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Abstract

Alternative RNA splicing provides an important means to expand metazoan transcriptome

diversity. Contrary to what was accepted previously, splicing is now thought to predomi-

nantly take place during transcription. Motivated by emerging data showing the physical

proximity of the spliceosome to Pol II, we surveyed the effect of epigenetic context on co-

transcriptional splicing. In particular, we observed that splicing factors were not necessarily

enriched at exon junctions and that most epigenetic signatures had a distinctly asymmetric

profile around known splice sites. Given this, we tried to build an interpretable model that

mimics the physical layout of splicing regulation where the chromatin context progressively

changes as the Pol II moves along the guide DNA. We used a recurrent-neural-network

architecture to predict the inclusion of a spliced exon based on adjacent epigenetic signals,

and we showed that distinct spatio-temporal features of these signals were key determi-

nants of model outcome, in addition to the actual nucleotide sequence of the guide DNA

strand. After the model had been trained and tested (with >80% precision-recall curve met-

ric), we explored the derived weights of the latent factors, finding they highlight the impor-

tance of the asymmetric time-direction of chromatin context during transcription.

Author summary

In humans, only about 2% of the genome is comprised of so-called coding regions and

can give rise to protein products. However, the human transcriptome is much more

diverse than the number of genes found in these coding regions. Each gene can give rise

to multiple transcripts through a process during transcription called alternative splicing.

There is a limited understanding of the regulation of splicing and the underlying splicing

code that determines cell-type-specific splicing. Here, we studied epigenetic features that

characterize splicing regulation in humans using a recurrent neural network model.

Unlike feedforward neural networks, this method contains an internal memory state that

learns from spatiotemporal patterns–like the context in language–from a sequence of

genomic and epigenetic information, making it better suited for characterizing splicing.
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We demonstrated that our method improves the prediction of spicing outcomes com-

pared to previous methods. Furthermore, we applied our method to 49 cell types in

ENCODE to investigate splicing regulation and found that not only spatial but also tem-

poral epigenomic context can influence splicing regulation during transcription.

Introduction

Alternative splicing of pre-messenger RNA plays an integral role in diversifying the transcrip-

tome. This process is more pervasive in higher eukaryotes and is estimated to affect approxi-

mately 95% of protein-coding genes in humans [1,2]. Accurate characterization of the process

by which multiple functional protein products are produced from a single gene is crucial for

understanding the function of the transcriptome [3].

Recent discoveries have revealed that splicing occurs predominantly during transcription

in humans [4–8]. Nascent RNA is almost immediately spliced upon transcription [9,10] and

introns are mostly spliced out during transcript elongation. This timing suggests that the

recruitment of splicing factors and spliceosome assembly, detection of exon-intron bound-

aries, and modulation of alternative splicing must occur at the same time scale as transcription

[9].

Co-transcriptional splicing indicates a key observation that splicing takes place progres-

sively in the direction of RNA transcription, rather than processed simultaneously after tran-

scription. As a result, the contexts of guide DNA, nascent RNA, and its immediate folded

structure progressively change as RNA polymerase II (Pol II) moves along the guide DNA

strand [11] and may influence splicing regulation. Furthermore, co-transcriptional splicing

signifies the physical proximity of the spliceosome assembly to Pol II and other transcriptional

machinery [9]. Pol II physically interacts with nucleosomes and its histone modifications

around them, modulating the transcription rate [12].

DNA sequence alone may not contain sufficient information to process alternative splicing

deterministically [13]. Djebali et al. [4] and many others have shown that there is an enrich-

ment of chromatin marks around spliced exons, suggesting the role of epigenetic modifica-

tions during context-dependent modulation of alternative splicing [14,15]. For example,

exonic boundaries are characterized by increased levels of nucleosome density and positioning

[16–18], DNA methylation [19,20], and strong enrichment of specific histone modifications

including H3K36me3, H3K79me1, H2BK5me1, H3K27me1, H3K27me2, and H3K27me3

[16,17,21–23]. In addition, a recent genome-wide survey of alternative splicing showed that

DNA methylation can either enhance or silence exon recognition in a context-dependent

manner [24]. Furthermore, studies have shown that there is significant regulatory crosstalk

between histone modifications during transcriptional elongation [12].

Despite many efforts to characterize the splicing regulatory code both experimentally and

computationally, we have yet to understand how the cell type-specific epigenomic context is

utilized during co-transcriptional splicing. Previous computational methods on splicing have

largely focused on discovering novel splice junctions based on RNA sequencing (RNA-seq)

alignments [25,26], utilizing machine learning approaches [27,28] including deep neural net-

works [29]. Only a limited set of tools can model splicing regulation based on genomic

sequences and select RNA features [30–32]. Moreover, studies on splicing regulation have

focused heavily on identifying mutations that land within splice sites (SSs), cis-acting splicing

regulatory elements, and trans-acting splicing factors [30,33]. The extent, nature, and effects of

the epigenetic context in splicing regulation remain unsolved.
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In this study, we propose a new computational approach to characterize the role of epige-

netic modifications during co-transcriptional splicing. To build an interpretable model, we

adopted a recurrent neural network (RNN) architecture, which to some degree resembles the

physical characteristics of co-transcriptional splicing (Fig 1). The model can learn from a tem-

poral sequence of epigenetic contexts, similar to how epigenetic contexts progressively change

as Pol II moves forward along the guide DNA strand during co-transcriptional splicing. The

RNN model allows us to predict the inclusion of exons based on adjacent DNA sequences and

epigenetic modifications. Moreover, the physical resemblance of the model allows us to inter-

pret the trained model weight parameters and explore the spatio-temporal links between the

guide DNA elements and the surrounding epigenetic modifications. In summary, we leveraged

the mechanistic properties of co-transcriptional splicing to build an interpretable splicing

model, and we explored the trained model to understand the underlying characteristics of the

epigenetic context during co-transcriptional splicing.

Results

We first explore the epigenetic data context around known splice sites in depth. We then

describe the model and rationale for applying the specific architecture. Finally, we use the

model to further examine the effect of epigenetic context during co-transcriptional splicing.

Distinct epigenomic signatures characterize splicing regulation

We studied the epigenetic context of alternative splicing by examining the enrichment of mul-

tiple histone modifications and DNA methylations around the exon-intron boundary. We

mapped the epigenomic signatures around SSs of cassette exons at a base-pair resolution. We

aggregated multiple histone modifications across 49 cell types in ENCODE and observed their

enrichment as a function of distance from SSs (Fig 2A and 2B, S1 Fig, S2A Fig and S2B Fig).

We found the most interesting trend within 100 bp of SSs for both the 3’ acceptor and 5’

donor. A strong enrichment pattern of H3K36me3 and H3K27me3 appeared around the exon

boundary. Although studies have demonstrated a role for H3K36me3 in defining the exon-

intron boundary [22,34], the dynamic interplay between other histone modifications has been

overlooked. From the 3’ acceptor, peak enrichment occurred around 100 bp into the exon; at

the 5’ donor, it was closer, at around 50 bp into the exon. We also observed a slight depletion

of H3K27ac and H3K4me3 marks within 100 bp of the intron at the 3’ acceptor SS but not

within the 5’ donor SS. Using Mann-Whitney-Wilcoxon tests, we confirmed that the relative

elevation and depletion of epigenetic enrichment at the genomic segment containing the

branching site (segment C) compared to the surrounding exons (Fig 2B, S2A Fig and S2B Fig).

As this region contains a branch site, these histone marks may indicate a role in defining the

branch point.

Enrichment of RNA-binding factors around splice sites

Alternative splicing regulation is an elaborate process that requires precise coordination of

multiple splicing factors and enzymes. Studies have shown that RNA-binding proteins (RBPs)

facilitate splicing regulation during transcription [35]. For example, the serine/arginine-rich

splicing factor family member SRSF7 binds to poised exons and promotes the inclusion rate

[36,37]. Another member of the serine/arginine-rich splicing factor family, U2AF1, is respon-

sible for mediating the binding of U2 small nuclear ribonucleoprotein to the pre-mRNA

branch site [38]. The recent release of the ENCODE project included enhanced CLIP experi-

ments (eCLIP) datasets that span 112 RBPs from K562 and HepG2 cell types. As sequence-spe-

cific RBPs have been shown to facilitate splicing regulation in a context-specific manner [15],
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Fig 1. Overview of the co-transcriptional splicing model. Depiction of co-transcriptional splicing in terms of (A) biological context, (B)

genomic and epigenomic data context, and how it relates to the (C) RNN model.

https://doi.org/10.1371/journal.pcbi.1008006.g001
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we investigated their spatial relationship to both the 5’ donor and 3’ acceptor splicing sites.

Specifically, we investigated the enrichment of splicing factors (n = 29) and their relative dis-

tance to these sites. We observed that, on average, splicing factors show preferential binding to

the intronic side of the splicing site in both 3’ acceptor and 5’ donor SSs (S2C Fig). Further-

more, we found that splicing factors may show slightly different patterns in their spatial bind-

ing preferences. In particular, hnRNP A1 and SRSF1 were enriched in the intronic region

outside 3’ SSs whereas SF3B4 and hnRNP C were enriched in the exonic region (Fig 2C). At 5’

SSs, RBM22 and PRPF8 were bound at the exonic end, which has been shown to be critical for

splicesome assembly [39,40].

Correlating epigenomic signatures to exonic expression

We tested whether histone modifications have any effect on inclusion and expression of alter-

native exons. We observed a trend where enrichment of H3K36me3 at the exon-intron bound-

ary was positively correlated with exonic expression, whereas H3K27me3 marks showed the

opposite trend (Fig 3A and 3B and S3 Fig). Compared to excluded or nominally expressed

alternative exons, highly expressed spliced exons had statistically significant enrichment of

H3K36me3 and depletion of H3K27me3 at their exon-intron boundary (Fig 3C). The contrast-

ing trend and the correlation of these histone methylations to exonic expression suggest that

the splicing code may be directly or indirectly encoded within the epigenomic context.

Clustering biosamples based on splicing patterns

Previous studies have shown that various epigenomic marks are correlated across similar tis-

sues and cell types [41]. It is now widely accepted that the transcriptional regulatory circuitry

of a particular cell type is reflected in its epigenetic landscape. To explore the potential linkage

between epigenetic regulation and tissue-specific splicing, we examined splicing patterns

across 49 ENCODE biosamples. Based on a similarity of percent-splice-in (PSI) values for all

coding exons (n = 185,405), we clustered biosamples into five categories using hierarchical

clustering (Fig 3D). Splicing patterns were highly correlated among tissue types from the same

cell-of-origin, reproducing similar clustering results based on epigenetic marks. For example,

blood-lineage cell types formed cluster C2 whereas brain and neural cells were clustered in

cluster C4. Moreover, we observed that cancerous cell lines cluster together in cluster C3.

In addition to using the PSI similarity matrix to cluster cell types into categories, we can

project the cells onto a low-dimensional cell space using principal component analysis (PCA).

We measured alternative splicing patterns in terms of exonic expression level (fragment per

kilobase per million reads mapped, FPKM) across diverse ENCODE cell types and examined

how cells are placed in the context of others. Interestingly, we observed that cancer-related cell

lines were located proximal to each other in the PCA cell space (S4 Fig).

Modeling splicing regulation: key characteristics of an RNN architecture

To investigate the latent representation of splicing instruction encoded within the epigenomic

context, we aimed to construct a predictive model of splicing. We opted for an RNN

Fig 2. (A) Enrichment of various epigenomic marks of K562 at the exon-intron boundary. We aggregated histone modifications up to 500 bp

upstream and downstream of intronic and exonic regions flanking 3’ and 5’ SSs for cassette exons across ENCODE cell types. High PSI indicates exon

inclusion, mid PSI indicates exons with 40–60% PSI, and low PSI indicates exon skipping. (B) Statistical significance testing of epigenetic mark

enrichment. Average histone modification enrichment at four exonic segments were compared based on PSI values. Mann-Whitney-Wilcoxon two-

sided test, ns: 0.05< p< = 1; �: 0.01< p< = 0.05; ��: 0.001< p< = 0.01; ���: 0.0001< p< = 0.001; ����: p< = 0.0001. (C) RBP enrichment across

the exon-intron boundary.

https://doi.org/10.1371/journal.pcbi.1008006.g002
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architecture, which has proven successful in various sequential information processing and

prediction tasks such as natural language processing and translation [42–44], to explore the

contribution of the epigenomic context to the regulation of alternative splicing.

We start by describing a simple RNN, which shares many of the features we intend to

model. A simple RNN is made of many recurrent neurons that are sequentially linked to each

other. A neuron at specific time point t is influenced by previous time point t−1, combining

some relationship of the current input xt with the previous hidden state ht−1.

ht ¼ f ðht� 1; xtÞ

where ht is hidden state at time t and xt is input variable at time t. If we suppose the activation

function as a hyperbolic tangent for a simple RNN, the state at time t can be represented as

ht ¼ tanhðWh
Tht� 1 þWx

Txt þ bÞ

where Wh and Wx are the weight of the hidden state and input variable, respectively, and b is

the bias vector. The output can be expressed in terms of an output weight matrix, Wy, and a

hidden state at time t, ht:

ŷt ¼ SðWy
ThtÞ

where S is sigmoid function:

S xð Þ ¼
ex

ex þ 1

This time-dependency allows us to explore the complex contextual relationship between

features. In particular, we adopted the long short-term memory (LSTM) [45] model to

describe an RNN architecture. In principle, a simple RNN allows us to model a time-depen-

dent task from sequential data. However, in practice, the simple model suffers from the prob-

lem of vanishing gradients, where the gradients responsible for updating weights with respect

to the partial derivative of error function becomes negligible in a long sequence and hampers

the model from learning long-term time dependencies. Therefore, we used both LSTM and

gated recurrent unit (GRU), which have many of the same simple intuitive properties of the

simple RNN but allow learning from longer sequences. The LSTM is an extension of the same

idea that includes more sophisticated gates, which allows the cell to retain long-term memory

between cells while avoiding the problem of vanishing gradients when training the network.

The specific equations for the LSTM model we adopted are shown in the Methods.

Modeling splicing regulation: How the RNN architecture fits the problem

The rationale for applying an RNN to our model is that (1) an RNN is optimized for processing

sequential information like genomic sequences and epigenomic profiles along genomic coor-

dinates, (2) an RNN has a time-direction resembling how RNA is transcribed by RNA poly-

merase in the 5’ to 3’ direction, (3) temporal memory cells of an RNN allow the model to learn

about complex context-dependent relationships among epigenomic features, such as the influ-

ence of features and input seen at t-1 on the neural cell at time t, and (4) an RNN is very flexi-

ble with the type of input and output data and therefore can easily integrate heterogeneous

Fig 3. Correlation of exonic expression to (A) H3K36me3 and (B) H3K27me3. The line represents a linear regression model fit, and the shaded band

represents 95% confidence interval. (C) Alternative exons were grouped by expression level and their relative histone enrichment was compared near the

SSs. Asterisks represents statistical significance using the Wilcoxon rank sum test; (�) P< = 0.05, (��) P< = 0.01, (���) P< = 0.001, (����) P< = 0.0001. (D)

Hierarchical clustering of similarity based on PSI across 49 ENCODE biosamples. The results are clustered into five categories of cell types.

https://doi.org/10.1371/journal.pcbi.1008006.g003
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sequential information. Not surprisingly, researchers recently have applied RNN models to the

area of genomics to predict non-coding DNA function [46] and to detect exon junctions [47].

Moreover, since the mechanics of the RNN calculation is somewhat parallel to the actual spa-

tial and temporal dependency found in co-transcriptional splicing, the overall results from the

trained model are more readily interpretable. The data processing and implementation of the

predictive models are collected in a package named Epigenome-based Splicing Prediction

using Recurrent Neural Network (ESPRNN; available at https://github.com/gersteinlab/

esprnn). Using our method, we attempted to decipher context-dependent effects of various

epigenomic features on splicing for both canonical (e.g., dinucleotide GT for 5’ donors and

AG for 3’ acceptors) and non-canonical SSs. Our model is especially useful since splicing sig-

nals are not only enriched at the splice site but often found up and downstream of splice sites.

Modeling splicing regulation: Initial evaluation

We used ESPRNN to predict alternate usages of cassette exons (inclusion or exclusion of

exons), the most common form of alternative splicing events [48], using DNA sequences and

epigenomic signals adjacent to SSs (Fig 4A and S2 Table). We used the exon definition of splic-

ing, which is considered to be the dominant mechanism in higher eukaryotes [49]. Our model

had an average F1 score (harmonic mean of the precision and recall) of 0.8472 for the LSTM-

based model across cell types [0.8757 for the GRU-based model] using five core histone modi-

fication tracks (Fig 4B and S3 Table). The average F1 score marginally increased to 0.8573

when using 17 histone, chromatin accessibility, DNA methylation, and nucleosome density

profiles.

We performed the splicing prediction with or without the RBP profile and measured how

much predictive performance is gained from additional information. We observed a marginal

improvement in predictive performance when RBP binding profiles were added to the baseline

model (measured in improvement of F1 score from 0.84 to 0.86) (S9A Fig and S9B Fig). This

suggests RBP binding information may be redundant and already represented in the epigenetic

features. We also compared prediction results from normal cell types to those from cancerous

cell lines. Since previous studies on cancer-specific alternative splicing [50,51] have suggested

potential linkage of aberrant splicing events to the disease risk [52–55], we expected to see dif-

ferences in splicing regulation between normal and cancerous cell types. However, we did not

observe a significant difference in prediction performance between normal and cancerous cell

types (average F1 score for normal biosamples: 0.8465, cancerous biosamples: 0.8765). We also

cross-tested a model trained from one cell type to another. After we fit our model to one cell

type, we transferred the fitted weights and model parameters to predict splicing on other cell

types. When we tested between cell types from the same cell-of-origin (e.g., train on adult liver

model and test on HepG2 data, train on lung model and test on A549 data), we did not observe

a significant difference in predictive performance. However, we observed a moderate reduc-

tion in splicing prediction performance when we cross-tested cells from different cell-of-origin

(S5B Fig, F1 score is a better metric for comparing cross-cell testing due to class imbalance

across cell types). Thus, the epigenomic regulatory landscape around SSs appears to be gener-

ally conserved across cell types. Moreover, we compared the classification performance to

other models based on random forest and k-nearest neighbors and found that our model was

superior in terms of classification accuracy (Fig 4D and S7 Fig).

We tried to measure the contribution of each individual epigenetic feature to splicing in a

number of ways. (1) We performed an empirical analysis via a leave-one-out strategy. Using

GM12878 as an example, we first built a reference model based on all available epigenetic fea-

tures. By removing one variable at a time, we then measured the mean decrease in F1 score
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and area under the receiver operating characteristic curve (ROC AUC), as an indicator of vari-

able importance (Fig 4C). (2) Alternatively, we trained a DNA-only model using DNA

sequence features only and compared to a "baseline model." The baseline model was trained

using DNA sequence features plus additional chromatin accessibility (DHS) and 6 histone

marks. Here, we observed a significant loss of predictive performance in the DNA-only model

(13% reduction in F1 score) (S6A Fig). (3) Next, starting from the DNA-only model, we added

one epigenetic feature at a time to measure the information gain from each feature (S6B Fig).

While the addition of some epigenetic features like H3K27ac increased the variability in pre-

diction performance, an active mark H3K36me3 or a repressive mark H3K27me3 was the

most informative at predicting splicing. Moreover, the combination of both H3K36me3 and

H3K27ac further improved the prediction performance compared to other pairs (S6C Fig).

We observed that the combination of H3K36me3 and H3K27ac features together contributed

more than when they were used individually (S6D Fig).

Overall, we found H3K36me3 to be the most important variable in predicting splicing. This

observation coincides with previous studies reporting that H3K36me3 recruits the splicing fac-

tors PTB [34] and SRSF1 [56] to facilitate splicing. Interestingly, one of the top predictors of

splicing was H3K79me2, which was previously shown to associate with H3K36me3 at gene

bodies [57]. H3K9me3, a histone modification that can recruit adaptor proteins like HP1 to

facilitate splicing factors [24], was also ranked among the top predictors.

Interpretation of weights of the splicing model

Since the model follows the physical layout of splicing regulation, one can examine the trained

model and learn from the trained weights how each epigenetic feature contributes to splicing

regulation. To interpret the splicing model, we designed an LSTM-based model composed of

only one hidden state and trained for a longer period (400 epochs). We made sure that this sim-

plified model performs nearly as well at predicting splicing as our main model (usually after

>20 epochs of training, S8A Fig). We also made sure that the overall predictive performance of

the simplified model is stable after approximately 100 epochs (S8B Fig and S8C Fig). When we

analyzed the simplified model, we found that the trained weights of various gates at the recur-

rent unit showed that open chromatin (DHS), H3K27ac, K3K36me3, and H3K4me1 are

weighted more highly than other epigenetic features—as expected (S8D Fig). We also noticed

that H3K27me3 and K3K9me3 were negatively weighted at the input gate, suggesting that these

features have a negative impact on exon inclusion, consistent with our previous findings.

Influence of temporal epigenetic context on splicing regulation

We specifically designed our splicing model to represent the physical layout of splicing regula-

tion, where a sequence of chromatin contexts is fed progressively to the model. Therefore, the

model takes into account the temporal direction (progression from 5’ to 3’ in direction). To

show that model has learned this asymmetric temporal relationship of epigenetic features, we

first trained a baseline model (in the normal 5’ to 3’ direction) and then fed a series of epige-

netic signals in a “reverse” order (3’ to 5’ in direction) as input to it. We examined how the

Fig 4. (A) Overview of the ESPRNN model. The model is composed of two recurrent layers. Inputs from 3’ and 5’ SSs are separately processed in

the first recurrent layer and then merged in the next recurrent layer. A softmax classifier is used to determine the inclusion of the exon. Using

genomic sequences and epigenomic contexts as input, the alternative usage of the exon is predicted. (B) Precision-recall curves from six different

ENCODE cell types. (C) Epigenetic features that contribute to splicing regulation. The order and magnitude of importance was determined using

leave-one-out analysis and loss of the ROC AUC was calculated when training the model lacking a particular feature. (D) Comparison of LSTM

model with other models based on k-nearest neighbor, support vector machine, decision tree, and random forest algorithms.

https://doi.org/10.1371/journal.pcbi.1008006.g004
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model prediction behaved in this context. If the model was agnostic to the temporal direction

of features, both forward and reverse input features should give the same predictive power. By

using a model based on a single histone feature, H3K36me3, we observed a moderate decrease

in prediction performance upon reversal of the epigenetic feature (S9 Fig), with an F1 score

decreasing from 0.78 to 0.77 and ROC AUC decreasing from 0.87 to 0.85. While we suspect

there is some level of redundancy across different epigenetic marks and some marks are inde-

pendent of their temporal direction, our results suggest the importance of temporal direction

of epigenetic features in the context of splicing.

Discussion

Our prediction model revealed that the epigenomic signature of an SS plays a large role in

determining the splicing outcome. In addition, the positive results suggest that our model can

be extended to predict the full transcriptomic composition from a genomic and epigenomic

context. We expect that we could further improve the proposed model by adding more deep

hidden layers and increasing the number of training samples by utilizing the full set of avail-

able epigenomic data in the ENCODE project. Our approach does contain some limitations,

as it is still challenging to visualize and evaluate the multi-dimensional context of the weight

matrix in the trained model. We could apply dimensionality reduction techniques to probe the

latent representation of relationships between various epigenomic signals.

In this study, we used ENCODE polyA RNA-seq assays to measure splicing and exon-level

expression; we note that this is an indirect measure of what is actually happening during tran-

scription. RNAs are often unstable and may be subjected to many post-transcriptional modifi-

cations. RNA-seq measures the steady-state level of the transcript, accounting for both mRNA

synthesis and decay. Future studies with a more direct measure of transcriptional rates, such as

nuclear run-on assays like global run-on (GRO-seq) or bromouridine sequencing (Bru-seq),

will allow us to accurately measure the effect of epigenomic context on splicing and, ultimately,

on the transcriptional rate.

Future studies should focus on comparing splicing models from normal and cancer samples

in the hope of illuminating the differences in the epigenomic landscapes of splicing regulation.

Although splicing is an elaborate process, it could become pathogenic when misregulated

[58,59]. Unsurprisingly, aberrant splicing events, which collectively referred to splicing events

that could confer the risk of a disease, are often implicated in systemic diseases like cancer

[51,60]. Aberrant splicing events based on mutations are relatively well characterized [54,60–

62]; however, a large fraction of aberrant splicing events that have no direct mutational cause

still remain unknown. Although our understanding of epigenomic context on splicing regula-

tion is incomplete, our prediction model highlights that splicing is elaborately regulated via

various epigenomic signatures. This suggests that epigenomic dysregulation may be closely

linked to the onset of aberrant splicing. Thus, even though aberrantly spliced RNAs in healthy

cells may be degraded by the mRNA surveillance system, epigenomic dysregulation may ren-

der this checkpoint system useless. Further studies on cell-type-specific and context-dependent

splicing regulation will reveal whether epigenetic modulation can serve as a therapeutic

method of complex disease in the future.

Material and methods

Dataset

The current release of the ENCODE dataset provides an unprecedented number of functional

assays across broad biosample types, including primary cells and tissues. In this study, we lev-

eraged both the breadth and depth of ENCODE, including assays for histone modification
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(chromatin immunoprecipitation sequencing, ChIP-seq), chromatin accessibility (DNase I hyper-

sensitive sites sequencing, DNase-seq), RBPs (eCLIP), methylations (WGBS and RRBS) and gene

expression (RNA-seq), to systematically probe the data-rich context of alternative splicing and its

regulation. The list of accessions for experiments used in this study is found in S1 Table.

Processing of RNA-seq data

To quantify levels of exon expression from RNA-seq data, we collected all raw sequencing

reads from experiments tagged as reference epigenome series from the ENCODE portal. These

reads were polyA plus long RNA-seq (200 bp or larger) from whole-cell fractions rather than

nuclear or cytosolic fractions. To minimize potential batch effects and sample bias, we care-

fully selected untreated experiments from the reference epigenome series. As of November

2019, there are 81 cell and tissue types (covering 49 unique biosamples) in the reference epi-

genome series, including both RNA-seq and ChIP-seq of H3K4me1, H3K4me3, H3K36me3,

H3K27ac, H3K27me3, and H3K9me3. We first aligned all RNA-seq data to the GRCh38

genome using RNA STAR (v 2.7.0). Since the model requires splice site annotation, we con-

structed exon annotation from GENCODE version 24 (to synchronize with ENCODE annota-

tion) by extracting all unique exons with known protein-coding transcripts. We excluded

exons that could ambiguously map to both chromosome X and Y. This analysis included

597,937 exons (185,405 unique exons after removing duplicates from isoforms) that averaged

28.01 exons per gene and 296.49 bp in length (150.92 bp in length for unique exons). We

obtained read counts at each exon using HTSeq (v0.11.2) [63]. Based on read counts, we used

a custom script (esprnn/preproc_calcExonFPKM.py) to calculate normalized exonic expres-

sion levels in FPKM. Our rationale for using the exonic expression was to intentionally make

the model agnostic to the overall transcript level. Each exon was evaluated independently from

other exons, and we counted the number of sequencing reads supporting the inclusion of a

particular exon. The counts were normalized similar to how a gene’s expression is normalized

by size of annotation and total number of mapped reads (FPKM). We binarized the exonic

expression level (FPKM) using a threshold of one. Therefore, we only considered whether an

exon has enough evidence supporting exon inclusion.

In addition to the exonic expression level, alternatively, we calculated a metric, PSI, to mea-

sure the level of splicing. PSI represents the fraction of the reads supporting exon inclusion

from the split reads at the splice junction. We used a custom script (esprnn/scripts/calcPSI.sh)

based on equations from Schafer et al. [64] to calculate PSI normalized by the size of read and

exon annotation.

~Fi
incl ¼

Fi
incl

Li þ Lf

~Fi
excl ¼

Fi
excl

Lf

PSI Cð Þ ¼
~Fi

incl

~Fi
incl þ ~Fi

excl
%

Fiincl number of reads or fragments supporting the inclusion of i-th exon; Fiexcl number of

reads or fragments supporting the exclusion of i-th exon; Lf fragment length; Li size of i-th

exon. We used PSI cutoffs of 20% and 80% to determine skipping and inclusion of exons

based on the overall PSI distribution (S10 Fig).
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RNA-binding proteins

RBP enrichment was calculated based on the peaks identified from the eCLIP experiments.

We downloaded the ENCODE eCLIP uniformly processed peaks from K562 and HepG2 cell

types (see S1 Table for eCLIP data accession). The peak was called using CLIPPER software

[65] and filtered for peaks having a score of 1,000. We then counted numbers of RBP binding

events at a base-pair resolution, agnostic to cell type.

To examine preferential binding patterns of splicing factors around SSs, RBP peaks were

annotated as splicing-related factors if they belong to hnRNP- and SR-families (n = 29). We

extended both 3’ acceptor and 5’ donor SS by 1,000 bp in both up and downstream direction

and binned the region into 100 bp intervals. We defined the position relative to the distance to

the SS, in the 5’ to 3’ direction. For each interval, we calculated the frequency of splicing factor

binding normalized to the size of the interval. The value of RBP enrichment means the nor-

malized binding frequency of splicing-related factors.

LSTM model

We adopted the following equations for the modeling of splicing using LSTM. σ function

denotes sigmoid function.� denotes Hadamard product where two matrices are multiplied in

a pair-wise fashion. xt denotes input vector and ht denotes output vector, ft denotes forget gate

vector, it denotes input or update gate vector, ot denotes output gate vector, ct denotes cell state

vector.

ft ¼ sðWhf
Tht� 1 þWxf

Txt þ bf Þ

it ¼ sðWhi
Tht� 1 þWxi

Txt þ biÞ

ot ¼ sðWho
Tht� 1 þWxo

Txt þ boÞ

gt ¼ tanhðWhg
Tht� 1 þWxg

Txt þ bgÞ

ct ¼ ft � ct� 1 þ it � gt

ht ¼ ot � tanhðctÞ

GRU model

We adopted the following equations for the modeling of splicing using GRU. xt denotes input

vector and ht denotes output vector, zt denotes update gate vector and rt denotes reset gate vec-

tor.

zt ¼ sðWhz
Tht� 1 þWxz

Txt þ bzÞ

rt ¼ sðWhr
Tht� 1 þWxr

Txt þ brÞ

ht ¼ ð1 � ztÞht� 1 �þzt � tanhðWhh
Tðrt � ht� 1Þ þWxh

Txt þ bhÞ
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Pre-processing of data for the training model

We selected six normal and three cancer samples from the reference epigenome series. The

dataset contains consolidated epigenomes from the Roadmap Epigenomics Consortium [41]

and the ENCODE Consortium. All datasets were uniformly processed and mapped to the

GRCh38 human reference genome. All samples contained a core set of histone modification

tracks (H3K4me1, H3K4me3, H3K36me3, H3K27ac, H3K27me3, and H3K9me3) as well as

RNA-seq data. We used additional histone modification tracks, as well as DNase I hypersensi-

tivity, DNA methylation, and nucleosome positioning tracks, to predict alternative splicing

upon availability. Detailed information on datasets used can be found in S2 Table. For each

exon, we obtained DNA sequences at intron-exon boundaries (3’ acceptors) and exon-intron

boundaries (5’ donors), as well as 100 bp upstream and downstream of SSs. Splice junctions

included both canonical and non-canonical SSs. We processed all sequences to read in the 5’

to 3’ direction using strand information from each gene. Each 400 bp DNA sequence was

encoded into a 1,000 by 4 binary array using one-hot encoding. We used RNA-seq expression

profiles to indicate tissue-specific alternative splicing patterns. Genes having fewer than two

exons were discarded and the first and last exons were excluded from the analysis. We classi-

fied an exon as being expressed if its FPKM was greater than or equal to 1. We normalized all

ChIP-seq histone modification tracks and DNase-seq tracks over corresponding input signal

tracks using MACS v2.0.10 (https://github.com/taoliu/MACS) [66]. We used negative log10 of

the Poisson p-value to measure the enrichment level over the background. Due to the wide

dynamic range observed, we used a p-value threshold of 1e-2 for the upper limit. We processed

all feature tracks including DNA methylation and nucleosome signal tracks to read in the 5’ to

3’ direction and scaled them to a range of 0 to 1.

Performance evaluation of the model

There is no single metric that can give you a measure of performance in a binary classification

problem. Relying on one metric can be misleading especially when there is high class imbal-

ance. Therefore, we employed various metrics to measure the performance of the predictive

model.

ROC curve explains the tradeoff between true-positive rate (TPR) and false-positive rate

(FPR). PR curve visualizes the tradeoff between positive predictive value (PPV) and true-posi-

tive rate (TPR).

Precison ¼
tp

tpþ fp

Recall ¼
tp

tpþ fn

Accuracy ¼
tpþ tn

tpþ tnþ fpþ fn

In addition, we used F1-score, which is the harmonic mean of precision and recall, to mea-

sure the performance of the splicing model.

F1 ¼ 2 �
precison � recall
precisonþ recall
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Hyperparameter tuning of splicing model and training

We tested a range of dimensions and depths of RNN models and network design hyperpara-

meters to optimize the alternative splicing model. We chose optimal hyperparameters by tun-

ing one parameter at a time while fixing the rest. Hyperparameters included but were not

limited to the number of recurrent layers, size of neurons in each layer, pooling strategy, drop-

out rate, choice of activation function and loss function, optimizer, and number of the epoch.

We shuffled the order of the data and split the dataset into training and test sets using an 80 to

20% ratio. 20% of test data was set aside for the performance evaluation. 80% of training data

was split again between 80 to 20% (64 and 16% of the original data) for fitting the model and

validating the model fit during the training phase. We fed a range of sequences from 50 to

1,000 bp within each SS and found the 400 bp span to be the ideal size for the model (S4

Table). For the neural network architecture, we achieved the best result when two RNN units

were stacked together, which allowed the model to learn higher-level temporal representations.

We used a hidden state size of two by default and we recommend not using a hidden state size

greater than 128 to avoid overfitting problems (S8A Fig). We applied three variants of the

RNN model, LSTM [45], GRU [67], and simple RNN. To compare the performance of mem-

ory-based units (LSTM and GRU), we implemented a simple RNN model using the same net-

work architecture. We found that both LSTM and GRU were capable of learning long-term

dependencies and were effective in learning high-dimensional contextual relationships

between epigenomic features around the SSs. We split the input sequences into two parts

where the first half represented a 3’ acceptor SS and the latter half represented a 5’ donor SS.

We fed these sequences into two separate RNN units of size 200 and merged them into another

RNN unit of size 400. The last RNN layer was followed by a dropout layer to prevent overfit-

ting of the training dataset. The last fully-connected layer contained the softmax activation

function for classifying exons as either spliced or unspliced. To train the model, we used a

binary cross-entropy objective function with the Adam optimizer [68]. For each dataset, we

trained the model for 20 epochs. We tested the implementation of ESPRNN using TensorFlow

v2.0 (https://www.tensorflow.org). Our implementation also works with Keras v1.0.3 or v2.2.4

(https://github.com/fchollet/keras) with either TensorFlow v1.15 and Theano v0.8.2 [69] back-

end with a minor tweak. We used various Nvidia GPUs (Titan K20m, K80, GTX 1080ti,

RTX2080, P100, and Titan V) to train the model.

Supporting information

S1 Table. List of datasets and the accession numbers used for the study.

(XLSX)

S2 Table. Overview of dataset used for training the ESPRNN model. The model was trained

using the CORE (highlighted in red) and FULL set based on the availability of data. The CORE

set was used to compare the predictive performance across cell types.

(XLSX)

S3 Table. ESPRNN model prediction performance measured by F1 score. Predictive perfor-

mance was compared between the CORE and FULL set of genomic features. For each set, per-

formance was compared using LSTM, GRU, and simple RNN models. Predictive performance

was measured by F1 score.

(XLSX)

S4 Table. Comparison of models trained with 50 bp span and 100 bp span data. Each

model was trained using genomic features derived from 50 bp span or 100 bp span data from
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splice sites using the LSTM model. Performance was measured using F1 score and ROC AUC.

(XLSX)

S1 Fig. (Shadow figure of the main Fig 2A) Enrichment of various epigenomic marks of

HepG2 at the exon-intron boundary. High PSI indicates exon inclusion, mid PSI indicates

exons with 40–60% PSI, and low PSI indicates exon skipping.

(PDF)

S2 Fig. (Shadow figure of the main Fig 2B) Comparison of epigenetic enrichment around

different segments of the 3’ acceptor site for (A) K562 and (B) HepG2. High PSI indicates

exon inclusion, mid PSI indicates exons with 40–60% PSI, and low PSI indicates exon skip-

ping. Mann-Whitney-Wilcoxon two-sided test, ns: 0.05< p< = 1; �: 0.01< p< = 0.05; ��:

0.001< p< = 0.01; ���: 0.0001< p< = 0.001; ����: p< = 0.0001. (C) Fold enrichment of splic-

ing-related RBPs to non-splicing-related RBPs around the 3’ acceptor splice site and 5’ donor

splice site.

(PDF)

S3 Fig. Correlation of exonic expression (FPKM) and histone enrichment of (A) HepG2

H3K36me3, (B) HepG2 H3K27me3, (C) liver H3K36me3, and (D) liver H3K27me3. PCC:

Pearson Correlation Coefficient.

(PDF)

S4 Fig. Splicing patterns based on exonic expression level (FPKM) for diverse ENCODE

cell types are projected on a PCA cell space.

(PDF)

S5 Fig. (A) Difference in splicing prediction performance when RBP binding profiles were

added as an additional feature of the base model containing chromatin accessibility and

histone marks. (B) Cross-cell testing of model. Model was trained on HepG2 data and tested

on K562 data, and vice versa.

(PDF)

S6 Fig. (A) Comparison of the baseline model trained using chromatin accessibility and 6

histone marks to a model using DNA sequence feature only (B) Measure of information

gain from additional epigenetic feature based on DNA sequence only model (C) Compari-

son of splicing prediction performance using a pair of epigenetic features. (D) Performance

comparison of models using H3K36me3 or H3K27ac feature individually to a model using

both H3K36me3 and H3K27ac features. Performance was measured based on F1 score from 5

trials.

(PDF)

S7 Fig. Comparison of LSTM-based model with other machine learning algorithms. Four

different algorithms, k-Nearest neighbor (kNN), decision tree, random forest, and support

vector machine (SVM), were compared to the LSTM-based model across four different tissue

types (A549, HepG2, GM12878, K562).

(PDF)

S8 Fig. (A) Comparison of splicing prediction performance across different sizes of hidden

state. (B) Loss of training an LSTM model with 1 hidden layer for 400 epochs. (C) Accuracy of

training an LSTM model with one hidden layer for 400 epochs. (D) Trained weights of LSTM

recurrent cells.

(PDF)
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S9 Fig. Comparison of splicing prediction performance when epigenetic context features

are reversed in time-direction. (A) precision-recall curve for HepG2 (B) ROC curve for

HepG2 (C) precision-recall curve for K562 (D) ROC curve for K562

(PDF)

S10 Fig. PSI histogram of cassette exons from A) HepG2 (B) mammary epithelial cell (C)

K562, and (D) bipolar neuron.

(PDF)
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