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Soil organic matter contains more carbon than global vegetation and the atmosphere
combined. Gaining access to this source of organic carbon is challenging and requires at
least partial removal of polyphenolic and/or soil mineral protections, followed by
subsequent enzymatic or chemical cleavage of diverse plant polysaccharides. Soil-
feeding animals make significant contributions to the recycling of terrestrial organic
matter. Some humivorous earthworms, beetles, and termites, among others, have
evolved the ability to mineralize recalcitrant soil organic matter, thereby leading to their
tremendous ecological success in the (sub)tropical areas. This ability largely relies on their
symbiotic associations with a diverse community of gut microbes. Recent integrative
omics studies, including genomics, metagenomics, and proteomics, provide deeper
insights into the functions of gut symbionts. In reviewing this literature, we emphasized
that understanding how these soil-feeding fauna catabolize soil organic substrates not only
reveals the key microbes in the intestinal processes but also uncovers the potential novel
enzymes with considerable biotechnological interests.
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INTRODUCTION

Soil organic matter (SOM) is massive and representative of a major organic carbon pool on the
planet, which is considered as an essential agent in maintaining ecosystem productivity and
sustainability through its physical, chemical, and biological properties. More specifically, soil
organic matter not only retains nutrients that improve plant growth but also contributes soil
physicochemical property enhancements such as infiltration, water-holding capacity, and aggregates
(Lehmann and Kleber, 2015). To date, researchers estimate SOM approximately makes up less than
5% of the global dry weight soil (Stevenson, 1972; Liang et al., 2017). Soils also contribute an
important source of aquatic and atmospheric carbon; moreover, diverse living organisms within the
soils are considered as the most driving force of carbon cycling in biogeochemical processes.
Collectively, organic matter in the soil represents the most abundant source of organic carbon and
has unparalleled ecological and economic impacts on the Earth (Bolan et al., 2011).

The formation and turnover of soil organic matter is a continuum of progressively decomposing
processes. Biological, physical, and chemical transformation processes convert dead plant material
into organic products that form intimate associations with soil minerals (Lehmann and Kleber,
2015). The fragments of plants are often first broken up into small pieces at the beginning of
decomposition by soil fauna. The plant residues are further degraded by subsequent exo-enzymes
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derived from surrounding microorganisms, where they are
broken down to a relatively small size. The generated organic
compounds at various stages of decay not only represent energy-
rich spots in the soils but also relatively recalcitrant components.
For instance, polyphenols in soils exist either in a dissolved form
that moves freely in the soil solution, in a sorbed form that
reversibly binds to the soil particle or proteins, or in a
polymerized form that consists of humic substances (Min
et al., 2015) Among them, lignin is one of the most
recalcitrant carbon compounds and can bind with proteins,
thereby immobilizing nitrogen (Gentile et al., 2011). Increasing
evidence shows that soil-dwelling fauna and their gut microbial
symbionts have the ability to decompose these persistent
materials even more quickly than previously recognized
(Coleman and Wall, 2015). In this review, we provide an
overview of the recent omics-based research, including soil-
dwelling fauna and their associated gut bacterial genomic and
metagenomic studies, which have led to a deeper understanding
of soil organic matter degradation processes and uncovered the
presence of only recently recognized microbial symbionts and
relevant degradative enzymes.

THE CHEMICAL COMPLEXITY AND
RECALCITRANCE OF SOIL ORGANIC
MATTER
Soil organic matter is heterogeneous complexes with a variety of
chemical components. Although the definite chemical structures
have remained contentious, it is generally accepted that humic
substances consist of polyphenols, peptides, lipids, and
polysaccharides (Figure 1) (Gerke, 2018). This supramolecular
network formed by complex carbohydrates and aromatic
polymers provides the SOM complexes with sufficient stability,
but it also makes the SOM a major barrier to gain access to the

stored hydrolysable aliphatic components (Horwath and Paul,
2015). The substantial ether– and carbon–carbon interunit
linkages between aromatic units possess an inherent chemical
recalcitrance. At the same time, the SOM often has chemical
interaction with inorganic soil colloids, including mineral or clay
particles, to form dense aggregates, which further provides the
physical protections against decomposition (Oades and Waters,
1991). Specifically, owing to the stimulation of microbial activity
and microbe-derived carbon, plant residue starts to form aggregates
when it enters the soil. Along with the decomposition processing,
plant residues or other particulate organic matter gradually
encrusted with clay particles and microbial byproducts to form
the core of stable microaggregates. Consequently, the mineral crusts
interacting with microbial byproducts managed to form recalcitrant
organo–mineral complexes (Six et al., 2004).

The stability of soil organic matter including peptides, amino
acids, and polysaccharides is strongly related to the presence of
humic substances, which is largely owing to the polymerization of
aromatic units during the humification (Shan et al., 2010).
Modern analytical approaches for characterization of
biomolecules in microbial cells and soils now suggest a direct
and rapid contribution of microbial cell walls to soil organic
matter protections when associated with model polyphenolic
components. The emergent concept of soil organic matter as a
continuum spanning the full range from intact plant material to
highly oxidized carbon in carboxylic acids represents the more
common view among the public (Lehmann and Kleber, 2015).

BIODEGRADATION MECHANISM OF SOIL
ORGANIC MATTER

Soil organic matter degradation mechanisms in natural systems
have remained less known since their structural complexes and
therefore a suite of ligninolytic enzymes are likely engaged in the

FIGURE 1 | Traditional view of the chemical complex of soil organic matters or humus substance. Modified from Wagner and Wolf (1998).
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degradation of humic substances, such as lignin peroxidase (LiP),
manganese peroxidase (MnP), versatile peroxidase (VP), and
laccase (Abdel-Hamid et al., 2013).

Among organisms, actinobacteria and fungi are most well
known to be capable of degrading humic substances. The fungi
involved in humic acid degradation are usually known as white-
rot fungi capable of lignin degradation (Dashtban et al., 2010;
Datta et al., 2017). Extracellular enzymes including laccase and
ligninolytic peroxidase are involved in the cleavage of aromatic
rings; among them, manganese peroxidase is the most
investigated (Nousiainen et al., 2014). Also, protease, lipase,
and various carbohydrases may be involved in the degradation
of aliphatic structural components (peptides, lipids,
polysaccharides, etc.) (Holtof et al., 2019). Enzymatic
degradation of protein from humic acids has been
demonstrated. Meanwhile, the release of amino acids from
humic substances by chemical autoxidation has also been
observed (Kappler and Brune, 1999).

THE MECHANISM AND PROCESS OF
SOIL-DWELLING MACROFAUNA
BREAKING DOWN THE SOIL ORGANIC
MATTER

Some soil fauna feed on soil organic matter, exclusively relying on
soil organic matter in an advanced stage of humification (Briones,
2014). In fact, Donovan et al. (2001) defined four feeding groups
of soil fanuas based on the humification stages of their gut
content: 1) feeding on wood, litter, and grass; 2) feeding on
very decayed wood and/or high organic content soil; and 3)
feeding on only organic soil (so-called true soil feeders) (Donovan
et al., 2001). The mineralization of SOM components throughout
the guts of soil-feeding fauna has a significant impact on carbon-
cycling globally. Indeed, several soil-dwelling fauna evolved the
capacity to efficiently utilize the stored organic carbon within the
soil organic matter (Jiang et al., 2018). Given the independent
evolution of different soil-dwelling fauna, diverse bioprocessing
mechanisms of the soil organic matter–based diet across these
organisms have been established. The major innovation in soil
fauna is a variety of microbes and their relevant enzymes engaged
in these biodegradation processes, which either hydrolyze
residual polysaccharides or degrade polyphenolic components
of soil organic matter.

In the natural ecosystem, there is a diverse population of soil-
dwelling fauna; among them, most research concentrates on
earthworms, beetles, and termites (Swift et al., 1979; Li et al.,
2021). Organic matter transformation is directly affected by soil
macrofauna through the incorporation and redistribution of
various materials and indirectly by making use of the
microbial community with both constructive and destructive
means (Wolters, 2000; Lavelle et al., 2001; Liu et al., 2019).
More current research studies concentrate on the
representative soil organisms including earthworms, beetles,
and termites, which ingest a mixture of organic matter, soil
components, and microorganisms adhering to mineral

particles (Mcquillan and Webb, 1994; Lavelle et al., 1997;
Brauman et al., 2000). Highly compartmentalized gut
structure, extremely alkaline gut microenvironment, hydrolytic
enzymes, and specialized microbiota in the gut of soil-dwelling
fauna are the key points in the digestion of organic matter.

THE CONVERSION OF SOIL ORGANIC
MATTER IN EARTHWORMS

Earthworms live in diverse types of soil, ranging from the top of
soil in the surface litter, rotting logs, and the axils of tree branches,
to the moist soil surrounding natural freshwater bodies
(Reynolds, 1994). Earthworms contribute huge ecological
impacts by modifying the soil structure. For example, the
tropical earthworm Reginaldia omodeoi can take up to
30 times its own biomass of soil per day through its simple
and tubular gut (Figure 2A) (Blouin et al., 2013). In temperate
ecosystems, earthworms also ingest large amounts of material,
with approximately 2–15% of organic matter inputs (Whalen and
Parmelee, 2000). Earthworms live in the soil and ingest a mixture
of soil and organic matter and finally excrete organo–mineral
feces. Some species are dwellers and transformers of litter, living
in organic soil horizons in or near the surface litter, with a diet of
coarse particulate organic matter. This species takes large
amounts of undecomposed litter and excretes holorganic fecal
pellets (Dominguez and Edwards, 2010). Consequently,
incorporation of organic matter into soil and the formation of
macroaggregates are finished through burrowing, consumption,
and egestion activities of earthworms (Guggenberger et al., 1996;
Blanchart et al., 1997). After digestion, nitrogen is also reused by
plants so that in the presence of earthworms, nitrogen
mineralization increases either directly through the release of
nitrogen by their metabolic products and dead tissues or
indirectly through changes in soil physical properties and
fragmentation of organic material and through interactions
with other soil organisms (Lee, 1985; Bityutskii et al., 2002).

Research studies about degradation of soil organic matter by
earthworms are currently focused on the degradation and
transformation of plant-derived materials, such as cellulose,
lignin, and other components of plant litter (Angst et al.,
2021). Early feeding experiments on earthworms by using
14C-labeled lignin substrates indicate that the effect of
earthworms on the degradation of cellulose and lignin has two
distinct aspects: promotion of initial biodegradation and
inhibitory effect of lateral biodegradation (Scheu, 1993). In
holocellulose mineralization, earthworm processing causes a
two-phase alteration: mineralization rates were initially
increased for 6–15 weeks but decreased later in the
experiment. Overall holocellulose mineralization in the soil of
the 6- and 13-year-old fallows was increased by factors of 1.5 and
1.4 due to earthworm processing, respectively, whereas in
wheatfield and beechwood soil, the effects are only slight. In
the case of wheatfield soil, the earthworm processing causes a
two-phase alteration in the context of the rate of lignin
mineralization: mineralization rates were increased for about
10 weeks but decreased afterward in the experiment.
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Moreover, these earthworms have much a higher degradation
capacity on cellulose than on lignin (Scheu, 1993).

In earthworms, the gut community is dominated by the
Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and
Verrucomicrobia taxa within three genera of earthworms,
Aporrectodea, Allolobophora, and Lumbricus (Sapkota et al.,
2020). Several microbiome analysis results of different
earthworms indicate that Proteobacteria is likely the most
abundant in the gut microbiota (Knapp et al., 2009; Liu et al.,
2011; Liu et al., 2018), which is consistent with early reports that
Proteobacteria might be involved in the fermentation, digestion,
and absorption of food for the earthworm host (Flint et al., 2012).

SELECTIVE DIGESTION OF
POLYSACCHARIDES OF SOM IN
HUMIVOROUS LARVA OF BEETLES
Among beetles, most larvae feed on fresh or decomposing
vegetable materials (Wolters, 2000). In the case of the
Scarabaeidae beetle Pachnoda ephippiata, the larvae are
considered almost entirely herbivorous or saprophagous
(Crowson, 2013). The intestinal tract of Scarabaeid beetle
larvae is mainly composed of two enlarged components, the
long tubular midgut and a paunch hindgut, but also a poorly

developed foregut (Figure 2A) (Cazemier, 1999). It has been
observed that in saprophagous beetle larvae, the gut contains not
only a large amount of humic material and plant residues but also
fungal hyphae and other microbes (Bauchop and Clarke, 1977;
Crowson, 2013). In Scarabaeidae families, similar to many soil-
feeders, alkaline pH (>10) is always found in the midgut. The
recalcitrant chitin and peptidoglycan, also the major structural
polymers in the soil organic matter, are co-polymerized with
polyphenols and thereby more likely to be against the soil
microbial degradation. Early feeding experiments reveal that P.
ephippiata larvae enable the selective digestion of those two
polysaccharides over the protections from the polyphenols (Li
and Brune, 2005).

The bacterial community structure study of the P. ephippiata
larvae gut indicates the presence of dense and diverse microbiota,
which is considerably different to the surrounding soils (Egert
et al., 2003; Lemke et al., 2003). One of the dominant bacterial
species isolated from the hindgut of the larvae,
Promicromonospora pachnodae, is capable of reducing iron
and degrading (hemi)cellulose (probably simultaneously),
which indicates that dissimilatory iron reduction is involved in
the degradation of organic matter in the intestinal tract. Also,
other substantial cellulolytic bacteria, hemicellulolytic bacteria,
and methanogenic archaea have been found in the intestinal tract
(Bayon and Mathelin, 1980).

FIGURE 2 | Biodegradation process of soil organic matter in three representative humivorous fauna. (A) Humivorous earthworm, beetle larva, and higher termites,
as well as their gut morphology. Termite photo image courtesy of Jan Šobotnĺk. (B) Structural complex and heterogeneity of soil organic matter and the hypothetical
biodegradation mechanism among soil-feeding macrofauna.
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In some dung beetles, microbiome research studies of
Onthophagus beetles reveal that Enterobacter and Serratia are
the dominant genera in the adults, while Dysgonomonas and
Parabacteroides dominate in larval and pupal stages (Suárez-Moo
et al., 2020). Nevertheless, the genus Dysgonomonas is more
abundant in the larval stage of E. intermedius and E.
triangulatus (Shukla et al., 2016) and the gut microbiota of
two Pachysoma MacLeay desert dung beetle species (Franzini
et al., 2016).

MOBILIZATION AND TRANSFORMATION
OF NITROGENOUS COMPONENTS WITHIN
SOM IN HUMIVOROUS HIGHER TERMITES
Termites consist of seven families and are phylogenetically
classified into lower termites with six families and higher
termites with just one family (Noirot, 1992). For the wood-
feeding “lower” termites, cellulolytic protozoa and bacteria
attribute the plant biomass digestions. Evolutionarily derived
“higher” termites, which are completely lacking in protozoa,
have an extensive diet diversity ranging from wood, grass,
bark, lichen, and decayed litter to organic soil (Wood, 1978).
Among them, soil-feeding species are found in three subfamilies
of higher termites and constitute approximately 67% of all genera
(Brauman et al., 2000). Soil-feeding termites have been
considered as important contributors to biogeochemical cycles,
especially in carbon, methane, and nitrogen (Sugimoto et al.,
2000; Ji and Brune, 2006). In the tropical savanna, termites have
been estimated to be directly responsible for up to 20% of total
carbon mineralization (Lavelle et al., 1997).

In soil-feeding termites, the hindgut is highly
compartmentalized and longer, which is classified in five
sections, from P1 to P5 (Figure 2A) (Brune and Kühl, 1996).
It is observed that in comparison with the generally tubular
compartments of wood feeders, humivorous higher termites
are characterized by dilated P1 compartments, which is
characterized by an increase in the length and volume, so that
it allows a sequential transit of long duration. Notably, the pH
sharply increases in the mixed segment and results in the
alkalinity in the anterior hindgut of soil feeders being the
highest values that have been reported for biological systems
(Wang, 2018).

Early studies have already estimated the strong mineralization
of carbon and nitrogen in the gut of soil-feeding termites, even
though the overall information on humivorous termites is still
limited. Ji and Brune (2005) found that soil-feeding termites,
Cubitermes orthognathus, enable the efficient mobilization and
digestion of the peptidic components within the soil organic
matter by a combination of proteolytic activities and extreme
alkalinity in their intestinal tract (Ji and Brune, 2005). By using
pyrolysis-GC-MS, Griffiths et al. (2013) further confirms that in
comparison to the wood-feeding termites, the soil-feeder
Cubitermes termites efficiently digested peptides and other
nitrogenous residues such as chitin and peptidoglycan of soil
organic carbon, rather than polyphenols (Griffiths et al., 2013).
Interestingly, nitrogenous components are derived from

microbial biomass, which are generally protected from
degradation by covalent linkage to polyphenols and an
intimate association with clay minerals. The ability to mobilize
such recalcitrant humus constituents is accompanied by an even
more pronounced elongation and extreme alkalization (to >pH
12) of the anterior hindgut, which remains a mystery.

Diverse and unique microbial populations exist in the hindgut
of soil-feeding termites. Termites largely depend on these
complex microbial communities to digest and utilize soil
organic matter, including highly recalcitrant lignocellulose and
other organic matters in advanced stages of humification
(Ohkuma and Brune, 2011). It has been demonstrated that the
relative increase in alkali-active proteases in the P1 section and
ammonia accumulates to high concentrations in the posterior
hindgut. The magnified abundance of these alkali-adapted
Firmicutes belongs to clostridia in their hindguts may satisfy
the metabolic requirement (Mikaelyan et al., 2015). However, the
concrete roles played by intestinal microbiota in the digestive
process are still unclear.

To date, there are numerous gut microbiome studies across
feeding groups of termites. The overall pattern indicates a
prevalence of Fibrobacteres and Spirochaetes bacteria in the
wood feeders, whereas humus feeders, soil feeders, and fungus
feeders shared similarities in community structure, with large
proportions of Firmicutes, Bacteroidetes, and Proteobacteria.
Furthermore, the soil feeders also harbored a larger proportion
of actinobacteria (Schloss et al., 2006; Dietrich et al., 2014; Su
et al., 2016; Bucek et al., 2019; Hu et al., 2019). The latest work on
the large-scale metagenomic analysis of 145 termite species
revealed the correlation between host phylogeny and the
functionalities of their microbiota (Arora et al., 2021).

MICROBIOME OF SOIL-DWELLING
HUMIVOROUS FAUNA AND BIOENERGY
APPLICATIONS
As one of the largest carbon pools, soil organic matter represents
a complex and recalcitrant carbon that has an inherent resistance
to decomposition, which is largely owing to the protection
provided by soil minerals and a variety of aromatic
biopolymers (Kleber, 2010). The ability of decomposer soil
fauna to access the stored carbon of soil organic matter at an
incredibly efficient level has fascinated biologists for more than a
century. In parallel to the current industrial saccharification, the
breakdown of complex polysaccharides into monosaccharides
employs strategies involving a combination of chemical
pretreatment and enzymatic hydrolysis to obtain simple sugar
for subsequent fermentation (Hafid et al., 2017). The
depolymerization processing is still not economically viable
and is even challenging.

Notably, soil-dwelling fauna is widespread on Earth, for
example, soil-feeding termites inhabit approximately 75% of
the terrestrial soil surface and consume wood and litter in
different stages of decay and humification (Noirot, 1992; Li
et al., 2017). The microbiome of soil-dwelling humivorous
fauna represents a particularly vast and promising source of
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novel cellulolytic enzymes, or enzyme cocktails, for industrial
cellulosic biofuel production. Yet, we have only begun to
understand the ecologic impacts. Work on the core and
functional bacterial lineages and their related microbial
enzymes and genomic investigations have led to discoveries of
novel and diverse microbe-derived enzymes. To further explore
these biological systems, it is essential to proceed beyond a full
understanding of the chemistry of the nature of all organic matter
in soil. An integrative analysis of chemically tracking the fate of
soil organic matter throughout soil-dwelling humivorous fauna is
urgently necessary.
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