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Abstract

Prion diseases are fatal neurodegenerative disorders causing motor dysfunctions, dementia and neuropathological changes
such as spongiosis, astroglyosis and neuronal loss. The chain of events leading to the clinical disease and the role of distinct
brain areas are still poorly understood. The role of nervous system integrity and axonal properties in prion pathology are still
elusive. There is no evidence of both the functional axonal impairments in vivo and their connection with prion disease. We
studied the functional axonal impairments in motor neurons at the onset of clinical prion disease using the combination of
tracing as a functional assay for axonal transport with immunohistochemistry experiments. Well-established and novel
confocal and ultramicroscopy techniques were used to image and quantify labeled neurons. Despite profound differences
in the incubation times, 30% to 45% of neurons in the red nucleus of different mouse lines showed axonal transport
impairments at the disease onset bilaterally after intracerebral prion inoculation and unilaterally—after inoculation into the
right sciatic nerve. Up to 94% of motor cortex neurons also demonstrated transport defects upon analysis by alternative
imaging methods. Our data connect axonal transport impairments with disease symptoms for different prion strains and
inoculation routes and establish further insight on the development of prion pathology in vivo. The alterations in
localization of the proteins involved in the retrograde axonal transport allow us to propose a mechanism of transport
disruption, which involves Rab7-mediated cargo attachment to the dynein-dynactin pathway. These findings suggest novel
targets for therapeutic and diagnostic approaches in the early stages of prion disease.
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Introduction

Prion diseases, for example Bovine Spongiform Encephalopathy

(BSE) or Creutzfeldt-Jakob disease (CJD), are lethal neurodegener-

ative disorders caused by the abnormal form (PrPSc) of host prion

glycoprotein (PrPC). Spongiform vacuolations, accumulation of

PrPSc-rich amyloid fibrils, neuronal cell loss, microglial activation

and proliferation of astrocytes in the central nervous system (CNS)

are typical neuropathological hallmarks [1], which do not always

temporally correlate with clinical disease symptoms. Mice bearing

one disrupted allele of the PrP gene (Prnp0/+) develop scrapie

symptoms 290 days post intracerebral (i.c.) prion inoculation (dpi),

whereas wild-type mice (wt) develop symptoms at 158 dpi. However

both mouse lines demonstrate a similar neuropathology already at

140 dpi [2]. In addition, immunodeficient mice show neuropath-

ological changes in the CNS, but develop no clinical symptoms after

prion infection [3]. Transgenic mice expressing truncated PrPD32-

93 (C4/C4) demonstrate no detectable brain pathology upon prion

challenge but develop clinical symptoms along with 10–25%

neuronal loss in the spinal cord [4].

The study with PrPD32-93 mice (C4/C4) implicates that prion-

induced impairments and neuronal loss in the spinal cord are

sufficient to cause prion disease. The impairments of axon

functions such as synaptic degeneration, protein accumulation

and changes of microtubule distribution were detected in CJD

patients [5,6], in animal [7] and in vitro [8] models of prion disease.

However, other studies implied that the transport may not play a

key role in prion pathology [9,10] so that the role of axonal

transport still remains elusive.

A growing line of evidence shows that axonal impairments are

associated with different neurodegenerative disorders, e.g. Hunting-

ton’s disease [11]. In Alzheimer’s disease (AD), such defects as axonal

swellings containing abnormally accumulated proteins, impaired

axonal transport with reduced kinesin levels preceded the disease-

related pathology in mouse models and in human patients [12].

In this study, we applied axonal tracing as a functional assay for

the retrograde transport in five different wild type and transgenic

mouse lines. A correlation between impairments in retrograde

axonal transport and onset of clinical prion disease was

demonstrated independently on incubation time and prion strain
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establishing a link between molecular changes and clinical

symptoms. The combination of prion inoculation into a distinct

group of motor neurons with differential localization of proteins

involved in the transport processes connects impairments in

retrograde axonal transport with prion pathogenesis and suggests

molecular mechanism for this process. These findings suggest

novel targets for therapeutic and diagnostic approaches in the

early stages of prion disease.

Results

Axonal tracing of prion-challenged mice
The primary objective of our study was to find the molecular

mechanisms responsible for the clinical symptoms of prion disease

including the motor system defects, such as ataxia and partial

hindlimb paralysis [1]. We supposed that the connection between

the central nervous system and motor system and, in particular,

axonal transport may play a role in prion pathogenesis. Axonal

transport was studied in rubro- and corticospinal motor neurons in

mouse models for prion disease using retrograde axonal tracing.

Wild type (wt) and different transgenic mice were challenged with

prions intracerebrally (i.c.) or in the right sciatic nerve (intraner-

vously, i.n.). Prior to the onset of clinical disease, either Fast Blue

(FB) [13] or Adeno-Associated Virus expressing DsRed-Express

(AAV-REx) was injected into the spinal cord. The tracers were

retrogradely transported along axons to label motor neurons of

distinct brain regions including the red nucleus (RN) and motor

cortex (Figure 1A). Both FB and AAV-REx application did not

influence prion disease progression (data not shown). Great care

was taken to standardize the quantification of neuron. The

anatomical location was verified by staining serial coronal sections

with the neuronal marker NeuN (Figure 1B) and co-localization of

tracer deposits with NeuN signal. Only large tracer-positive

pyramidal motor neurons in the RN were quantified using the

analysis of z-stacks done on serial coronal cryo-sections (Figure 1C

and D). The proper localization of the RN was also re-verified by

staining with Wisteria floribunda agglutinin (WFA, Figure 1E), a

marker for extracellular proteoglycans at the neuronal surface of

RN neurons, but not for neighboring tissue [14,15].

Distribution of Fast Blue in the red nucleus following
intracerebral prion infection

A bilateral decrease of FB-positive neurons as compared to mock

controls was detected in the RN of five different wt and transgenic

mouse lines challenged with prions i.c. Despite differences in the

incubation times (Table S1), a 43–45% reduction was observed for

wt and Tga20 mice. C4/C4 transgenic mice, which demonstrate no

typical neuropathology [4] showed a significant 30% decrease of

tracer-positive cells in the RN (Figure 1F). Axonal tracing of Prnp0/+

mice was performed at 270 dpi and at 330 dpi immediately after

onset of clinical disease (32262 dpi), and at 370 dpi. A 38%

reduction of FB-positive neurons at 270 dpi and a 45% reduction at

330 dpi (similar to wt and Tga20) were counted in the RN. Scrapie-

diseased Prnp0/+ animals at 370 dpi demonstrated a 49% decrease

of FB-positive neurons in the RN (Figure 1F and Table S1), which

indicated a gradual reduction of RN neurons possessing functionally

intact projections into the spinal cord during disease development.

To clarify whether the decrease of tracer-positive neurons

implicating functional impairments in axonal projections is specific

for RML prions only, we also applied FB to hamster-adapted

transgenic mice Tg(SHaPrP), which were challenged with Sc237

hamster prions. A 43% bilateral decrease of FB-positive cells was

observed in the RN (Figure 1F and Table S2) of these mice

following i.c. prion infection.

These results demonstrated that despite differences in the

incubation times, the bilateral reduction of FB-positive neurons

with intact axonal transport correlated with the onset of the

clinical symptoms after intracerebral prion challenge. The

proportion of affected neurons increased gradually and reached

a level of 30–45% at the disease onset independent of the mouse

line and prion strain.

Distribution of Fast Blue in the red nucleus following
prion infection in the sciatic nerve

In order to assess axonal transport upon selective inoculation

into distinct groups of motor neurons, prions were applied into the

right sciatic nerve (i.n.). Anatomically, about 90% of RN neurons

project to the contralateral side. I.n. inoculation resulted in the

initial prion distribution on the contralateral RN followed by

bilateral accumulation in the RN, hindlimb motor cortex and

thalamus at the terminal stage of the disease [16,17]. The bilateral

prion accumulation upon unilateral i.n. challenge was also recently

demonstrated in our lab for the RN and MC at both onset and

terminal stage of clinical disease [18], which is in agreement with

the data on i.n. inoculations from other groups [16,17]. Moreover,

similar neuropathological features, such as spongiosis and

activation of astrocytes were also observed in the RN bilaterally

(Figure S1). Surprisingly, upon application of FB shortly before the

onset of disease symptoms, a 43% and 37% reduction of FB-

positive cells was found exclusively on the contralateral RN side in

wt and Tga20 mice, respectively. C4/C4 transgenic mice showed

a 33% unilateral decrease of FB-positive neurons, which

correlated with the unilateral reduction for wild-type (wt) and

Tga20 animals. A 28% unilateral decrease of FB-positive cells was

also observed in the RN of Tg(SHaPrP) mice upon i.n. challenge

with hamster prions (Figure 2A and Tables S2 and S3).

In order to understand whether prion challenge affects only the

retrograde transport mechanism utilized by FB, we exactly

reproduced the tracing experiment on i.n. challenged wt and

Author Summary

For almost a century, prion disease symptoms, such as
dementia and motor system defects, have been accom-
panied with neuropathological hallmarks in the central
nervous system. In past decades, discrepancies between
neuropathological changes and clinical symptoms showed
that the processes triggering the disease remain elusive.
We concentrated on the hypothesis that nervous system
integrity and axonal properties may play an important role
in the disease development. Since motor system defects
are typical for prion disease, we investigated the centers of
the motor system, red nucleus and hindlimb area of motor
cortex. Although intracerebral prion infection led to a 30%
to 45% bilateral reduction of labeled neurons in the red
nucleus, infection into the right sciatic nerve—the major
hindlimb nerve—led to unilateral reduction of labeled
neurons in the red nucleus. Up to 94% reduction was
found in the neurons of motor cortex hindlimb area. This
reduction is probably caused by functional axonal
impairments in motor neurons. Prion-induced alterations
in protein distribution implicate a mechanism of transport
disruption at cargo attachment to the retrograde axonal
transport complex. Our work reveals a connection
between axonal transport impairments and disease
symptoms in vivo, providing further insight in the
development of prion pathology and suggesting novel
targets for therapeutic and diagnostic approaches.

Impaired Axonal Transport in Prion Disease
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Tga20 mice using a viral vector based on adeno-associated virus

[19,20,21] expressing the fluorescent marker DsRed-Express

(REx). The numbers of FB- and REx-labeled neurons did not

significantly differ for the mock controls. Moreover, REx and FB

co-localized in the RN neuronal cells after injection into the spinal

cords of the same animals (data not shown). Similar to FB, the

difference between contra- and ipsilateral sides upon i.n. prion

challenge could be clearly seen on the same z-stacks done on RN

section of i.n. challenged mice but not of mock controls (Figure 2B).

The quantification of REx-positive neurons for wt and Tga20

mice revealed a 39% and 49% decrease of tracer-positive neurons

on the contralateral side of the RN, respectively (Figure 2C and

Table S4). The reduction of tracer-positive neurons initially

demonstrated for FB was confirmed for AAV-REx. The tracing

experiment at 50% of incubation time (at 82 dpi upon i.n.

challenge) demonstrated no significant differences of labeled RN

neurons with mock controls, which reveals the important role of

this center in the development of the disease and supports the view

that appearance of the axonal transport impairments in the RN

neurons is connected with the disease onset.

Our system combining unilateral inoculation of prions into the

right sciatic nerve and axonal tracer application enabled

investigation of axonal defects specifically connected with prion

pathogenesis. The ipsilateral side of the RN did not show any

significant decrease of tracer-positive neurons and could be used as

an internal control. The differences between the ipsilateral site and

the contralateral – initially targeted with prions were directly

observed on the same z-stack done on serial cryo-sections of i.n.

challenged mice but were not detectable in the mock controls.

Moreover, on the contralateral side of the RN, we observed a

fraction of NeuN-positive neurons, which did not contain FB

(Figure 3A, asterisks). In contrast, the ipsilateral RN did not

Figure 1. Quantification of retrogradely labeled neurons reveals significant alterations upon prion challenge. (A) Mice were
challenged with prions intracerebrally (prions i.c.) or into the right sciatic nerve (prions i.n.). The axonal tracers were applied into the spinal cord
before the onset of clinical disease. Retrogradely labeled tracer-positive neurons were quantified in the red nucleus (RN) and motor cortex (MC). (B)
The NeuN-positive neurons in the RN (within the dashed line). The RN is a clearly defined center in the midbrain. It is divided into two parts,
magnocellular (RMC) and parvicellular (RPC) in the section shown. Small box: anatomic localization of RN on coronal brain section stained with
hematoxilin-eosin. (C) Enhanced part of B. The large pyramidal motor neurons projecting via spinal cord were quantified (arrows), but not the smaller
ones (asterisks). Scale Bar: 100 mm (D) Fast Blue-positive neurons in the RN. The big pyramidal cells possessed several deposits of FB in the cytoplasm
(arrows) and were quantified on z-stacks done on serial cryo-sections. Analysis of z-stacks allowed us to reliably rule out the artifacts (asterisks) from
the quantification. Scale bar: 100 ml. (E) Wisteria floribunda agglutinin-positive cells are typical for the RN and a proof for the correct localization of
tracer-positive neurons. (F) Bilateral reduction of FB-positive (FB+) neurons was observed in the RN of different mouse lines upon intracerebral (i.c.)
prion challenge. FB was applied at indicated number of days post prion inoculation (dpi). For the times of disease onset and terminal stage as well
as numbers of quantified neurons, see Tables S1 and S2. M – mock, wt – wild type. Unpaired t-test was done using GraphPad Prism software. ***
– P,0.0001, * – P,0.02.
doi:10.1371/journal.ppat.1000558.g001

Impaired Axonal Transport in Prion Disease
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contain such cells but only the cells containing both FB and NeuN

(Figure 3A, arrows; for overview, see Figure S2). This observation

was confirmed on both visual and computerized co-localization

analysis. Due to high background we still observed the fluorescent

objects in the vicinity of NeuN-positive cells on the contralateral

RN, which were not perfectly co-localizing. In order to perform

systematic stereological analysis, we defined Regions of Interest

(ROI) according to the NeuN-positive fluorescence in several

mock and i.n. samples (Figure S3A) and quantified the FB

fluorescence as a per cent of the NeuN fluorescence in z-stacks

using available software tools. The analysis of more than 150 cells

from 3 i.n. and 4 mock samples revealed practically all the cells in

mock controls to contain FB fluorescence over 18% to the level of

NeuN signal, which was over the calculated background value of

17%. Fourty-four per cent of the cells in the contralateral RN (21

of 47 totally analyzed) demonstrated the relative FB fluorescence

under the background level, and only 7% (3 of 40 analyzed) – in

the ipsilateral RN (Figure 3B).

To further understand whether the reduction of the tracer-

positive neurons can be explained by the neuropathological

changes leading to the neuronal disruption, we quantified the

NeuN-positive cells in the RNs of sampled mock (n = 3) and i.n.

challenged (n = 4) mice. We did not observe significant differences

in NeuN-positive cells between mock and i.n. inoculated mice

despite very clear difference in REx-positive cells (Figure 3C and

Table S5). Taken together, this data implies that the decrease of

tracer positive cells upon prion challenge cannot be simply

explained by neuronal loss but by the impairments in the delivery

of transported cargo – the FB molecules or AAV-REx.

The dramatic reduction of tracer-positive neurons indicated

functional impairments of retrograde transport in the RN neurons.

These impairments occurred bilaterally upon i.c. and unilaterally –

upon i.n. prion challenge. However, the accumulation of PrPSc and

neuropathological changes were observed in the RN bilaterally also

upon i.n. inoculation [16,18]. In order to clarify whether the

decrease of tracer-positive neurons directly reflected the fraction of

Figure 2. Unilateral decrease of tracer-positive neurons after prion inoculation in the sciatic nerve. Different wild type (wt) and
transgenic mouse lines were infected with prions unilaterally in the right sciatic nerve (i.n.) and the tracer was injected in the cervical spinal cord at
indicated days post prion challenge (dpi). For the times of disease onset and terminal stages as well as exact numbers of quantified neurons, see
Tables S2, S3 and S4. (A) A reduction of Fast Blue-positive neurons (FB+) was demonstrated in the contralateral (c), but not on the ipsilateral (i) RN as
compared to the mock controls. (B) The profile of the REx-positive cells differed between contralateral and ipsilateral RN upon i.n. prion inoculation,
but not in mock controls. Shown here are the RNs of the Tga20 mice, which injected with AAV-REx at 145 dpi and sacrificed at the terminal stage of
the disease. (C) Reduction of REx-positive neurons on contralateral RN was observed in Tga20 and wt mice at the onset of prion disease (54 and
136 dpi after i.n. prion inoculation, respectively), but not at 50% of incubation time (82 dpi). Non-paired t-test was done with GraphPad Prism
software. *** – P,0.0001, ** – P = 0.001, * – P = 0.04, NS – non-significant.
doi:10.1371/journal.ppat.1000558.g002
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the PrPSc-containing neuronal perikarya, we performed co-

localization experiment and analysis of PrPSc and REx in the RN

of i.n. prion-challenged wt mice. The fraction of the REx-positive

cells co-localized with PrPSc at the onset of clinical prion disease

(152 dpi, Figure 4, arrows), but the rest of REx-positive cells was

PrPSc-negative (Figure 4, asterisks). This experiment implies that

PrPSc possibly does not switch off the axonal transport in a trigger-

like manner upon arrival in the somas of RN neurons, but likely

initiates a gradual decrease of transport functions in axons during

the neuroinvasion process. This assumption is also supported by the

gradual decrease of tracer-positive neurons in Prnp0/+ mice upon i.c.

prion challenge (Figure 1F).

Reduction of DsRed-Express-positive neurons in the
motor cortex

Inoculation into the right sciatic nerve results in a bilateral prion

distribution in the MC, the brain center responsible for voluntary

movements in rodents and humans. To assess retrograde axonal

transport in this area, we compared REx-positive neurons in MC

of mock- and prion-inoculated mice using confocal microscopy

and our custom-built ultramicroscopy system [18]. Significant

differences in REx-positive cells were not detected in wt mock

controls, but the difference to prion-challenged animals was clearly

visible (Figure 5A). Ultramicroscopy is a method significantly

differing from confocal imaging. It requires no cryo-sectioning and

allows for imaging of the large region in the MC. Similar to

confocal microscopy, ultramicroscopy revealed clearly visible

reduction of REx-positive neurons in the MC of wt mice

inoculated with prions i.n. as well as i.c. as compared to the

mock controls (Figure 5B and [18]). The quantification of the

REx-positive neurons in the hindlimb area of the MC was done on

combined confocal images.

Extra precautions were taken to assure accurate and standard-

ized area localization as well as reliable and uniform quantification

and analysis of labeled cells. The confocal stacks were simulta-

neously contrasted and thresholded, and the REx-positive cells

were quantified within the same combined stack. This approach

ruled out the possible artifacts between mock and infected samples

Figure 3. Reduction of tracer-positive cells in the red nucleus is not attributed to neuronal loss. (A) Co-localization of FB (green) and
NeuN (red) analysis in the contralateral and ipsilateral RN of mice upon prion challenge in the sciatic nerve (i.n.) done at the onset of clinical disease
(152 dpi). A population of viable NeuN-positive cells is FB-negative (asterisks), which implicates the defects in axonal transport. In other cells NeuN
and FB co-localize (arrows, yellow). Scale bars: 50 mm. (B) Distribution histogram of the relative FB to NeuN fluorescence analyzed on z-stacks in the
Regions of Interest (ROI). The analysis quantitatively demonstrates that FB fluorescence co-localizes with NeuN in mock controls. 44% of contralateral
neurons was below the background threshold and considered FB-negative, and 7%—on the ipsilateral RN. (C) Quantification of NeuN-positive
neurons in the sampled mock and i.n. mice revealed no differences between mock and inoculated animals despite the reduction of REx-positive cells.
Unpaired t-test was done using GraphPad Prism software. *** – P,0.0001. NS – non-significant.
doi:10.1371/journal.ppat.1000558.g003

Impaired Axonal Transport in Prion Disease
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due to different contrasting or thresholding. The quantification

procedure was normalized according to the REx deposit

properties assessed by co-localization with the NeuN neuronal

marker as was demonstrated earlier [18]. A remarkable 9463%

bilateral reduction of REx-positive neurons was found in the MC

of i.n. challenged wt mice (n = 4). Surprisingly, the tracing

experiment with wt animals at 50% of incubation time (82 dpi)

demonstrated the reduction of the tracer-positive neurons

(9561%, n = 3) similar to the one obtained immediately prior to

the onset of the clinical disease (Figure 5C). Previously, we already

demonstrated that both methods of confocal and ultramicroscopy

revealed quite similar reduction of tracer-positive neurons in the

same MC regions at the onset of prion disease [18]. Moreover, we

also showed that the number of NeuN-positive neurons was not

affected at the onset of clinical prion disease upon i.n. challenge in

the MC [18]. This experiment rules out the possibility that the

massive reduction of tracer-positive cells can be attributed to the

neuronal loss upon prion challenge.

Alternative hypotheses for labeled neuron decrease
The decrease of tracer positive neurons implies impairments of

axonal transport caused by the prion infection. However, there are

alternative explanations of observed phenomenon. The possibility

that the observed reduction of tracer positive cells can be

explained by the reduction of neurons in the RN and MC seems

not very plausible because of comparable number of NeuN

positive neurons in the RN (Figure 3A) and MC [18]. A further

hypothesis implies that the observed decrease could be attributed

to the altered tracer uptake or altered number of axons in the

cervical spinal cord at the injection site. Earlier we demonstrated

that ultramicroscopy z-stacks of REx-positive neurons in the

cervical spinal cord immediately cranially to the tracer injection

site do not differ between mock controls and i.n. infected mice

[18]. In order to demonstrate, whether the axons in the spinal cord

white matter are altered upon prion challenge, we performed

Toluidine Blue staining. Toluidine Blue stains myelin sheath

visualizing neuronal projections in the spinal cord. The Toluidine

blue staining showed no significant differences between spinal cord

samples of mock and prion-infected mice. Some axonal swellings

were observed in the spinal cord and represent the variable axon

caliber resembling to our knowledge the typical appearance of

myelinated and non-myelinated axons. Furthermore, since these

swellings appear not only in the spinal cords of prion-infected, but

also of the mock animals, and since they are not restricted to the

rubro- or corticospinal tracts, we assume that they probably could

be partially attributed to experimental artifacts, for example as a

result of tracer injection. A certain degree of axonal degeneration

upon prion infection, however, cannot be absolutely excluded with

these experiments.

Altered distribution of marker proteins upon prion
challenge

Further, we aimed to clarify whether the transport impairments

documented by the altered delivery of the retrograde cargo – the

FB or AAV-REx – can be characterized by the changes in protein

distribution. The localization of various proteins either previously

connected with prion pathology or involved in the retrograde

transport processes was analyzed using immunohistochemistry.

AAV enter the cells via clathrin-mediated endocytosis upon

binding to the heparan sulfate proteoglycan. After entering the

neuronal cell, AAV particles are internalized into Rab7-positive

late endosomes. Rab7 mediates the endosome binding to the

dynein-dynactin complex via the p150GLUED protein and are

retrogradely transported towards neuronal bodies [22]. We

analyzed the distribution pattern for Rab7, a protein responsible

for recruitment of late endosomes into the retrograde transport

pathway. In the RN of i.n. prion-challenged animals at the onset of

prion disease (at 152 dpi) the pattern of Rab7 distribution was

diffuse, sometimes in the close vicinity or within the REx-positive

cells (Figure 6A). In the mock controls Rab7 immunoreactivity

concentrated mostly in the neuronal projections not co-localizing

with REx-positive neurons (Figure 6B). The analysis of prion

infected mice demonstrate that Rab7 did not directly co-localize

with REx but was located in the vicinity of it in the RN cells, but

not of mock controls. We performed analysis of relative

fluorescence of Rab7 on confocal z-stacks in the ROIs defined

according to the REx-positive neurons (Figure S3B). The Rab7

fluorescence was quantified as per cent to the REx signal in the

same cell volume. The Rab7 fluorescence was not present in the

REX-positive cells of mock controls (0.760.3% of REx fluores-

cence intensity). The REx-positive cells of i.n. infected mice did

contain a lot of Rab7 signal, in ipsilateral RN (29.868.9%) and

especially in contralateral RN cells (75.4644.6%) (Figure 6C).

The staining for the p150GLUED protein involved in the binding

of late endosomes to the dynein-dynactin transport complex

demonstrated a bilateral decrease of immunoreactivity in the RN

Figure 4. Co-localization analysis of REx and PrPSc. Co-
localization analysis of REx (green) and PrPSc (red, stained with ICSM35
antibodies) in the RN of wt mice was done at 152 dpi upon i.n. prion
inoculation. In a certain cell population of REx and PrPSc co-localize
(arrows, yellow). Other cells are REx-positive but do not contain PrPSc

(asterisks). Scale bars: 50 mm.
doi:10.1371/journal.ppat.1000558.g004

Impaired Axonal Transport in Prion Disease
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of i.n. prion-challenged mice as compared to the mock controls

(Figure S4).

Highly aggregated PrPSc deposits were shown to be ubiquiti-

nated in axons as well as neuronal bodies of CJD patients [6].

Analysis of MC cryo-sections stained with anti-ubiquitin antibod-

ies revealed 2.5-fold enhanced ubiquitination at the onset of

clinical disease (152 dpi) after i.n. prion challenge as compared to

the mock controls (Figure 7A). This data indicated induced protein

degradation processes in the PrPSc-containing hindlimb area of

MC, which also contained neurons with axonal transport defects.

Activation of different forms of Notch protein (Notch-1, Notch-

2 etc.) inhibits axonal growth during neuronal development as well

as elaboration and maintenance of mature axons [23,24].

Increased levels of the Notch-1 intracellular domain (NICD) were

also detected in the neurons of prion-infected mice [25]. Upon

analysis of the MC cryo-sections stained with anti-Notch-1

antibodies we found 6-fold elevated levels of NICD at the onset

of clinical disease (152 dpi) in the MC of i.n. inoculated animals as

compared to the mock controls (Figure 7B), which indicated

possible disruption of axonal maintenance upon prion challenge.

The staining for dynamitin, a component of the dynein-

dynactin transport protein complex, however, did not reveal any

differences between prion-challenged and mock mice (Figure S5).

This data confirms the previous observation that mice bearing

mutation in the cytoplasmic dynein do not show any differences in

prion disease incubation time nor neuropathology as compared

with wild type littermates [9].

Discussion

Axonal transport is a process important for neuronal viability

and differentiation. It is often impaired during development of

various neurodegenerative diseases, such as AD or amyotrophic

lateral sclerosis [26]. Several experimental reports performed with

animal models of prion disease [7,8] or based on the analysis of

CJD patients [5,6,27,28] implied general axonal defects, such as

axonal swellings or altered distribution of transport-related

proteins possibly contributing to prion pathogenesis, but did not

establish a correlation between axonal impairments and clinical

symptoms, nor demonstrated any functional axonal impairments

in vivo. Other studies, however, suggested no correlation between

axonal transport and prion disease [9,10].

The RN is a part of the extrapyramidal motor system, along

with cerebellum, substantia nigra and other brain centers as well as

rubrospinal tract. A great majority of the extrapyramidal neurons

project via the rubrospinal tract on the contralateral side. The MC

belongs to the pyramidal motor system, which innervate the

muscles via the brainstem or spinal cord. The neurons in the RN

Figure 5. Reduction of DsRed-Express-positive neurons in motor cortex. (A and B) Bilateral reduction of REx-positive neurons in the motor
cortex (MC) of wild type (wt) mice upon prion challenge into the right sciatic nerve (prions i.n.) or intracerebrally (prions i.c.), as compared to mock
controls, shown with confocal microscopy (A) and ultramicroscopy (B). (C) Quantification of REx-positive neurons on confocal images of MC shows a
9463% (n = 4) reduction of tracer-positive cells in the MC of wt mice inoculated with prions i.n. at the disease onset (AAV-REx application at 136 days
post prion inoculation, dpi) and a 9561% reduction (n = 3) at 50% of incubation time (AAV-REx application at 82 dpi). Unpaired t-test was done using
GraphPad Prism software. *** – P,0.0001. NS – non-significant. Scale bars: 100 mm.
doi:10.1371/journal.ppat.1000558.g005
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are connected with the MC and also interconnected between the

right and left sides. Despite the complexity of the neuronal

connections we detected the reduction of the tracer positive

neurons bilaterally upon the i.c. prion infection, but unilaterally in

the RN of mice unilaterally challenged in the sciatic nerve. This

reduction also seemed to correlate well with the appearance of

clinical symptoms. The clinical symptoms in the Tga20 mice, such

as hindlimb paralysis, had clear unilateral character. The other

mouse lines, however, showed much more balanced motor system

defects. Such reductions were observed at the onset of clinical

prion disease in five different mouse lines despite very different

incubation times (5961 to 32262 dpi for Tga20 and Prnp0/+ mice,

respectively). The observed defects were independent on prion

strain and inoculation route (Figures 1F, 2A, 2B). The reduction of

tracer-positive neurons could not be explained simply by the loss of

neuronal cells. We observed a fraction of NeuN-positive neurons

in the RN to be FB-negative implying the axonal transport

impairments in viable neurons (Figure 3A). Moreover, the

quantification of NeuN-positive neurons revealed no difference

between prion-infected and mock mice neither in the RN

(Figure 3C) nor in the MC [18]. The reduction of tracer-positive

neurons very likely implies the functional impairments of the

axonal transport in the living cells. An alternative hypothesis,

which suggests alterations in the tracer uptake, deposition or, in

the case of AAV-Rex, expression could be ruled out since

differences in spinal cord REx profiles between i.n. infected and

mock mice could not be observed [18]. Prion-induced changes in

the axons could also make further possible input in a reduction of

labeled neurons. The Toluidine Blue staining of axonal myelin in

the spinal cord did not demonstrate significant differences between

mock controls and i.n. challenged mice. We observed certain

axonal swellings, which can be partially attributed to the

experimental artifacts (Figure S6). Despite a certain degree of

axonal degeneration could not be absolutely ruled out, it cannot

explain prion-induced reduction of the labeled neurons. More-

over, since the tracer-positive neuron profile in the RN upon

intramuscular AAV-REx application (Ermolayev et al., unpub-

lished results) is not different from the results upon the AAV-REx

application in the cervical spinal cord, we assume that axonal

degeneration probably does not play a critical role in prion

pathogenesis.

We believe that the observed reduction of tracer-positive

neurons in the RN and MC could be most probably explained

by the functional impairments in axonal transport. Since the

Figure 6. Co-localization analysis of Rab7 and REx in the red nucleus of wild type mice. Co-localization analysis of Rab7 (red) and REx
(green) was performed in the red nucleus (RN) of wild type (wt) mice upon i.n. prion challenge (A) or in mock controls (B). Rab7 in mock controls was
localized mostly in the neuronal projections (arrows), but not in the vicinity of RN neuronal somas. Upon prion challenge Rab7 localization was more
diffuse. Rab7 was also localized in the vicinity of REx deposits within the same cells (asterisks). (C) Analysis of Rab 7 and REx fluorescence within the
regions of interest (ROI) defined in the contralateral and ipsilateral RN of animals infected with prions i.n. or in mock controls. Unpaired t-test was
done using GraphPad Prism software. *** – P = 0.0003, ** – P = 0.0077, * – P = 0.0460. Scale bars: 50 mm.
doi:10.1371/journal.ppat.1000558.g006
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application of two different tracers revealed a very similar

reduction of tracer-positive cells in the RN of different mouse

lines, we find that impairments of axonal transport belong to a

general phenomenon and are not limited to a certain type of

neuronal cells or represent a restricted subset of retrograde

transport pathways.

PrPSc probably initiates a process of gradual axonal transport

disruption, which could be demonstrated by the gradual decrease

of FB-positive neurons in Prnp0/+ heterozygous mice (Figure 1F) as

well as from the observation that PrPSc partially colocalizes with

the tracer-positive cells in the RN (Figure 4).

We found altered localization of Rab7 and p150GLUED, proteins

involved in retrograde axonal transport (Figure 6 and Figure S4,

respectively) in the RN of prion-challenged mice. Since the

dynamitin localization remains unaffected (Figure S5), it could be

assumed that the dynein-dynactin transport complex itself is not

affected during prion pathogenesis, which is consistent with

previously reported data [9]. Moreover, since map-2 and tau

distribution remains unaffected in prion-infected as compared to

mock animals (data not shown) as well, it could be assumed that the

microtubule network and dynein-dynactin retrograde transport

complex remain unaffected. The attachment of the cargo to this

complex, however, may represent a target of early prion

pathogenesis, which is supported by the altered distribution of

Rab7 and p150GLUED proteins, which are either involved in the

recruitment of the vesicles into the dynein-dynacting pathway [26],

or directly involved in the attachment of the cargo to it [22]. The

p150GLUED distribution is bilaterally diminished. The pattern of

Rab7 immunoreactivity is altered bilaterally. However, the

quantitative stereological analysis reveals that the neurons in the

contralateral RN show 2.6-fold more Rab7 in the neuronal bodies

at the onset of clinical prion disease. These data point on the

Figure 7. Altered protein expression in motor cortex upon prion challenge into the sciatic nerve. The wild type mice were analyzed at
the time point before the onset of clinical disease (145 dpi) upon prion challenge into the sciatic nerve. (A) Bilaterally, a 2.5-fold enhanced ubiquitin
expression was detected in motor cortex (MC) of prion-challenged mice as compared to mock control. NC – negative control with omitted primary
antibodies. (B) Bilaterally, a 6-fold enhanced Notch expression was detected in the MC of prion-challenged mice as compared to mock control. NC –
negative control with omitted primary antibodies. Scale bars: 100 mm.
doi:10.1371/journal.ppat.1000558.g007
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important role of small Rab7 protein in the development of prion-

induced pathological changes.

The cells in the hindlimb area of MC demonstrated enhanced

protein degradation in prion-challenged mice at the onset of

clinical disease, which was indicated by elevated ubiquitin level

(Figure 7A). The bilateral 6-fold activated Notch-1 expression in

the hinlimb area of MC also at the onset of the disease (Figure 7B)

suggested impairments in the axonal maintenance as a component

of prion pathogenesis. Along with elevation in the experimental

model of prion disease [25], Notch expression was reported to be

up regulated also in the brains of AD patients [29]. AD is a

neurodegenerative disease, which was recently also connected with

axonal dysfunctions [12].

The tracing experiment performed at 82 dpi (50% of incubation

time upon i.n. prion challenge) did not reveal the differences of

REx-positive neurons in the RN between prion-infected animals

and mock controls (Figure 2C). Surprisingly, in the MC of the

same mice we detected as many impaired neurons as in the

animals immediately before the onset of the clinical disease

(Figure 5C). Similar proportions of damaged cortical motor

neurons at the onset of the disease and at 50% of incubation time

demonstrate that dramatic alterations in the hindlimb area of the

MC can still be compensated. The RN along with other brain

centers in rodents such as cerebellum is responsible for muscle

coordination during the movements. Since axonal transport

defects in RN neurons appear at the onset of clinical disease,

but not at the 50% of incubation time, we assume that this center

plays a critical role in the development of clinical symptoms.

Possibly, the RN plays a role of so-called ‘‘clinical target areas’’,

the regions required for the clinical disease development [30]. The

other brain centers involved in the movement coordination may

also play a role in prion pathogenesis, but their study was not the

goal of this report. The preferential role of certain brain areas was

also observed for other neurodegenerative diseases, for example

certain population of cholinergic neurons in AD [31].

The present study shows that the reduction of labeled neurons

in the RN and MC are caused by the prion-induced impairments

of retrograde transport in the axons projecting via spinal cord.

Such impairments in the RN neurons temporally correlate with

clinical symptoms of the disease, such as ataxia and hindlimb

paralysis, in five different mouse lines and different prion strains

independently on the inoculation route. We postulate a crucial

role of certain brain centers, e.g. RN, in prion pathogenesis. The

marker protein distribution suggests that the these impairments

may occur not due to the disruption of the microtubule network or

the dynein-dynactin transport complex, but probably due to the

alterations in the cargo attachment to the transport machinery.

We suggest a further pathogenic mechanism in prion disease

initially involving functional disruption of axonal transport in

rubrospinal motor neurons already on the early stages of prion

neuroinvasion. These results suggest novel targets for diagnostic

and therapeutic approaches, which could be directed at the axonal

transport processes with the focus on the late endosome

attachment to the retrograde transport pathway. Further studies

would allow better characterization of molecular mechanisms

underlying the axonal transport disruption at the prion pathogen-

esis as well as distinct similarities with other neurodegenerative

disorders.

Materials and Methods

Mouse lines used in the study
C57Bl/6 or wild type (wt), Elevage Janvier, Le Genest Saint

Isle, France. Tga20, expresses approximately 10-fold PrP as

compared to the wild type under control of PrP promoter on PrP

knock-out genetic background [32]. Prnp0/+, possesses one intact

and one disrupted allele of PrP gene [2]. C4/C4 express truncated

D32-93PrP on PrP knock-out genetic background [4].

TG(SHaPrP), expresses approximately 20-fold Syrian hamster

PrP as compared to the wild type hamster under control of PrP

promoter on PrP knock-out genetic background [33].

Mouse inoculation and tracer application
All procedures with laboratory animals were approved by the

committee for the Care and Use of Laboratory Animals of the

Government of Bavaria. Either 30 ml inoculum was injected

intracerebrally (i.c.) or 1 ml inoculum – into right sciatic nerve

(i.n.). 1% RML (1% brain homogenate of terminally scrapie-sick

CD1 mice infected with the Rocky Mountain Laboratory scrapie

strain) was used as mouse prion inoculum, or 1% Sc237 as a

hamster inoculum. 1% brain homogenate from healthy littermates

was used for mock controls. Inoculations into the sciatic nerve

were performed as previously shown [16] with minor changes.

Briefly, animals were anaesthetized with 40 mg/kg Ketanest

(Parke-Davis, c/o Pfizer, Freiburg, Germany) and 40 mg/kg

Rompun (Bayer, Leverkusen, Germany). The right sciatic nerve

was surgically exposed by dislodging M. gluteus superficialis and

M. biceps femoris, placed onto a metal plate (26561 mm) and

1 ml of 1% RML was injected into the nerve with a 33-gauge

Hamilton syringe over a period of 5 min. Great care was taken to

visually control and assure accurate inoculation into the nerve.

After inoculation, the sciatic nerve was repositioned and the lesion

was closed with Vicryl resorbable sutures (Johnson and Johnson,

Düsseldorf, Germany).

Either Fast Blue (FB, Polysciences, Warrington, PA, USA) or

modified double stranded Adeno-Associated Virus [19] expressing

DsRed-Express (AAV-REx) were used to target neurons in the

cortico- and rubrospinal tract. Double stranded Adeno-Associated

virus (AAV) was chosen as a second tracer because it demonstrates

superior and accelerated transduction in vitro and in vivo [21].

Shortly before onset of clinical scrapie (see, Tables S1, S2, S3 and

S4), mice were anesthetized with Ketanest/Rompun, a cut was

made on the level of cervical spinal cord and 1 ml of either 0.1%

FB or AAV (16109 virus particles/ml) were injected into the

cervical spinal cord with a 33-gauge Hamilton syringe over a

period of 2 minutes. After inoculation, the wound was closed with

Vicryl resorbable sutures (Johnson and Johnson, Düsseldorf,

Germany).

Sample preparation
The animals (see Tables S1, S2, S3 and S4) were sacrificed

either at terminal stage of the disease, at the time point exactly

matching the tracer injection or a week later – to co-localize REx,

PrPSc or different markers. Mice were sacrificed using CO2 and

immediately perfused transcardially with phosphate-buffered

saline (PBS) followed with 4% paraformaldehyde in sodium

phosphate buffer (pH 7.2). The samples for neuron quantification

and immunohistochemistry with subsequent imaging using

confocal microscopy were post-fixed in 4% paraformaldehyde

for 1 hour at 4uC, incubated overnight with 20% sucrose in

phosphate buffered saline (PBS) for cryo-protection at 4uC and

frozen in Tissue Tek (Sakura, Zoeterwoude, The Netherlands)

followed by performing 20 mm-thick cryo-sections. In parallel, the

samples for ultramicroscopy were prepared as reported previously

[18,34]. Briefly, they were post-fixed in 4% paraformaldehyde for

1 hour at 4uC, washed 2 hours in PBS and subsequently in 30%,

50%, 70%, 80%, 96%, and 2 times in 100% alcohol at room

temperature 10 hours each. After 1 h incubation in n-hexane
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(Sigma-Aldrich Chemie GmbH, Munich, Germany) the samples

were incubated with Clearing Solution (CS, 1 part of benzyl

alcohol and 2 parts of benzyl benzoate, both Sigma-Aldrich

Chemie GmbH, Munich, Germany), 3–4 times 20–30 minutes

each carefully avoiding air contact. The samples were incubated in

CS at room temperature for further 14–18 hours immediately

before imaging.

Confocal microscopy
The tracer-positive neurons or immunohistochemistry in red

nucleus (RN) or motor cortex (MC) were imaged on 20 mm-thick

cryo-sections. The tracer-positive neurons were visualized on a

Leica SP5 (Leica, Mannheim, Germany) laser-scanning confocal

microscope using a 206objective with numerical aperture (NA) of

0.7. Excitation wavelengths of 405 nm and 514 nm were used and

the excited light was analyzed at 500 to 550 and 530 to 580 ranges

for FB and AAV, respectively. This version of confocal microscope

allows for storing exact laser and microscope specifications, which

was done for standardizing the imaging and quantification of

tracer-positive cells. The confocal stacks were taken to visualize

approximately every mm of a given section.

Ultramicroscopy
The home-built ultramicroscopy system was previously de-

scribed [18]. Briefly, it included an Ar Ion Laser (Innova I-308,

Coherent, Santa Clara, CA, USA) and an objective inverter (LSM

Tech, Stewartstown, PA, USA) built into a commercial inverted

microscope (Axiovert 200, Zeiss, Göttingen, Germany). A 10 mm-

tall light sheet was created by focusing the beam with a cylindrical

lens (focal length 5 cm, Newport, Irvine, CA, USA) and adjusted

with a mirror (Thor Labs, Auburn, CA, USA). To focus the light

sheet, the cylindrical lens was moved using a translation stage

(Standa, Vilnius, Lithuania).

Epiplan 106with 0.2 numerical aperture (NA) and LD

Achroplan 206with 0.4 NA objectives (Zeiss, Göttingen, Ger-

many) were used in this work. They were placed 14 and 6

millimeters from a home-built 36625 mm rectangular sample

chamber, respectively. The specimen was affixed with Pattex acryl

amide glue (Henkel, Düsseldorf, Germany) to a home-built glass

rod. The sample was positioned with a stepper motor-controlled

stage (Standa, Vilnius, Lithuania) with a feedback-memory system,

XY accuracy of 0.1 mm and rotational accuracy of 0.1 degrees.

The stepper motors were controlled by the software package

LabView (National Instruments, Austin, TA, USA).

The emission light beam was let through the objective inverter

(LSM Tech, Stewartstown, PA, USA), a dichroic mirror (DCLP

555, Chroma, Rockingham, VT, USA) and a band pass filter (HQ

607/75, Chroma, Rockingham, VT, USA) to remove any

scattered excitation light from the laser. A back-illuminated

electron multiplying charge-coupled device (EMCCD) camera

with resolution of 5126512 pixels, 16 mm/pixel (Cascade II,

Photometrics, Tucson AZ, USA) was used in this work. Laser

illumination was synchronized with EMCCD camera exposure, as

previously reported [18]. The exposure time for image acquisition

was 500 ms per frame. Electronic output signal from the EMCCD

camera was filtered and temporally readjusted using a function

generator (Hameg, Mainhausen, Germany). Data acquisition and

storage were administered by the software package MetaMorph

7.1 (Molecular Devices, Downingtown, PA, USA).

Cell quantification and image analysis
The red nucleus (RN) is a center in the midbrain localized

between anteroposterior (bregma) coordinates 24.2 and 23.3

[35]. The RN region was anatomically localized, and typically 35–

40 serial sections were made through this area. The sections were

imaged starting from the caudal part of the RN. We made

confocal z-stacks on each of analyzed serial sections containing

retrogradely labeled neurons to further quantify the labeled cells.

The cell quantification was started upon the appearance of tracer-

positive cells. Typically 10–12 of 20–25 mm-thick serial sections

were analyzed starting from the initial labeled cell appearance.

These sections covered the whole parvicellular and majority of

magnocellular part of RN. Counting ceased upon the disappear-

ance of labeled neurons. FB and REx both localize in the

cytoplasm. Typically the time between tracer application and

sacrificing the mice with subsequent sample analysis was quite long

(up to 163 days), so the traced cells were not visible as a whole, as

was shown elsewhere [36], but contained several irregular

fluorescent objects together forming the cell shape with typical

empty area in the place of nucleus. The cell shapes and sizes were

defined by the NeuN immunostaining. Due to non-uniform

fluorescence of FB and REx in the cytozol, we could not always

apply automated software analysis for cell quantification, but

quantified visually. For un-biased results we compared the data

obtained with two independent researchers. The analysis of z-

stacks enabled the reliable recognition of large pyramidal neurons

with diameters between 12 and 25 mm, discrimination of the signal

from high background (signal-to-background ratio of less than 1.5)

and exclusion of artifacts. We considered the small fluorescent

objects up to 2 to 3 mm in diameter not forming the cellular shapes

as artifacts. These objects were observed in all brain areas, not

only in the RN. A slightly enhanced density of these objects was

observed in the i.n. inoculated Tga20 mice but not in any other

mouse line, and it did not affect the cell count, especially shown by

the co-localization and Region of Interest (ROI) fluorescence

analyses. Additionally we confirmed the localization for the region

of interest using Wisteria floribunda agglutinin (WFA) staining, a

typical RN stain negative for neighboring tissues. Moreover, the

tracer positive cells in RN were co-localized with NeuN and

PGP9.5 neuronal markers. In order to evaluate the size

parameters, we performed control quantification of neurons on

z-stacks from a confocal microscope (see instrumentation) with

NeuN-stained RN cryo-sections, which revealed approximately

10% difference between automated (done using two software

packages, ImageJ and Volocity, see imaging and analysis of

immunohistochemistry experiments) and manual analyses.

The large motor cortex (MC) is located between the anteropos-

terior (bregma) coordinates -1.3 and 2.4. The hindlimb part of the

MC could be mapped by the microstimulation method caudally

from the anteroposterior (bregma) coordinate 21 [37]. For the

analysis of the confocal microscopy images, we took sixty 20 mm

thick serial cryo-sections starting from bregma 21.7 to 21.5

according to the brain anatomy. We examined the sections until the

number of tracer-positive neurons was approximately constant, and

analyzed the first 13 sections, which covered an area of

approximately 260 mm and quantified the labeled cells on every

third section. Analysis of tracer-positive neurons in the MC was

possible for animals traced with AAV-REx only. Two z-stacks for

each side of all quantified MC sections were made on confocal

microscope. In order to normalize the quantification, 5 sections for

each mouse were observed. Z-projection of each stack was

performed on the ImageJ software package (Psion Image, NIH,

Bethesda, MD, USA). Z-projections for each side of the MC were

combined in Adobe Photoshop (Adobe Systems, Munich, Ger-

many) to obtain a complete picture of tracer-positive neurons on the

given side of given section. The images were subsequently combined

in one stack for each mouse. The quantification parameters

(brightness threshold 85% and size threshold of 60–300 mm2) were
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normalized according to the results of REx co localization with

NeuN-positive neurons in the MC of mock controls.

The ultramicroscopy stacks were analyzed in a 250 mm-thick

area as reported previously [18]. Briefly, the obtained stacks were

combined in one file and analyzed in ImageJ software with a

brightness threshold of 80% fluorescence and size threshold of 80–

150 mm2. This area was anatomically localized to the same region.

Furthermore, we demonstrated previously that the ultramicroscopy

technique allowed us to analyze and perform three-dimensional

reconstruction of areas up to 4.2 mm long. The tracer- positive cells

formed an area about 800–900 mm long with a relatively constant

density of labeled cells starting from the bregma coordinate 21.2 to

1.5. These properties did not differ between mock and prion

infected animals, but the cell density was dramatically reduced [18].

All these properties enabled a reliable, uniform localization and

normalization of the cell counting between single probes as well as

between ultramicroscopy and confocal imaging.

Toluidine Blue staining
Toluidine Blue stains the myelin sheath and therefore can be

used to visualize the neuronal projections in the spinal cord. The

5 mm thick paraffin spinal cord sections of wild-type either mock,

i.c. or i.n. prion inoculated mice sacrificed at the terminal stage of

the disease were taken for the experiment. After deparaffinization

and staining in 0.1% Toluidine Blue in 1% NaCl, the sections

were imaged with a light microscope (Leica SP5, Mannheim,

Germany).

Immunohistochemistry
20 mm cryo-sections were used for immunohistochemistry.

Applied antibodies used were: mouse monoclonal NeuN (33 mg/

ml, Millipore, Schwalbach, Germany); goat polyclonal Rab7

(6.7 mg/ml, Santa-Cruz, Heidelberg, Germany); mouse monoclo-

nal p150GLUED dynactin (8.3 mg/ml, BD Transduction, Heidel-

berg, Germany) and goat polyclonal Notch (6.7 mg/ml, Santa-

Cruz, Heidelberg, Germany).

PrPSc was visualized with mouse monoclonal ICSM35 antibody

(11 mg/ml, D-Gen, London, UK). In order to remove PrPC, cryo-

sections were treated 10 min with 99.9% formic acid.

Secondary antibodies used were: for NeuN – rabbit anti-mouse

IgG coupled with Alexa 546 (1 mg/ml, Invitrogen, Karlsuhe,

Germany); for Rab7 and Notch – biotin-SP-conjugated AffiniPure

rabbit anti-goat IgG (1:100, Dianova, Hamburg, Germany)

combined with Cy5-conjugated streptavidin (1:100, Dianova)

and for p150GLUED dynactin – biotin-SP-conjugated AffiniPure

rabbit anti-mouse IgG (1:100, Dianova, Hamburg, Germany)

followed by Cy5-conjugated streptavidin.

Imaging and analysis of immunohistochemistry
experiments

Quantification of NeuN-positive neurons was performed on

Volocity (Improvision, Coventry, England) and ImageJ (Psion

Image, NIH, Bethesda, MD, USA) software packages upon

application of a size threshold of 2500 mm3 (18 mm approximate

cell diameter) for the caudal RN part and 1000 mm3 (14 mm

approximate cell diameter) – for the middle and the cranial RN

part. For both RN parts the fluorescence threshold was taken as

80% of maximal fluorescence. All co localization analyses were

performed with Volocity software (Improvision, Coventry, Eng-

land) using z-stacks done on 20 mm-thick cryo-sections.

Analysis of the fluorescence in the region of interest (ROI) was

made with ImageJ software (Psion Image, NIH, Bethesda, MD,

USA) on z-stacks previously obtained on cryo-sections stained with

anti-Rab7 antibodies using confocal microscope. The regions of

interest were chosen according to the REx-positive cell debris. The

mean fluorescence values were measured in exactly the same ROI

for appropriate channels throughout the z-stacks. Subsequently,

obtained data was transferred to the Excel program (Microsoft

Deutschland GmbH Unterschleibheim, Deutschland), summa-

rized, and the percentage of the FB to NeuN, REx to NeuN, or

Rab7 to the REx fluorescence in the same ROI was quantified for

each cell. These data were transferred to either Graph Pad Prism

4.0 (GraphPad Software Inc., La Jolla, CA, USA) or OriginPro

(Origin Lab Corporation, Northampton MA, USA) software

packages for making the graphs and statistical analysis.

For the co localization analyses the concatenated confocal z-

stacks were done on ImageJ (Psion Image, NIH, Bethesda, MD,

USA) and subsequently analysed on Volocity software (Improvi-

sion, Coventry, England). The co-localization was shown in the

yellow color throughout the whole manuscript.

The quantification of Ubiquitin- and Notch-positive cells in the

MC was done with ImageJ software (Psion Image, NIH, Bethesda,

MD, USA) on confocal images done on 3 to 5 different wt mice at

145 dpi after i.n. prion infection. The size thresholds of 80–

500 mm2 and 30–300 mm2 were taken for ubiquitin and Notch

quantifications, respectively. The 80% fluorescence intensity

threshold was taken for both of them.

Statistics
Unpaired t-tests as well as survival analyses were done using

Graph Pad Prism 4.0 software (GraphPad Software Inc., La Jolla,

CA, USA). N indicates the number of mice or samples in the

experimental set. All error indications are standard deviations.

Supporting Information

Figure S1 Neuropathology in the RN of wt mice infected with

prions into the right sciatic nerve. Paraffin brain sections were

prepared from wt mice immediately before onset of clinical prion

disease (145 dpi) and stained with an antibody against glial

fibrillary acidic protein (GFAP), a marker for activated astrocytes.

Neuropathology is comparable on the sides contralateral and

ipsilateral to prion challenge site. Scale bar: 100 mm.

Found at: doi:10.1371/journal.ppat.1000558.s001 (0.12 MB PDF)

Figure S2 The number of Fast Blue (FB)-positive cells (green),

which co-localize with NeuN positive cells (red), is significantly

different between contralateral and ipsilateral sides of the red

nucleus immediately before the onset of clinical prion disease. The

wild type mice were challenged with prions in the right sciatic

nerve (i. n.) and the FB tracer was injected at 145 days post

inoculation into the spinal cord. The white boxes are areas that

were shown for co-localization analysis on the Figure 3A. Co-

localization of FB and NeuN is shown with yellow. Scale bars,

100 mm.

Found at: doi:10.1371/journal.ppat.1000558.s002 (0.31 MB PDF)

Figure S3 The Regions of Interest (ROI) were defined

according to the REx-positive cells (white lines) for the subsequent

fluorescence analysis. (A) ROI on Fast Blue and NeuN profiles

(see, Figure 3A). (B) ROI on REx and Rab7 profiles (see, Figure 6A

and B). Scale bars, 50 mm.

Found at: doi:10.1371/journal.ppat.1000558.s003 (0.29 MB PDF)

Figure S4 p150GLUED staining reveals diminished immuno-

reactivity in the red nucleus of prion-challenged wt mice

immediately before the onset of prion disease (at 145 dpi upon

i.n. prion challenge) as compared to the mock control. NC -

negative control without primary antibody. Scale bar: 100 mm.
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Found at: doi:10.1371/journal.ppat.1000558.s004 (0.04 MB PDF)

Figure S5 Dynamitin immunoreactivity in the motor cortex

does not differ between the mock- and prion-inoculated wt mice

immediately before the onset of prion disease (at 145 dpi upon i.n.

prion challenge). NC - negative control without primary antibody.

Scale bar: 100 mm.

Found at: doi:10.1371/journal.ppat.1000558.s005 (0.06 MB PDF)

Figure S6 Toluidine Blue staining of wild type mouse cervical

spinal cord in intracerebrally (i.c.) and intranervously (i.n.)

challenged animals as compared to mock control. Different

degrees of axonal swellings (upper - minimal to no swelling and

lower - more swelling) is visible in the samples from different prion-

infected and control mice. The stainings were done on paraffin

sections from mock and prion challenged mice sacrificed at the

terminal stage of the disease. Scale bar: 100 mm.

Found at: doi:10.1371/journal.ppat.1000558.s006 (0.68 MB PDF)

Table S1 Fast Blue-positive (FB+) neurons in red nucleus (RN)

upon intracerebral (i.c.) prion challenge with 1% RML mouse

prions.

Found at: doi:10.1371/journal.ppat.1000558.s007 (0.01 MB PDF)

Table S2 FB-positive neurons (FB+) in the red nucleus (RN) of

TG(SHaPrP) transgenic mice upon i.c. and i.n. prion challenge

with 1% Sc237 hamster prions.

Found at: doi:10.1371/journal.ppat.1000558.s008 (0.01 MB PDF)

Table S3 FB-positive neurons (FB+) in red nucleus (RN) after

prion challenge into the right sciatic nerve (i.n.) with 1% RML

mouse prions.

Found at: doi:10.1371/journal.ppat.1000558.s009 (0.01 MB PDF)

Table S4 DsRed-Express positive (REx+) neurons in the red

nucleus (RN) upon i.n. challenge with 1% RML mouse prions.

Found at: doi:10.1371/journal.ppat.1000558.s010 (0.01 MB PDF)

Table S5 Tracer-positive and NeuN-positive neurons in red-

nucleus (RN) of wt mice after prion challenge into the right

sciaticnerve (i.n.).

Found at: doi:10.1371/journal.ppat.1000558.s011 (0.01 MB PDF)
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