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ABSTRACT

Recent progress in predicting RNA structure is
moving towards filling the ‘gap’ in 2D RNA structure
prediction where, for example, predicted internal
loops often form non-canonical base pairs. This is
increasingly recognized with the steady increase of
known RNA 3D modules. There is a general interest
in matching structural modules known from one
molecule to other molecules for which the 3D struc-
ture is not known yet. We have created a pipeline,
metaRNAmodules, which completely automates ex-
tracting putative modules from the FR3D database
and mapping of such modules to Rfam alignments
to obtain comparative evidence. Subsequently, the
modules, initially represented by a graph, are turned
into models for the RMDetect program, which
allows to test their discriminative power using real
and randomized Rfam alignments. An initial extrac-
tion of 22 495 3D modules in all PDB files results in
977 internal loop and 17 hairpin modules with clear
discriminatory power. Many of these modules
describe only minor variants of each other. Indeed,
mapping of the modules onto Rfam families results
in 35 unique locations in 11 different families. The
metaRNAmodules pipeline source for the internal
loop modules is available at http://rth.dk/re
sources/mrm.

INTRODUCTION

About a decade ago, the International Human Genome
Sequencing Consortium established that only �1.2% of
the genome encodes for proteins (1). Later the
ENCODE projects (2,3) revealed that almost the entire
genome is transcribed as well as thousands of non-
coding RNAs (ncRNAs). Thus, non-coding DNA,

previous labeled as ‘junk’, often contains transcripts for
functional RNA, which play a major role in various
cellular processes from gene regulation to catalytic func-
tions. The exact number of ncRNA encoded in the
genome is still unknown as well as the functionality of
many of them, but various kinds of ncRNAs have been
identified so far including the well-known transfer RNA
(4), ribosomal RNA (5) and long ncRNAs (6).
Many ncRNAs are structured, and their particular spatial

structure enables them to accomplish a broad range of
tasks. Secondary structural motifs, like hairpins, augmented
by tertiary interactions fold into complex 3D architectures.
Recurring building blocks within these structures are
referred to as ‘modules’, which can be distinguished by the
number and types of the involved base pairs. More than 20
different types of modules have been identified until now.
For an overview, see (7). Although helices of the secondary
structure are composed of cis-Watson–Crick type base
pairs between A-U, U-A, G-C, C-G, G-U or U-G,
tertiary interactions additionally include non-Watson–
Crick base pairs in both cis and trans orientation. This
has been revealed by crystal structures for the past 20 years
(8,9). Previous studies (10,11) systematically analyzed those
base pairs and introduced a nomenclature to circumvent the
ambiguous and confusing notations that have been invented
over the years. The 3D modules show up as recurring
building blocks to gain similar functions in different mol-
ecules, and they are conserved throughout all kingdoms of
life showing the universality of the concept. They serve as
protein and ligand binding sites [for an overview see (12)],
support catalysis reactions (13) or organize and stabilize the
architectural composition (14–16).
The functionality of an RNA molecule depends more

on its structure rather than sequence. As a consequence,
structure is often highly conserved while sequences evolve
quickly. Compensatory base pair changes (e.g. G-C
changes to A-U in another sequence) and neutral muta-
tions allow to maintain the structure and conserve the
function while sequences evolve.
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A fundamental understanding of folding and structure
sheds light on how RNA molecules can fulfill substantial
functions. Especially 3D modules can deliver valuable in-
formation about the spatial folding behaviour. The assign-
ment of such 3D information to 2D structures can
improve structure prediction, limits the number of false
positives, assigns functions to unknown ones and helps
to find new modules as well as classifying transcripts
as ncRNAs. Moreover, the discovery of non-canonical
base pairs supports the explanation of more-and-more
upcoming structure probing experiments. The main
experimental methods for 3D determination on atomic
resolution level, Nuclear Magnetic Resonance and X-ray
diffraction, have been applied successfully for >20 years,
but they are difficult for structurally flexible or highly
charged molecules, not to mention general difficulties in
the crystallization procedure. For these reasons, methods
for computer-aided structure elucidation are much sought
after. In recent years, many approaches have been
developed addressing structure prediction.
There are knowledge-based approaches predicting the

global RNA structure, e.g. the MC-Fold/MC-Sym
pipeline (17). This is a software package that models the
3D structure on a full-atomic level using a library of frag-
ments (cyclic motifs). These are included into the second-
ary structure, which is derived in a first step by free energy
minimization. Such tools are restricted to smaller mol-
ecules (�50 nt) and single sequences. To circumvent this
drawback, Jonikas et al. (18) developed the nucleic acid
simulation tool, which is based on a coarse-grained model.
That means, each nucleotide is represented by its C30

atom. They apply an energy function that incorporates
statistics, like distances and angles of atoms, derived
from known ribosomal structures, to sample the conform-
ational space. It requires secondary structure and tertiary
contact information. Other tools are graphic based and
require user-guided manipulation of the architecture.
MANIP (19) allows the user to assemble secondary struc-
tural motifs into a 3D conformation. The architectures are
automatically constrained by biological and stereochem-
ical rules of RNA structures. A final refinement step
verifies all atom contacts and refines the base pairs
including non-canonical base pairs. Such tools are only
applicable for a limited number of models. Another
promising approach is to use evolutionary information
to predict the molecular structure. For example,
ModeRNA from Rother et al. (20) is a comparative 3D
prediction tool. It requires the 3D structure of a homolo-
gous molecule and a pairwise alignment consisting of the
template and the target sequence. The 3D coordinates of
the known structure serve as template for invariant
residues of the target model. By means of the alignment
they introduce substitutions for varying residues, they
process insertions and deletions and they add structural
fragments in short regions without structural information.
For an overview of several prediction tools, see (21).
As the mentioned tools have their drawbacks, for

example, limitation to small molecules or necessity of
expert knowledge some tools focus on the prediction of
recurring RNA building blocks that constitute the 3D
structure. For example, Djelloul et al. (22) identify and

classify so-far unknown RNA modules. They represent
modules as topological graphs with vertices for each nu-
cleotide and edges for base interactions. In a three-step
approach, they extract bulges, internal, junction and
terminal loops and the corresponding non-canonical inter-
actions of an input structure. Then they compute a
pairwise similarity measure for all modules based on the
largest common non-canonical subgraph. Subsequently,
they cluster the structural elements according to their simi-
larity. Djelloul et al. tested their approach on the riboso-
mal RNA of three organisms and found 10 known and
four putative new modules. The advantage of this method
is that the size of the input structure is not restricted. It is
also possible to give a set of input structures, which in-
creases the possibility of significant clusters. A disadvan-
tage is that the method ignores sequence information,
which means exclusion of isostericity information. It also
ignores variations of base pair interactions because of the
isomorphism restrictions of the algorithm.

RNAMotifScan, an approach developed by Zhong
et al. (23), circumvents these drawbacks. It takes base
pair isostericity, crossing base pairs, and multi-pairing
into account. Zhong et al. use annotation programs to
identify base-pairing patterns within 3D structures. With
a dynamic programming procedure, they compute the
similarity between a query module and structural
segments to find similar occurrences. In a newer version
(24), they introduce a statistical framework to measure the
significance of the similarity. Furthermore, they cluster the
identified instances based on a P-value. They apply their
elaborated tool on data sets for hairpins as well as internal
loops resulting in the identification of known modules and
new occurrences.

Cruz and Westhof developed RMDetect (25), a
sequence-based approach. They use graph-based statis-
tical models for kink-turns, G-bulges, C-loops and
tandem GA loops to scan single sequences as well as align-
ments for further occurrences of these known modules.
Each model has been generated by merging several in-
stances of a known module into an interaction network.
The statistics are obtained from a compilation of many
instance sequences from different alignments.

The identification of such RNA 3D modules suggests to
include the gained knowledge into the computationally
less costly secondary structure prediction. For example,
(26) enhances the 3D structure prediction of large RNAs
by inserting 3D modules into the secondary structure.
Their program, called RNA-MoIP, uses an integer
programming framework to remove canonical base pairs
from secondary structures to make room for 3D modules
(e.g. k-way junctions), which serve as a template for
creating a 3D structure. These approaches are promising
and important on the way to RNA global structure
prediction.

We show that models for known and also for new
modules can be generated without extensive expert know-
ledge. Our approach combines the automated generation
of stochastic models with exploitation of evolutionary
data. Our pipeline, called metaRNAmodules, maps
short modules on alignments and subsequently creates a
model using RMBuild from the RMDetect package. We
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test our models on RNA alignments as well as randomized
alignments to show that those models have statistical
discriminative power, i.e. the score distributions are well-
separated. These models can be used to search RNA
sequences or alignments for further occurrences of the
modules.

MATERIALS AND METHODS

metaRNAmodules

metaRNAmodules is a pipeline that builds models of
known as well as unknown modules in an automated
way. It maps a putative module, extracted from FR3D,
on a particular Rfam 10.1 sequence, which belongs
almost always to the full alignment. The sequence is
aligned to the corresponding seed alignment. A Bayesian
Network (BN) model of the module features is generated
where we interpret all bases of the module as nodes and all
base pairs as connections between nodes, i.e. the respective
pairing partner. The model is trained and evaluated using
a 5-fold cross-validation. Furthermore, we test the model
on a randomized alignment to get a background distribu-
tion (see ‘Materials and Methods’ section for the individ-
ual steps). We compare the score distributions of the
validation data and the randomized data set to see
whether we can separate them to distinguish between
true and false positives. For a visualization of the
pipeline see Figure 1.

Data extraction and preprocessing

Ultimately, we want to discover, both, known modules as
well as currently not classified but statistically likely new
(candidate) modules in sequences. This is done via the
ability of a BN model built from a candidate module to
successfully discriminate between random RNA sequences
and those containing the module. To this end, we make
use of a number of databases and tools that we describe in
more detail later in the text.

The FR3D database (27) is derived from the PDB
database (28) of crystal and Nuclear Magnetic
Resonance structures of (bio-)molecules. It analyses the
structure files to classify base pair and base stacking inter-
actions according to the Leontis–Westhof annotation. The
results are used to find geometrically similar instances of
these modules.

From this database structurally complex (as defined
later in the text), putative modules are extracted.

Structures are clustered by similarity, without reference
to their actual 3D coordinates. Although 3D coordinates
would improve the initial structural clustering, we are ul-
timately interested in a 2D graph-like representation. For
this FR3D is ideal, as every base pair is annotated accord-
ing to the Leontis–Westhof notation (10), including
possible base pairs that fall outside that classification.
Special cases like interactions that fall between two
groups, or are otherwise not completely determined are
currently ignored. See Figure 1A for the extraction part
of the pipeline.
For the automated module detection, our definition

of structurally non-trivial RNA modules follows the
established notion in (25). These modules are in some
sense local as they generally are of 20 or fewer nucleotides
in size. They are structurally non-trivial as they
are composed of ‘sets of ordered non-Watson-
Crick base pairs embedded between Watson-Crick pairs’
(25). Here, a Watson–Crick base pair is a
A�U, U�A, G� C, C�G, G�U, U�G pair in
cis-Watson–Crick conformation.
Given the two Watson–Crick pairs ði,jÞ and ðk,lÞ,

(w.l.o.g. i < k < l < j), represented by their indices, a
module is admissible if its total size is constrained
similar to how modern RNA folding programs (29)
handle interior loops. The total size of the left loop
k – i, as well as the right loop j – l is restricted to no
more than 30 nt for a maximal module size of 60 nt. In
addition, for each pair ðm,nÞ with ði � m � k < l � n � jÞ,
the pair ðm,nÞ either is of a non-Watson–Crick type or part
of a local base pair crossing (a small pseudoknot structure
entirely contained within the outer Watson–Crick pairs).
This definition disallows any RNA module candidate

that can be subdivided by a non-crossing Watson–Crick
base pair. Succinctly, all base pairs between the two outer-
most ones are either non-canonical, part of a base pair
triplet (forming a zig-zag pattern) or crossing. Two
distinct RNA modules may share an outermost canonical
base pair in an RNA structure but remain separate
entities.
General pseudoknotted structures, like kissing hairpins,

triple helices or more complicated structures, are excluded.
These are not local structures according to our definition.
In addition, we exclude multi-branched structures. There
are fewer instances of multi-branched loops in the avail-
able data (PDB, resp. FR3D databases). In addition, they
are computationally more demanding in that they have
three or more exiting helices. Finally, structural multiple

Figure 1. The Figure shows on overview of the metaRNAmodules pipeline. metaRNAmodules extracts putative modules from FR3D, a database
derived from PDB (A). During the mapping step on modified Rfam alignments (B), a large fragment of the modules is filtered out. The training of
the new models (C) filters out further modules. The remaining modules are filtered and ranked according to �sco (D).
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alignments in multi-branched regions have to be
investigated for accuracy before automated detection of
RNA module candidates should be performed.
As hairpin structures may themselves be structurally

interesting modules, we admit such structures, not con-
taining the inner ðk,lÞ base pair, but otherwise defined
analogously, too.
Two candidates are structurally equal if their base pair

pattern is identical and base pairs mapped onto each other
are isosteric to each other. This allows us to group many
candidates with different sequence patterns that will likely
form the same tertiary structure based on isostericity (10).
The two most well-known base pair isostericity classes are
formed by canonical cis-Watson–Crick base pairs. The
four pairs A-U, U-A, G-C, C-G are isosteric (in class I1),
i.e. can be replaced with each other without disturbing the
tertiary structure. The complete classification of base pairs
according to their constituent nucleotides and the
participating nucleotide edges forming the actual bond
can be found in (10). From this classification, we derive
the previously mentioned equality condition for grouping
of candidate modules.
Modeling of such modules and their prediction is neces-

sarily restricted to those structural features that can be
described in terms of Watson–Crick and non-Watson–
Crick base pairs and their spatial relationship when trans-
formed to small graphs. This does exclude other structures
that have been of recent interest, like G-quadruplexes
(30,31). Such structural features of RNA require the intro-
duction of a novel ‘feature’ in the language of RNA struc-
tures (32,33), while RNA 3D modules can, at least in
principle, be completely described with a secondary struc-
ture graph (sometimes extended to allow crossing base
pairs).
In the following, we write a putative module sequence as

ACAAU AU and the corresponding dot bracket notation
of the base pairs as (..((&)> where is a separator of
the two module regions. Hairpin modules lack the separ-
ator. ‘ðÞ’ denote single base pairs of canonical or non-ca-
nonical pairing type, whereas ‘<>’ denote bases which
pair to two nucleotides of type ‘<>’ or ‘ðÞ’, whereas ‘.’
marks unpaired bases [see (34)].

Rfam mapping and extraction

Now that we have extracted putative modules, we prepare
the alignments for the mapping and training step before
we generate new models (see Figure 1B).
We map the putative modules onto alignments to

exploit base variance information for each column
during the training procedure. As the results always
depend on the reliability of the alignments, we use Rfam
10.1 seed alignments (35). Even though these alignments
are hand-curated and contain representative members of
the ncRNA family, they exhibit redundant sequences that
influence the computation of the conditional probabilities
of the BN. The count of the bases of a column is biased
towards the redundant sequences. To avoid this issue, we
clean the seed alignments of Rfam and remove sequences
with >95% pairwise sequence identity. Alignments
modified in such a way are referred to as Rfamclean.

Additionally, we demand that each Rfamclean alignment
contains >30 sequences to get a reasonable amount of
data to start with.

The mapping procedure comprises two steps. First, we
map a putative module on an Rfam sequence using Rfam
structure tables provided by Rfam. Those tables contain,
for sequences with a corresponding PDB database entry, a
mapping between the Rfam, EMBL and PDB coordinate
systems. We filter the tables for Rfam sequences by means
of the PDB identifier (PDBid) that are assigned to each
putative module. We require that the Rfam sequence and
the putative module are located on the same strand, the
positions in the EMBL coordinate system overlap and
both refer to the same molecule in cases where a PDB
entry consists of several chains. To determine the
accurate position of the module in the Rfam sequence,
we globally align the FR3D sequence to the ungapped
Rfam sequence using Clustal W (36). With that we
want to make sure that the module sequence is identical
to the corresponding Rfam region. In some cases, the
sequence versions vary, i.e. one or more nucleotides
differ because of insertions or deletions. We only want
to use modules where we are sure that we identify the
module in the reference sequence correctly. In >90% of
the cases, the Rfam sequence that is linked to the 3D
structure via the Rfam structure tables belongs to the
full alignment and is not part of the seed. As we have
more trust in the seed alignment, we align in a second
step that particular sequence to Rfamclean using
cmalign v1.0.2 (37).

During this aligning process, cmalign inserts gaps in
the alignment. This is not desirable in cases where gaps are
inserted within the module region because it artificially
increases the module length. It denotes additional nodes
for gaps in the interaction network. That is why we
remove alignment columns that are located in the
module region, but not belonging to the module. Those
columns deliver no additional information and thus will
not decrease the information content of the BN. We
also dismiss sequences containing the characters
‘S,M,Y,W,N,V,K,R,I’. They cannot be handled by
RMDetect (see ‘Model construction and testing’
section). Furthermore, we delete sequences that have a
‘.’ or ‘-’ at positions that are assigned as paired in the
module. Such modified alignments we refer to as Rfamcm.

Model construction and testing

After pre-processing the data, we are prepared to build the
new models (see Figure 1C). For this step, we use
RMDetect (25), a tool that searches sequences for RNA
3D modules based on sequence information only. Version
0.0.3 includes four hand-curated models for Kink-turns,
G-bulges, C-loops and tandem GA loops as well as a
model developed in an automated way for the AA-rich
module. The developers interpret a 3D module as a BN
(38). A BN is a probabilistic graphical model that repre-
sents a set of random variables and their conditional
dependencies via a directed acyclic graph. Each base of
a module corresponds to a node and each base pair or
statistical correlation corresponds to an edge. Using
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such a system, Cruz et al. are able to model all base
dependencies of a module including base-, edge- and
stacking-interactions. RMDetect searches single RNA
sequences as well as RNA alignments for independent
occurrences of modules. A potential candidate is
evaluated by means of a score based on the probability
of the sequence, given the individual model and the prob-
ability of a sequence, given a null model where the four
bases and the gap are uniformly distributed.

The RMDetect package further contains a tool, called
RMBuild, which is able to build BN models for modules.
Given a PDB file, the coordinates of a particular module
and an alignment, RMBuild analyses the PDB sequence
and generates a BN model for the region of interest.
RMBuild uses MC-Annotate (17), which identifies
amongst other things all base pairs/triples and interacting
structural elements. These features are modeled in the BN.
As we already have the concrete FR3D module features
that we want to model, we do not apply MC-Annotate.
Instead, we automatically generate an interaction network
file with all FR3D features, i.e. all nodes and edges, and
feed it together with Rfamcm into RMBuild, which
computes the conditional probabilities for each node.

The annotated base pairs extracted from the FR3D
database yield the edges—which then model pairing infor-
mation—in the BN. At this stage, we model each putative
module independently and do not distinguish between
putative modules that exhibit the same structure or map
to the same position on Rfamcm. Our goal is to automate
the mapping and model generation so we can give each
putative module instance individually as input resulting in
a BN model. A new model based on Rfamcm and FR3D
we call modFR3D.

For our purpose, we run RMDetect with a minimum
score of 0.0 and a minimum base pair probability of
0.0001 to fetch all possible candidates. We compare the
RMDetect score distributions of a validation data set and
a randomized data set to find modules with discriminative
power by means of the score distribution discrimination
measurement (see ‘Score distribution discrimination meas-
urement’ section). We use the score distribution of the
validation data to establish score cutoffs for each
module individually. To generate the hairpin modules,
we modified RMDetect in a way that it is able to
handle only one region.

To estimate the performance of the models, we use a 5-
fold cross-validation. The 5-fold cross-validation is
splitting Rfamcm into five subsets, selecting each in turn
as the validation set, called Rfamcm val, whereas the re-
maining four form the training set, called Rfamcm train.

To estimate the statistical significance of our models, we
need a good and reliable null model. For that reason, we
shuffle Rfamcm 100 times with Multiperm v0.9.3 (39).
Multiperm is an algorithm that preserves the gap and
local conservation structure and also the approximate di-
nucleotide frequencies. A shuffled alignment we call
Rfamcm shuff. Applying RMDetect with a particular
model on Rfamcm shuff yields a background score distribu-
tion, which we compare with the score distribution of the
model applied on Rfamcm val.

Evaluation

To decide whether the new models have discriminative
power, we define a score distribution discrimination meas-
urement �sco as follows: We compute the restricted mean
�x ¼ Eðfx 2 Sjx � QpðSÞgÞ of all RMDetect scores S,
which are greater or equal than the P-quantile value Qp,
where P is a real number between 0 and 1 (usually taken in
the range between 0.8 and 0.95), for the validation data
score distribution as well as the mean �y of all scores, which
are greater or equal than the P-quantile value Qp for the
null model distribution. The difference of the means
�sco ¼ �x� �y gives a strong hint on how well the two dis-
tributions are separated. A positive score indicates that the
model scores candidates belonging to Rfamcm val align-
ments higher than candidates drawn from random back-
ground sequences. A score close to zero points towards
RNA modules for which our way of generating a model
does not result in a strongly discriminating model (see
Figure 1D).

RESULTS

Mapping modules onto Rfamclean

The analysis of the FR3D database results in 15 290
putative interior loop modules with 569 unique PDB iden-
tifiers and 1696 different secondary structures. After the
mapping, including all filtering steps described in the
‘Materials and Method’ section, 3022 putative modules
with 384 unique secondary structures and 237 unique
PDB identifiers are left. They map on 18 Rfam families,
mainly on ribosomal RNA and riboswitches (91.3 and
1.99%, respectively), and can be clustered into 84
modules (see Supplementary Table S2 for an overview).
In all, 119 putative modules have no sequences left in
Rfamcm val and only three sequences in Rfamcm train (see
Supplementary Figures S1 and S2). Owing to the lack of
data, we exclude those from further evaluation. The re-
maining putative modules contain 5–637 sequences in
Rfamcm train and 1–160 sequences in Rfamcm val. The
modules have a length, i.e. the sum of nucleotides, from
5 to 46 nt (see Supplementary Figures S3 and S4).
In addition to the interior loop modules, we extract

7205 putative hairpin modules with 681 unique PDBids
and 425 secondary structures. As an example, we build
models for hairpin candidates with �3 bp. In all, 73 of
120 new models deliver a sufficient amount of data after
scanning Rfamcm val and Rfamcm shuff. However, 12 models
find no candidates in Rfamcm shuff These 12 have the
highest score distribution discrimination measurement
�sco for different Qp values (see Supplementary Figure
S17 and Supplementary Table S3). In total, 17 models
have a �sco � 4:6 (see next subsection). Clustering the
modules according to position and family, they map on
results in seven cluster representatives. Supplementary
Figure S20 shows the absolute score counts and the
kernel density estimate for the cluster representatives.
Table 2 shows an overview of the families and the
cluster representatives. The number of bases of the
modules varies from 8 to 18 nt and the complexity
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ranges from 0.17 to 0.4 as Supplementary Figures S18 an
S19 show. As complexity, we define the number of all base
pairs divided by the number of nucleotides of a module. A
base pair triplet is counted as 2 bp. For example, the
module ACAAU AU with the structure (..((&)>
has a complexity of 0.43.
As the number of hairpin modules is so much smaller

than the number of interior loop modules, we will restrict
our discussion to interior loops in the following.

Automated model generation

We start to generate models in an automated way for 2903
putative modules. In all, 223 models are problematic: they
cause problems while running on Rfamcm val and
Rfamcm shuffbecause the putative modules are rather
short and contain not enough information content so
that they deliver thousands of arbitrary candidates.
Thirteen models deliver no data at all, e.g. six putative
modules mapping on Rfam family RF00050. These
modules are rather long with >40 nt. We exclude them
from further analysis. Of the remaining 2667 new
models, 685 deliver an insufficient amount of candidates
(<1) applying modFR3D on Rfamcm val and Rfamcm shuff. As
we cannot generate score distributions for them, we
exclude these models. The remaining 1982 new models
produce sufficient data that we can analyze.

Score distribution discrimination measurement �sco

The score distribution discrimination measurement �sco is
used to filter for models with discriminative power against
random sequences. See Figure 2 as an example showing
the absolute count and the density plots including �x and �y
for a kink-turn model. We choose different values for P
from 0.8 to 0.95 to see how the models perform at varying
significance levels (see Table 1 and Supplementary Figure
S10). After a visual inspection of the distribution plots, it
shows that a cutoff of 4.6 for �sco is appropriate to dis-
criminate between overlapping and separated distribu-
tions for all quantile values. For that reason, the
following numbers refer to P=0.8. In all, 977 models
have �sco � 4.6. They have 172 different structures, map
on 10 Rfam families and have 200 unique PDBids. In all,
1005 models (50.71%) have less well-distinguishable score
distributions (<4.6). There is no tendency towards an
increasing �sco with increasing the number of nucleotides
of a module. We check whether there is a correlation
between �sco and the complexity of a module. See
Supplementary Figure S11 for a distribution of the com-
plexity values and Supplementary Figure S12 for a distri-
bution of the number of base pairs of the putative
modules. Supplementary Figures S5 and S6 show that
there is a correlation (�0.75) between �sco and the
number of nucleotides and a weak negative correlation
(approximately –0.48) between the complexity and �sco.
Many of these 977 modules map on the same families
and have overlapping positions (see Supplementary
Table S1), even if they have varying structures. We
cluster the modules generated by our pipeline depending
on family and positions in the gapped alignment and get
28 3D modules on 10 Rfam families. Table 2 shows an

overview of the families, the number of modules and for
each cluster a representative that is the candidate with
maximal �sco. The table also shows cluster representatives
for the hairpin modules (bottom entries). Supplementary
Figure S9 shows a histogram of the absolute score counts
and the density estimate for each representative. More
than half of the 28 modules (57.1%) map on the bacterial
SSU (RF00177) and 10.7% map on the 5S rRNA
(RF00001). Of the 28 representatives, 16 (57.1%) fit very
well in the consensus secondary structure of Rfam. They
are located within single-stranded regions, and their cis-
Watson–Crick type base pairs overlap with an opening or
closing base pair of stem regions in the consensus second-
ary structure (see Figure 3). Seven fit fairly well in the
consensus structure overlapping no more than two
paired bases of the consensus structure. Three fit less
well because the paired bases of the modules overlap
between three and five base pairs of the stem regions of
the consensus structure. Two representatives do not blend
in. More than half of their paired bases match an already
paired base of the consensus structure. Such observations
help to improve the secondary structure prediction.

General observations

We would expect that two modules derived from fairly
similar organisms with different PDBids, but the same
secondary structure, would map on the same Rfam
family at the same position. What we observe is that
they usually do map onto the same positions in the align-
ment. Furthermore, we expect those modules to perform
roughly equal in terms of �sco and numbers of candidates.
We see that there are only slight differences in the perform-
ances. For example, the molecules 1HR0, 1I96 and 1XMO
contain a putative module (residue numbers 805–808/830–
847, 808–811/833–850 and 805–808/830–847, respectively)
with the same structure (<((&))). . .. . .. . .. . .).), which
map on Rfam family RF00177 at position 908–911/942–
959. These positions (as well as the following) refer to the
gapped seed alignment with additionally aligned reference
sequence where gaps only columns in the original align-
ment part are ignored. Their �sco varies from 29.8 to 18.4.
It shows that the number of candidate scores used for the
computation of �y differ owing to different sequences in the
sets. Furthermore, the scores vary due to slightly different
conditional probabilities computed from Rfamcm train. For
example, the 1HRO model finds a candidate with a score
of 30.48, whereas the same candidate has a score of 29.61
given the 1XMO model.

Another observation is that some new models define the
same module. For example, there are two BNs, which
model the U4 kink-turn mapping on the U4 spliceosomal
RNA (RF00015) at position 30–36/46–49. Both putative
modules are extracted from PDBid 2OZB at the
same position, but from different chains. Their secondary
structures look as follows (. . .(((&)))) and
((..(((&))>). Both of them are able to predict the
real U4 kink-turn, but �sco of the module without the
base pair triplet is slightly higher with 9.98 compared
with 9.37. This shows that an additional base pair, even
if not a triplet, leads to better results. We use strict filter
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mechanisms, e.g. both module regions have to be located
on the same chain. This excludes many potential modules.
Molecule 1SA9 is a good example: we extract a putative
module where one region is located at chain C and the
other one at chain D, position 3 and 6, respectively. The
PDB entry is described as ‘Structures of two RNA
octamers containing tandem G.A base pairs’ (40). With
our filter mechanisms, we exclude such inter-molecular
modules.

Prediction accuracy assessment

metaRNAmodules aims to generate models automatic-
ally for known as well as new modules. The FR3D
database from where we extract the putative modules
contains no name annotations; that is why we could not
easily distinguish between new and known modules.
Furthermore, there is no comprehensive database that
lists all PDB structures and their recurring building

blocks and positions. There is also no corresponding
FR3D, PDB and Rfam coordinate system so that no
easy comparison is possible. Currently, a lot of manual
work is necessary to compare our automatically generated
modules with those reported in the literature, especially
comparing the positions. Here, we show some results for
known modules that have been mentioned in the literature
before. Position annotations are for the gapped seed
alignment. metaRNAmodules is able to model and
predict the SAM I Riboswitch kink-turn with PDBid
2GIS (41). The module maps on Rfam family RF00162
at position 18–22/35–42. Our pipeline also models and
predicts the U4 small nuclear RNA kink-turn with
PDBid 2OZB (42), which maps on the U4 spliceosomal
RNA family (RF00015) at position 30–36/46–49. The
Lysine G-bulge (also called Loop E motif) with PDBid
3DIG (43) is mentioned in the literature at position 26–
28/65–66,28 in the PDB sequence. metaRNAmodules
generates a model for this position, based on the Lysine
riboswitch alignment RF00168 at position 28–39/85–92.
This model includes not only the 3 G-bulge base pairs
but also additionally three non-/canonical base pairs
around the G-bulge. Our pipeline is able to predict the
correct position.
Some of the prominent known modules could not be

modeled and/or predicted by metaRNAmodules. For
example, the pipeline is able to model all base pairs of
C-loop C15 with PDBid 1J5E (44). It maps on the 16S
rRNA (RF00177) at position 430–434/448–449. However,
the module could not be found in Rfamcm val. The score
distributions have no discriminative power.
The 16S rRNA of Thermus thermophilus contains in an

internal loop of helix 17 a sarcin-ricin motif at position
446–450/484–488 based on the annotation in (45) (PDBid
1J5E). Another module is located directly in its neighbour-
hood, only separated by a Watson–Crick/Watson–Crick
base pair, at position 451–455/477–482.
metaRNAmodules models the sarcin-ricin module
correct, except for the G485-U486 trans-Sugar/
Hoogsteen base pair, and is able to find the module in
Rfamcm val, but with a low �sco of 4.3. The other module
is also modeled correct, except for the C454-A478 trans-
Hoogsteen/Watson–Crick base pair and
metaRNAmodules is able to find the module in
Rfamcm val. The discriminative power is also low (�sco =
4.1). We model these putative modules separately accord-
ing to our definition described in the ‘Materials and
Method’ section that does not allow Watson–Crick/
Watson–Crick base pairs within the module region. To
see whether we can improve the prediction, we merge
the two putative modules into one including the
Watson–Crick/Watson–Crick base pair, now spanning
position 446–455/477–488. We find the module in �64%
of the validation sequences and �sco =14.4.

Comparison with original RMDetect models

As we use the RMDetect software package for our
pipeline, we want to compare our results with the Cruz
models and results. In general, a direct comparison of the
models is difficult for several reasons. One difficulty is that
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Figure 2. The Figure shows the absolute score distributions (‘A’) and
density plots (‘B’) for the FR3D model of the U4 spliceosomal RNA
kink-turn with structure (. . .(((&)))) on Rfamcm shuff and Rfamcm val.
The coloured right tails show 1- Q0:8, i.e. all values � the 80% quantile
values (8.7 and 20.5, respectively), of each distribution. �x and �y show
the mean of each coloured region and �sco =9.7.

Table 1. Minimal and maximal �sco for different quantile values

P Min. �sco max. �sco �sco � 4:6 %

Internal loop modules
0.80 –7.23 33.66 977 49.3
0.85 –9.57 33.76 958 48.3
0.90 –11.99 35.32 832 42.0
0.95 –11.99 35.45 572 28.9

Minimal and maximal �sco for different quantile values P as well as the
number of models with �sco � 4:6 and the percentage of 1982 models.

Nucleic Acids Research, 2013, Vol. 41, No. 22 10005

for example 
``
''
,
which 
,
-
-
-
-
-
-
-
-
,
3 
-
-
.
-
-
-
-
-
-
-
which 
-
-
-
-
-
-
Since 


our modules have no labels, which identifies them as, say, a
kink-turn or a C-loop. Each putative module has to be
identified as a well-known module by means of the PDBid
and position. Furthermore, the models are generated and
trained by varying data. The Cruz et al. C-loop model is a
consensus model of seven C-loop instances and is trained
on a single alignment of 16S rRNA and 23S rRNA se-
quences. The G-bulged model is a consensus of 11
G-bulged modules and is compiled on a consensus align-
ment of 16S rRNA, 23S rRNA and lysine riboswitch
sequences. The kink-turn is a consensus model of 14 kink-
turn instances and is compiled on 16S rRNA, 23S rRNA,
SAM riboswitch and U4 sequences. Their BN topology
follows established networks given in the literature. Cruz
et al. added some additional edges based on expert know-
ledge. The tandem GA/AG loop model is based on one
instance. The network parameters are computed in a par-
ticular way [for details, see (25)].

We model each putative module separately only based
on nodes and edges given by the FR3D analysis. We do
not include any further knowledge. We furthermore train
the models only on a single alignment. This results in
deviating model parameters and influences the candidate
search. Also the validation sets vary. Disregarding these
differences, we report in the following on some examples
that have been used for the Cruz work in comparison
with our work: Cruz et al. modeled and trained the AA-
rich module on the PDB sequence 3OWI, the crystal
structure of a glycine riboswitch. metaRNAmodules
can neither extract a putative module from this
molecule nor create a model because our version of the
FR3D database does not contain an entry for 3OWI.
PDB contains several entries for glycine riboswitches,
e.g. 3OX* or 3OW* where ‘*’ is an arbitrary letter,
but searching FR3D for these molecules delivers no
results.

Table 2. Rfam families and cluster representatives

Family No. of modules PDB res. Rep. Alignment+ pos. Fit

5S rRNA 3 9:23-30/54-60 2GYC 36-68/112-136 ***
9:32-37/43-48 3CCQ 73-87/99-105 **
A:71-79/97-105 2QBE 154-168/193-211 **

U4 snRNA 1 F:28-34/42-45 2OZB 30-36/46-49 ****
SR77777P RNA 2 A:181-187/212-216 2J37 254-261/286-290 **

B:190-194/205-209 1L9A 264-268/279-283 ****
TPP riboswitch 1 X:59-63/76-80 2GDI 272-277/290-295 **
SAM riboswitch 1 A:17-21/31-38 2GIS 18-22/35-42 ***
Purine riboswitch 1 X:22-25/45-52 1Y26 28-31/52-60 ****
Bact. SRP RNA 1 A:14-18/29-33 1CQ5 49-53/65-69 ****
Bact. SSU rRNA 16 A:1124-1132/1142-1149 1XNQ 1241-1249/1270-1278 **

A:147-153/168-175 1N36 160-166/181-188 **
A:1246-1253/1284-1291 2UXD 1377-1384/1415-1423 ***
A:1303-1307/1330-1334 1HNW 1435-1439/1462-1466 ***
A:1384-1387/1475-1479 2HHH 1534-1537/1646-1650 **
A:1429-1436/1465-1471 2VHO 1562-1569/1614-1620 **
A:242-247/277-284 2QPO 298-303/334-343 ***
A:409-417/426-433 1VOV 468-476/487-494 ***
A:446-455/477-488 1N36 507-516/535-564 ****
A:502-512/539-543 2B64 579-589/616-620 *
A:515-522/527-536 2QBF 592-599/604-613 ***
A:682-688/699-708 2GY9 761-767/778-788 ***
A:63-69/99-103 2HGR 63-70/106-113 *
A:779-783/799-803 2B9M 861-865/881-885 ***
A:826-829/857-874 1HRO 908-911/942-959 ***
A:887-894/905-910 2QB9 972-979/990-995 ***

PK-G12 23S rRNA 1 B:2295-2299/2317-2337 3BBX 14-18/36-68 *
Arch. SRP RNA 1 B:193-199/208-214 1QZW 254-260/269-275 **

5S rRNA 1 9:33-49 2GYC 73-105 ***
tRNA 1 C:912-926 1WZ2 15-31 ***
Purine riboswitch 1 X:31-39 1Y26 37-46 ****
Bact. SSU rRNA 70 A:507-524 1IBM 584-601 ****

A:320-333 2J02 379-392 ****
A:341-348 1N36 400-407 ****
A:689-698 1VS7 770-779 ****

The Table presents Rfam families and the number of 3D modules for each family after merging the modules depending on family and position. Ten
families on top represent internal loop modules, four families below represent hairpin modules. For each merged cluster, a representative, namely, the
model with maximal �sco, is shown. Columns three and four denote the chain and residue numbers of the PDB sequence as well as the PDBid where
the representative is extracted. ‘Alignment pos.’ indicates the position of the module in Rfamclean with the aligned full sequence. The last column
shows how good the representative fits into the consensus secondary structure of Rfam.
****means the module is located in a single stranded region, i.e. it fits very well in the consensus secondary structure.
***indicates a fairly well fit overlapping no more than two paired bases of the consensus structure.
**denotes representatives which fit less well because the paired bases of the modules overlap between three and five base pairs of stem regions of the
consensus structure.
*imply that more than half of the paired bases match an already paired base of the consensus structure.
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The tandem GA/AG loop has been found for example in
the crystal structure of the RNA octamer ‘GGCGAGCC’
(PDBid 1SA9). metaRNAmodules extracts the relevant
module, but during the mapping process, it is filtered out
because it is located on two chains. Another tandem GA/
AG instance is located in the 16S rRNA (PDBid 1J5E) at
sequence position 1394–1397/1454–1457. It is used to train
the Cruz model. We also modeled this module, and we find
it in the validation data. An instance of the G-bulged
module can be found in the lysine riboswitch at PDB
sequence position 25–29/64–67 (3DIL). Our pipeline is
able to model the correct module, except the base pair
G27-U28 and maps it on RF00168 (lysine riboswitch
family). The search in the validation data (10 sequences)

results in a single candidate. The PDB database contains
several entries for a lysine riboswitch, e.g. 3DIZ, 3DIG,
3DIM. We create models for all of them, but they
perform equally bad when searching the validation data. A
C-loop instance can be found in molecule 1J5E at sequence
position 362–367/387–390. metaRNAmodules extracts a
putative module and maps it on the bacterial small
subunit ribosomal RNA (RF00177). However, our module
misses two base pairs compared with the Cruz model.
A prominent kink-turn instance can be found in the

SAM riboswitch (PDBid 2GIS) at position 17–21/31–38.
The pipeline maps the putative module on the correct
family (RF00162), but our model contains one additional
base pair at A20-G32. Despite these different models, we

Figure 3. Rfam alignment with mapped modules. Two modules (Module 1 and Module 2) with different structures map on Rfam SRP family
(RF00017cm) at position 270–274/285–289. Highlighted regions below the alignment show the module base pairs.’ðÞ’ are single base pairs of canonical
or non-canonical pairing type, whereas ‘<>’ denote bases pairing twice, i.e. to two nucleotides of type ‘<>’ or ‘ðÞ’ [see (34)]. Rfam sec. struc. is the
consensus secondary structure of Rfam. ‘ðÞ’ are used for ‘internal’ helices enclosing a multi-furcation of all terminal stems, ‘<>’ show simple terminal
stems, ‘ ’ and ‘�’ denote unpaired bases of a hairpin loop and a bulge loop, respectively, and ‘.’ are insertions relative to a known structure. The
histogram below shows the level of conservation of the alignment bases. The modules fit very well in the consensus secondary structure. Covariation
information for model training can be obtained for four columns (270, 271, 285 and 290). The other columns are highly conserved. The consensus
barplot below means the higher a bar the more conserved.
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also find the correct candidates. Supplementary Figures S7
and S8 show two examples of the RMDetect score distri-
butions using our kink-turn model in comparison with the
Cruz et al. kink-turn model. Supplementary Figures
S13–16 show scatterplots of RMDetect scores from the
Cruz kink-turn model against our kink-turn models.
Depending on the scanned alignment, there is a
tendency that the Cruz model finds more candidates and
also scores them higher than our models.

Runtime to train and test models

We generated 3022 new models and each of them is sub-
jected to a 5-fold cross-validation. It takes 26 Central
Processing Unit (CPU) years for model generation and
testing on validation- and randomized data. This has
been accomplished in �30 days on a linux cluster consist-
ing of Intel(R) Xeon(R) X5570 CPUs @2.93GHz.

DISCUSSION

RNA structural modules form a recurrent and important
building block in all kingdoms of life. Their importance
has therefore been recognized, and the modules have been
investigated in various forms from global 3D structure
prediction to their function in RNA. As they are recur-
rent, it seems to be appropriate to simplify the search for
such modules in varying sequences. Given that substantial
labour and experience are needed to manually design these
models, we here addressed the problem of automating the
process of extracting known as well as unknown modules.
We successfully constructed a pipeline for this,

metaRNAmodules, and we showed that putative
modules can be mapped onto alignments exploiting evo-
lutionary nucleotide exchanges during module construc-
tion. New models with discriminative power (over
background) are generated in an automated way so that
a large number of putative modules readily can be
modeled without requiring expert knowledge.
In general, the statistical power of the BNs we have

constructud here, seems to be limited by base pairing (or
single nucleotide) information. We shall need to investi-
gate in the future if a more principled construction of
statistical models may incorporate sequence signals
beyond this. Based on the structural information
encoded by Cruz and Westhof (25) in their models, such
an extension seems promising.
In addition, as the initial base pairing information

extracted from 3D structural (PDB) data is itself based
on computational methods, we will need to explore differ-
ent methods for this task. Currently, our pipeline is based
on FR3D, whereas the original RMDetect work is based
on MC-Annotate.
The comparison with the Cruz and Westhof models (25)

indicates that putative modules of a certain complexity
and length can be modeled in an automated process,
and enables them to perform as well as models generated
by time-consuming manual model building.
We did not expect to generate ‘these exact’ models auto-

matically, as they imply a certain amount of expert know-
ledge beyond formal elucidation. This for example

includes the exact boundaries of a module and sterically,
but not statistically, important information.

In this work, we restricted automatically discovered RNA
modules to those forming part of a stem. Canonical multi-
branched loops form a future avenue of investigation but
are, by their very definition, more complicated. These com-
plications range from the fewer number of instances of
multi-branched loops in PDB structures to questions
about the quality of multiple alignments in these loop
regions. However, in the future, we plan to examine multi-
branched structures, as better predictions of modules in
these regions are likely to result in more accurate predictions
of the 3D conformation of the RNA structure. Another
open question is how to include RNA 3D modules in struc-
ture prediction algorithms. Currently, inclusion of RNA
modules happens in most cases when initial structural pre-
dictions on the level of secondary structures have been
completed or when only a limited number of modules is
included. Including RNA 3D modules in secondary struc-
ture prediction algorithms cause additional problems to be
overcome. Although the algorithms themselves are easily
adapted, the relevant parameters, e.g. thermodynamic
energy values or probabilities, are hard to determine.

CONCLUSION

We presented metaRNAmodules, a new pipeline for
automated putative module extraction and model gener-
ation. It filters the FR3D database for putative (known
and unknown) modules that are subsequently mapped on
Rfam alignments. These are used to train the BN models
exploiting evolutionary base exchange information.
metaRNAmodules is capable to find well-known
modules and performs equally well in comparison with
manually created models. The procedure leaves room for
improvements, for example, by further investigation of
known modules and using improved alignments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [41,43,46].
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