = Φ ( − ) + (Φ + Φ )( ( − ) − ( − )) + Φ ( − ( − )) . ( )q t q t q t q t q t1 1 1 1 1 11CC CD DC DD
2 2 2

If individuals uniformly adopt the celebrated ‘tit-for-tat’ rule53, then Φ = ( , , , )1 0 1 0 . Since they have 
to cooperate at the beginning, ( ) =q 0 1. If their first moves are randomly assigned by the original coop-
erative will value, these tit-for-tat individuals will keep backbiting. The strategy matrix of the individuals 
will be transposed back and forth. Thus, ( ) = ( − )q t q t 1  in this case. If the individuals uniformly adopt 
the ‘Pavlov’ rule (also known as the ‘win-stay-lose-shift’ rule57), Φ = ( , , , )1 0 0 1 . In this case, 

( ) = ( − ) − ( − ) +q t q t q t2 1 2 1 12 , which grows drastically with time and quickly reaches the maxi-
mum 1. Two simple examples are shown in Table 1.

In the ZD strategy, S A and SB denote an individual and his/her opponent’s expected payoff, respec-
tively, in an iterated 2 ×  2 game. When >S SA B, A’s payoff is expected to exceed B’s payoff. For 

− = ( − )S R S R2A B , one has

φ φ φ( ) = ( + − − ) ( − ) + ( + ( − − )) ( − ) + ( − ), ( )q t S T P R q t P S T q t R P1 1 2 1 122

where φ < ≤
− +

0
T S R

1
2

 (details are shown in the Supplemental Material). In this case, ( )q t  grows 
monotonously with t. The rate of growth depends on φ, and =G Ri  for all i in the stationary state. For 

− = ( − )S P S P2A B , one has

φ φ( ) = ( + − − ( − ) + ( + ( − − )) ( − ), ( )q t S T P Rq t P S T q t1 1 2 1 132

where φ < ≤
− −

0
T S P

1
2

. In this case, ( )q t  decays monotonically with t and =G Pi  for all i in the sta-
tionary state. Since the ZD strategies lead the evolution of cooperation to two opposite directions, we 
will investigate the UIs in the social gaming networks governed by the two ZD strategies, respectively.

Let the size of a social gaming network be N. In the strategy matrix Ω , an individual i has ki strategies 
corresponding to his/her ki neighbors, where ki denotes i's degree (namely, number of connections). For 
convenience, cooperation and defection are denoted by C and D, respectively. For each pair of connected 
individuals, Ω ij takes Ω C or Ω D with a probability ( )q ti  or − ( )q t1 i , respectively. To create a fair gaming 
scenario for all the individuals, we set ( ) = ( )q q0 0i  for all i, where i =  1, 2, …, N. Simultaneously, all the 

Pavlov: Φ = (1, 0, 0, 1)

t =  1 Ω = Ω = Ωil li C
Ω = Ωim C, 
Ω = Ωmi D

Ω = Ω = Ωin ni D

t =  2 Ω = Ω = Ωil li C Ω = Ω = Ωim mi D Ω = Ω = Ωin ni C

t =  3 Ω = Ω = Ωil li C Ω = Ω = Ωim mi C Ω = Ω = Ωin ni C

Tit for tat: Φ = ( , , , )1 0 1 0

t =  1 Ω = Ω = Ωil li C
Ω = Ωim C, 
Ω = Ωmi D

Ω = Ω = Ωin ni D

t =  2 Ω = Ω = Ωil li C
Ω = Ωim D, 
Ω = Ωmi C

Ω = Ω = Ωin ni D

t =  3 Ω = Ω = Ωil li C
Ω = Ωim C, 
Ω = Ωmi D

Ω = Ω = Ωin ni D

Table 1.  Evolution of the divide-and-conquer game. l, m and n are i's neighbors. Since their initial 
strategies are different, i needs to adjust its strategy set accordingly. The evolution of each entry in i's 
strategy set is independent of the others.
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individuals adopt the same ZD strategy. Therefore, the only difference among individuals is their topo-
logical property in the network. Since social networks are neither regularly nor completely randomly 
connected, this complex texture covers many unknown inequalities. Through extensive simulations, we 
observe that the majority of UIs in the BASN45 are the less-connected ones, namely, the lonely souls. This 
special behavior has not been reported elsewhere in the literatures.

References
1. Zhang, Y. et al. Emergence of cooperation in non-scale-free networks. J. Phys. A: Math. Theor. 47, 225003 (2014).
2. Gracia-Lázaro, C. et al. Heterogeneous networks do not promote cooperation when humans play a Prisoner’s Dilemma. Proc. 

Natl. Acad. Sci. USA 109, 12922 (2012).
3. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992).
4. Santos, F. C. & Pacheco, J. M. Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. 

Lett. 95, 098104 (2005).
5. Santos, F. C., Rodrigues, J. F. & Pacheco, J. M. Epidemic spreading and cooperation dynamics on homogeneous small-world 

networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 056128 (2005).
6. Kim, B. J. et al. Dynamic instabilities induced by asymmetric influence: Prisoners¡¯ dilemma game in small-world networks. Phys. 

Rev. E Stat. Nonlin. Soft Matter Phys. 66, 021907 (2002).
7. Lieberman, E., Hauert, C. & Nowak, M. A. Evolutionary dynamics on graphs. Nature 433, 312–316 (2005).
8. Szolnoki, A. & Szabó, G. Cooperation enhanced by inhomogeneous activity of teaching for evolutionary Prisoner’s Dilemma 

games. Europhys. Lett. 77, 30004 (2007).
9. Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs. Nature 441, 

502–505 (2006).
10. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).
11. Gómez-Gardeñes, J., Campillo, M., Floría, L. M. & Moreno, Y. Dynamical organization of cooperation in complex topologies. 

Phys. Rev. Lett. 98, 108103 (2007).
12. Zhang, Y., Aziz-Alaoui, M. A., Bertelle, C. & Guan, J. Local Nash equilibrium in social networks. Sci. Rep. 4, 6224 (2014).
13. Zhang, Y. et al. Fence-sitters protect cooperation in complex networks. Phys. Rev. E 88, 032127 (2013).
14. Szabó, G. & Fáth, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
15. Yang, H. X., Rong, Z. H. & Wang, W. X. Cooperation percolation in spatial prisoner’s dilemma game. New Journal of Physics 16, 

013010 (2014).
16. Szolnoki, A. & Perc, M. Conformity enhances network reciprocity in evolutionary social dilemmas. J. R. Soc. Interface 12, 

20141299 (2014).
17. Szolnoki, A. & Perc, M. Correlation of Positive and Negative Reciprocity Fails to Confer an Evolutionary Advantage: Phase 

Transitions to Elementary Strategies. Phys. Rev. X 3, 041021 (2013).
18. Szolnoki, A. & Perc, M. Impact of critical mass on the evolution of cooperation in spatial public goods games. Phys. Rev. E 81, 

057101 (2010).
19. Yang, H. X. & Rong, Z. H. Mutual punishment promotes cooperation in the spatial public goods game. Chaos Solitons & Fractals 

70, 230–234 (2015).
20. Press, W. H. & Dyson, F. J. Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent. Proc. Natl. 

Acad. Sci. USA 109, 10409–10413 (2012).
21. Stewart, A. J. & Plotkin, J. B. Extortion and cooperation in the Prisoner’s Dilemma. Proc. Natl. Acad. Sci. USA 109, 10134–10135 

(2012).
22. Adami, C. & Hintze, A. Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything. Nat. 

Commun. 4, 2193 (2014).
23. Hao, D., Rong, Z. H. & Zhou, T. Extortion under uncertainty: Zero-determinant strategies in noisy games. Phys. Rev. E 91, 

052803 (2015).
24. Smith, M. J. Evolution and the Theory of Games (Cambridge University Press, Cambridge, UK, 1982).
25. Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).
26. Dorogovtsev, S. & Mendes, J. F. F. Evolution of networks. Adv. Phys. 51, 1079–1187 (2002).
27. Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).
28. Boccaletti, S. et al. Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).
29. Adami, C., Schossau, J. & Hintze, A. Evolution and stability of altruist strategies in microbial games. Phys. Rev. E 85, 011914 

(2012).
30. Social capital: Its origins and applications in modern sociology. Annu. Rev. Sociol. 24, 1C24 (1998).
31. Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. 

[320–320] (London, John Murray, 1859).
32. Moran, P. A. P. Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60C71 (1958).
33. Santos, F. C., Santos, M. D. & Pacheco, J. M. Social diversity promotes the emergence of cooperation in public goods games. 

Nature 454, 213–216 (2008).
34. Bala, V. & Goyal, S. Adoption of simultaneous different strategies against different opponents enhances cooperation. Europhys. 

Lett. 86, 38001 (2009).
35. Ugander, J., Karrer, B., Backstrom, L. & Marlow, C. The anatomy of the Facebook social graph. arXiv:1111.4503v1[cs.SI] (2011).
36. Kwak, H., Lee, C., Park, H. & Moon, S. What is Twitter, a social network or a news media? WWW 2010, 591–600 (2010).
37. Kumar, R., Novak, J. & Tomkins, A. Structure and evolution of online social networks. KDD 06, 611–617 (2006).
38. Leskovec, J., Kleinberg, J. & Faloutsos, C. Graph Evolution: Densification and Shrinking Diameters. ACM TKDD 1, 1–41 (2007).
39. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature (London) 393, 440–442 (1998).
40. Barrat, A. & Weigt, M. On the properties of small-world network models. Eur. Phys. J. B 13, 547–560 (2000).
41. Smith, J. M. Evolution and the theory of games. American Scientist 64, 41–45 (1976).
42. Gintis, H. Game theory evolving: A Problem-Centered Introduction to Modeling Strategic Interaction. Journal of Economic 

Literature 39, 572–573 (2001).
43. Hauert, C. & Doebeli, M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428, 

643–646 (2004).
44. Doebeli, M. & Hauert, C. Models of cooperation based on the Prisoners Dilemma and the Snowdrift game. Ecol. Lett. 8, 748–766 

(2005).
45. Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
46. Nowak, M. Stochastic strategies in the Prisoner’s Dilemma. Theor. Popul. Biol. 38, 93–112 (1990).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:17481 | DOI: 10.1038/srep17481

47. Nowak, M. & Sigmund, K. The evolution of stochastic strategies in the Prisoner’s Dilemma. Acta. Applic. Math. 20, 247–265 
(1990).

48. Iliopoulos, D., Hintze, A. & Adami, C. Critical dynamics in the evolution of stochastic strategies for the iterated Prisoner’s 
Dilemma. PLoS Comput. Biol. 6, e1000948 (2010).

49. Mcauley, J. & Leskovec, J. Learning to Discover Social Circles in Ego Networks. Advances in Neural Information Processing 
Systems 25, 4532 (2012).

50. Grujic, J. et al. Social experiments in the mesoscale: humans playing a spatial Prisoner’s Dilemma. Plos One 5, e13749 (2010).
51. Randa, D. G., Arbesmanc, S. & Christakis, N. A. Dynamic social networks promote cooperation in experiments with humans. 

Proc. Natl. Acad. Sci. USA 108, 19193–19198 (2011).
52. Holme, P. & Saramäki, J. Temporal networks. Physics Reports 519, 97–125 (2012).
53. Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).
54. Axelrod, R. More effective choices in the Prisoner’s Dilemma. J. Conflict. Resolut. 24, 379–403 (1980).
55. Hammerstein, P. Genetic and cultural evolution of cooperation [Hammerstein, P. (ed.)] [16–16](MIT, Cambridge, MA, 2003).
56. Turner, P. E. & Chao, L. Prisoner’s Dilemma in an RNA virus. Nature (London) 398, 441–443 (1999).
57. Nowak, M. A. & Sigmund, K. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s dilemma game. Nature 

364, 56–58 (1993).

Acknowledgements
The authors would like to thank Z.H. Rong for helpful discussions. The research project was solely 
supported by Huawei Technologies Co. Ltd. under the Huawei-CityU joint project #YB2014080009.

Author Contributions
All authors designed the experiments together. Y.Z. implement the experiments and prepared all the 
figures. Y.Z. and G.C. wrote the main manuscript text together. J.G., Z.Z. and S.Z. reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhang, Y. et al. Unfavorable Individuals in Social Gaming Networks. Sci. Rep. 
5, 17481; doi: 10.1038/srep17481 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Unfavorable Individuals in Social Gaming Networks
	Results
	Unfavorable individual distribution in social gaming networks. 
	Numerical experiments. 

	Disscusions
	Methods
	The divide-and-conquer game model. 

	Acknowledgements
	Author Contributions
	Figure 1.  UI distributions in the BASN.
	Figure 2.  UI distributions in the WSSN.
	Figure 3.  Average frequency of reciprocal pairs and UI distributions in the ‘Facebook’ network.
	Figure 4.  Visualizations of UIs in the iterated PD with the ZD strategies in the ‘Facebook’ network.
	Table 1.   Evolution of the divide-and-conquer game.



 
    
       
          application/pdf
          
             
                Unfavorable Individuals in Social Gaming Networks
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17481
            
         
          
             
                Yichao Zhang
                Guanrong Chen
                Jihong Guan
                Zhongzhi Zhang
                Shuigeng Zhou
            
         
          doi:10.1038/srep17481
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep17481
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep17481
            
         
      
       
          
          
          
             
                doi:10.1038/srep17481
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17481
            
         
          
          
      
       
       
          True
      
   




