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1. Summary
Understanding gene regulation requires knowledge of changes in transcription

factor (TF) activities. Simultaneous direct measurement of numerous TF activi-

ties is currently impossible. Nevertheless, statistical approaches to infer TF

activities have yielded non-trivial and verifiable predictions for individual

TFs. Here, global statistical modelling identifies changes in TF activities from

transcript profiles of Escherichia coli growing in stable (fixed oxygen availabil-

ities) and dynamic (changing oxygen availability) environments. A core

oxygen-responsive TF network, supplemented by additional TFs acting under

specific conditions, was identified. The activities of the cytoplasmic oxygen-

responsive TF, FNR, and the membrane-bound terminal oxidases implied

that, even on the scale of the bacterial cell, spatial effects significantly influence

oxygen-sensing. Several transcripts exhibited asymmetrical patterns of abun-

dance in aerobic to anaerobic and anaerobic to aerobic transitions. One of

these transcripts, ndh, encodes a major component of the aerobic respiratory

chain and is regulated by oxygen-responsive TFs ArcA and FNR. Kinetic mod-

elling indicated that ArcA and FNR behaviour could not explain the ndh
transcript profile, leading to the identification of another TF, PdhR, as the

source of the asymmetry. Thus, this approach illustrates how systematic

examination of regulatory responses in stable and dynamic environments

yields new mechanistic insights into adaptive processes.

2. Introduction
The bacterium Escherichia coli K-12 is a key model organism that is able to grow in

the presence and absence of oxygen. It is biochemically versatile, having three

basic metabolic modes—aerobic respiration, anaerobic respiration and fermenta-

tion [1–3]. Each metabolic mode has the potential to conserve different amounts

of energy, and hence the most efficient, aerobic respiration, is preferred to anaero-

bic respiration, which is in turn preferred to the least efficient metabolic mode,

fermentation. Under carbon-limited conditions, oxygen availability is the major

determinant of which metabolic mode is adopted [1] and, as is evident from
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the profound changes in biochemistry noted earlier, the

response to changes in oxygen availability requires significant

reprogramming of E. coli K-12 gene expression [4–6].

Escherichia coli K-12 has two major oxygen-sensing tran-

scription factors (TFs): the indirect oxygen sensor ArcBA

and the direct oxygen sensor FNR [7]. Together, these regula-

tors optimize growth in the presence or absence of oxygen by

remodelling central metabolism. Consequently, regulatory

circuits that react to key metabolic signals must be integrated

into the bacterial response to oxygen. Moreover, oxygen

availability alters the properties of some nutrients (e.g. the

redox state of metal ions), which in turn acts as a signal to

other regulatory circuits. To fully understand the complex

regulatory remodelling underpinning responses to changes

in oxygen availability requires detailed knowledge of the

changes in activity of multiple TFs. Experimental measure-

ment of the activities of numerous TFs in a dynamic

environment is unfeasible, however, owing to technical limit-

ations. Therefore, statistical approaches have been proposed

to infer changes in TF activities from downstream target

data [8–11]. While these models rely on simplifying assump-

tions, they have been shown to yield non-trivial and

verifiable predictions for individual TFs [4,12,13]. Here,

transcript profiling, mathematical modelling and model vali-

dation have been used to systematically study E. coli K-12 TF

activities in stable (steady-state) environments maintained at

fixed oxygen supply rates, and in the unstable dynamic

environments created during transitions between aerobic

and anaerobic conditions.
3. Material and methods
3.1. Strains and chemostat growth conditions
Escherichia coli K-12 MG1655 and its derivatives JRG6009

(a lac mutant carrying the FF(-41.5) FNR-reporter plasmid

[14]) and JRG6031 ( pdhR mutant) were used.

Steady-state continuous cultures were established in a 2 l

Labfors chemostat (Infors-HT, Bottmingen, Switzerland) in

glucose-limited Evans Medium [4,15]. Steady-state chemostat

cultures at different aerobiosis levels were established as

described previously [4,16]. Anaerobic conditions were sus-

tained by sparging with 5% CO2/95% N2. Transitions were

carried out by adjusting the gas supply. Dissolved oxygen

levels were monitored using a TruDO Dissolved Oxygen

Sensor (Finesse). b-Galactosidase assays were carried out

according to Miller [17].

3.2. RNA isolation
Chemostat culture samples for transcriptional profiling were

directly eluted into RNAprotect (Qiagen) to rapidly stabilize

the mRNA. Total RNA was prepared using the RNeasy RNA

purification kit (Qiagen), according to the manufacturer’s

instructions (including the DNase treatment step). RNA

was quantified on a NanoDrop 1000 spectrophotometer

(Thermo Fisher Scientific).

3.3. Transcriptional profiling
Transcriptional profiling was carried out in a reference style

(Cy5-labelled cDNA was derived from RNA, while reference
Cy3-labelled cDNA was derived from genomic DNA), as

described previously [4]. For each time point, the transcrip-

tional profiles of two biological and two technical replicates

were measured. Transition microarray datasets are deposited

in ArrayExpress with the accession no. E-MTAB-996. Steady-

state transcriptional profiles are available under accession

number E-MTAB-285.
3.4. RT-PCR
Relative RNA quantities were determined on an Mx3005P

Thermocycler using SYBR Green detection of amplification

in a two-step protocol. Initially, 2 mg total RNA was con-

verted to cDNA using SuperScriptIII Reverse Transcriptase

(Invitrogen) and 1.2 mg Random Primers (Invitrogen) in a

20 ml reaction volume. cDNA was purified using a QiaQuick

PCR cleanup column (Qiagen), eluting into 100 ml water. Pur-

ified cDNA was analysed (5 ml per well) on a RT-PCR plate

using Sensimix dT SYBRGreen Mastermix kit (Quantace)

following the manufacturer’s instructions (annealing temp-

erature: 588C; elongation time: 30 s) using primers specific

to ndh, hypB, icd, dmsB and hybO. For normalization, a house-

keeping gene gyrA was used to control for differences in

starting material, while a genomic DNA dilution series was

used to correct for differences in primer amplification effi-

ciencies between different primer sets. The sequences of the

primer pairs were: ndh CGCGACGGGTGTAGAACT, ACGT

TCAGGGCTTCGTTG; gyrA ACCTTGCGAGAGAAATTACA

CC, AATGACCGACATCGCATAATC; hypB GTCTGGCTG

AACGCAACC, AGGCGCATTAGGGTTTCC; icd GGCGGTG

AACTGATCGAC, GGACGCAGCAGGATCTGT; dmsB AGC

TTCCGCCGCATTTAT, CGGATCTTCGCAGTGGTT; hybO
CTGCAGGCGCTATTGGTT, TTCTCCCCGTGAGTCAGC.
3.5. Global probabilistic modelling of
transcriptomic data

TFINFER [11] was used to deduce the activities of 134 TFs sim-

ultaneously. TFINFER is based on a probabilistic model of

transcription [8] that relies on a log-linear approximation to

transcriptional dynamics. While this is an approximation to

the complexity of transcription, it does capture first-order

effects and allows inference to be made for a very large

number of TFs and genes.

Mathematically, the model is given as follows:

ynðtÞ ¼
X

m
XnmbnmcmðtÞ þ 1n:

Here Xnm is a binary matrix whose entries are 1 if TF m binds

gene n, and zero otherwise. The 134 TFs in the connectivity

matrix were chosen from the EcoCyc database [18] as those

with direct evidence of binding to target promoters. The

term bnm accounts for the fact that the effect of a TF is both

gene- and transcription-factor-specific; they are given a zero

mean Gaussian prior, allowing equal likelihood of repression

and activation. The term cm(t) represents the activity of TF m
at time t and is given a state-space model prior that enforces

smooth changes in TF activity. Bayesian inference is intract-

able in this model; so an approximate solution is obtained

using a variational mean field approximation.

The model has a clear sign ambiguity as the terms bnm and

cm(t) are multiplied: biologically, it is difficult to distinguish an
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activator increasing its activity or a repressor decreasing its

activity. This ambiguity can be resolved using either prior

knowledge of the TF state at some conditions (e.g. FNR being

active at the start of an anaerobic to aerobic transition) or by

knowing the sign of the interaction of TFs with specific genes.

3.6. Differential equation modelling of
regulatory circuits

The TFINFER approach is extremely useful to obtain a coarse-

grained prediction of regulatory activity across the whole

regulatory network. However, it is unlikely to yield accurate

predictions of subtler effects such as on/off times of TFs, and

it cannot model saturation effects, nonlinearity or mRNA

decay. To address these issues, a more detailed model of tran-

scription where the rate of mRNA transcription is affected by

TFs that exhibit switch-like behaviour was applied. The

model was formulated as an ordinary differential equation:

dx
dt
¼ Amþ b� lx;

where x represents mRNA concentration and m is a binary con-

tinuous-time Markov process (telegraph process) representing

activation/inactivation of TFs. The time course of the TF

activity, along with the kinetic parameters in the right-hand

side of the equation, is inferred from the data using a vari-

ational Bayesian approximation. The model in this simple

single TF form was initially proposed by Sanguinetti et al.
[19] and later generalized to multiple TFs [10].

3.7. NMR
Extracellular metabolite concentrations were measured by 1H

NMR. Culture supernatants were filtered (0.22 mm pore size)

and the resultant cell-free fraction analysed as described

previously [4,20].

3.8. Purification and phosphorylation of ArcA
ArcA protein was purified as described previously [21]. Phos-

phorylation was achieved by incubating 4.8 mg His6-ArcA in

10 ml of TGED buffer [22] containing 50 mM acetyl phosphate

(Sigma) for 30 min at 308C. The phosphorylated ArcA was

used immediately.

3.9. In vitro transcription assays
These were as described previously [23] except that 1 pmole

of s70-saturated E. coli RNA polymerase (Epicentre) and

0.1 pmoles of PCR product corresponding to the upstream

region of the ndh gene were used. This DNA fragment was

426 bp in length and was amplified with the following

primers (forward CGAATTCTGTGGGTCGGATA and

reverse CAGCTGTGTTGCCATTTCC). Between 0 and 5 mM

phosphorylated His6-ArcA or 5 mM unphosphorylated

His6-ArcA was included in each reaction.

3.10. Measurement of ArcA phosphorylation
ArcA phosphorylation levels were measured using Phos-tag-

acrylamide gel electrophoresis and subsequent Western

immunoblotting, as described previously [4].
4. Results and discussion
4.1. The activities of seven global regulators coordinate

gene expression in response to oxygen availability
Transcript profiles were obtained for E. coli K-12 cultured in

stable environments (i.e. steady states at fixed oxygen

supply rates, equivalent to 0, 31, 56, 85, 115 and 217 per

cent aerobiosis) [4]. The aerobiosis scale is based on the

inverse-linear relationship between oxygen supply and the

specific rate of acetate production in glucose-limited chemo-

stat cultures [16]. At 0 per cent aerobiosis, cultures are

anaerobic, whereas at 100 per cent aerobiosis, cultures have

just sufficient oxygen to grow entirely by aerobic respiration

(at aerobiosis values greater than 100%, the oxygen supply

exceeds the amount required to support aerobic respiratory

growth). The region between 0 and 100 per cent aerobiosis

is the micro-aerobic range [16]. The activities of 134 TFs

were simultaneously inferred from the global transcript pro-

file of each steady-state using the TFINFER probabilistic

modelling software [11]. A brief description of the probabilis-

tic model [8] underlying the TFINFER software is given in §3.5.

In this analysis, an active TF was defined as the DNA-

binding form of the protein. There are four recognized

mechanisms for modulating TF activity in E. coli K-12:

ligand binding; covalent modification; sequestration; or

altered intracellular concentration. The model implied that

the activities of 23 of the 134 TFs were significantly altered

(signal-to-noise ratio more than 5) by oxygen availability.

Martinez-Antonio & Collado-Vides suggested that global

TFs can be identified by the breadth of their regulons, their

interactions with co-regulators and alternative s factors, the

number of ‘slave’ TFs, the size of their evolutionary families

and the range of conditions under which they are active

[24]. By these criteria, ArcA, CRP, Fis, FNR, H-NS, IHF and

Lrp were designated as global TFs in E. coli K-12 [24]. All

seven global TFs exhibited altered activity across the aerobio-

sis scale (figure 1a). The signals perceived by these global TFs

are connected to the energetic state of the bacterium; recall

that oxygen availability has profound effects on E. coli K-12

energetics. Thus, ArcA and FNR regulate respiration in

response to oxygen availability (the variable in these exper-

iments), CRP and Lrp sense nutritional state via cAMP and

L-leucine concentrations, and Fis, H-NS and IHF modify

DNA topology, which is itself dependent on energy status

[7,25–27]. The patterns of TF activities indicate a complex

interplay between the global regulators to coordinate gene

expression across the aerobiosis scale (figure 1a). H-NS and

Fis were predicted to exhibit more complex activity (DNA-

binding) profiles than the other global regulators, with

H-NS activity being the lowest in the mid-aerobiosis range

and Fis activity being greatly increased under conditions of

excess oxygen supply (aerobiosis � 115%). The influence

of CRP on the transcriptome progressively increased with

increased aerobiosis, whereas the activities of ArcA, FNR,

IHF and Lrp decreased as aerobiosis increased. The predicted

ArcA activities at set points on the aerobiosis scale have been

previously experimentally validated [4]. For FNR, activity

was predicted to significantly decrease only at more than or

equal to 85 per cent aerobiosis. This behaviour of FNR was

experimentally validated by measuring the activity of a

synthetic FNR-dependent promoter (figure 2a and table 1).
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Figure 1. Activity profiles for global TFs predicted from gene expression
datasets. (a) Inferred activities of the indicated global TFs in stable steady-
state cultures grown at defined points on the aerobiosis scale. (b) Inferred
activities of the global TFs in the unstable environments of transitions from
anaerobic to aerobic conditions (diamonds, solid lines) and aerobic to
anaerobic conditions (squares, dashed lines). The inferred activities arise from
the term cm(t) in the TFINFER model [11]. In all cases, the signal-to-noise ratio
was more than 5.
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4.2. Spatial effects can account for the response of FNR
in steady-state cultures maintained at fixed points
on the aerobiosis scale

The measured concentrations of cytochrome bo0 (Cyo—a

terminal oxidase with relatively low oxygen affinity, KM�
0.02–0.35 mM) [35] and cytochrome bd (Cyd—a terminal

oxidase with high affinity for oxygen, KM� 3–8 nM) [36],

reported by Rolfe et al. [4], suggest that the potential rates

of oxygen consumption, calculated from the data of Kita

et al. [33,34], exceed the rate of oxygen supply until 115 per

cent aerobiosis, at which point dissolved oxygen was first

detectable in the cultures analysed here (table 1). Thus, it

appears that, although oxygen is present at sufficient concen-

tration to alter cell physiology and ArcBA activity at lower

aerobiosis values, as evidenced by the altered transcript pro-

files [4], the bacterial cytoplasm remains essentially

anaerobic. The simplest explanation for these observations

is that efficient consumption of oxygen by terminal oxidases
located at the cell membrane prevents oxygen reaching the

bulk of the cytoplasm. This implies that, even on the scale

of the bacterial cell, spatial constraints have significant phys-

iological implications. Hence, ‘hybrid’ metabolism, in which

anaerobic processes are supported in the cytoplasm while

aerobic respiration occurs in the vicinity of the cell mem-

brane, is facilitated under micro-aerobic conditions

(figure 2b). This concept is consistent with the inferred and

measured activity of FNR, the observed production of fer-

mentation products (e.g. acetate), induction of transcripts

encoding enzymes of the glyoxylate shunt in the microarray

data (implying that at least some excreted acetate is used)

and the absence of detectable dissolved oxygen under micro-

aerobic conditions (table 1) [4]. Furthermore, the spatial separ-

ation of oxygen consumption and FNR sensing of oxygen

could provide an explanation for the presence of membrane-

associated (ArcBA) and cytoplasmic (FNR) TFs to coordinate

global gene expression in response to oxygen availability.

Hence, the membrane-bound sensor of respiratory activity

and anaerobic metabolism ArcB [28–30] mediates changes in

gene expression through its cognate regulator ArcA when the

supply of oxygen is insufficient to fully penetrate the cytoplasm

and inactivate the direct oxygen sensor FNR [31,32]. Further

work is now needed to test this hypothesis and establish the

relative contributions of the alternative terminal oxidases in

shielding transcriptionally active FNR from inactivation.
4.3. Perturbation of steady-state cultures identifies a
core oxygen-responsive TF network

As a commensal enteric bacterium E. coli encounters a wide

range of environments during transit through a host digestive

system to the outside world. A central feature of this lifestyle

is the transition between anaerobic (e.g. host intestine) and

aerobic (e.g. external milieu) environments. To determine

the response of the seven global TFs in environments in

which the oxygen supply is either increasing or decreasing,

steady-state chemostat cultures were sampled for transcript

profiling before perturbation by altering the gas mix used

to sparge the cultures. After 2, 5, 10, 15 and 20 min, further

samples were obtained for transcript profiling. For the

anaerobic–aerobic transition, the dissolved oxygen tension

was initially zero and rose after 1 min to 40 per cent satur-

ation, and after 2 min it stabilized at 95 per cent saturation.

In the aerobic–anaerobic transition, the dissolved oxygen

tension was initially 65 per cent and fell after 1 min to

29 per cent, and after 2 min stabilized at 0 per cent.

Thus, the rate of change in oxygen availability for the two

transitions was similar, but with opposite sign.

All seven global TFs discussed already responded in both

transitions. In all cases, the responses were reversible during

the acute phase of adaptation in that where activity was pre-

dicted to increase in the aerobic–anaerobic transition

(figure 1b, squares, dashed lines), it was predicted to decrease

in the anaerobic–aerobic transition, and vice versa (figure 1b,

diamonds, solid lines).

The inferred responses of the global TFs are consistent with

them acting as part of a core network in coordinating gene

expression in response to changes in oxygen availability

(figure 3). This core network was extended to include local reg-

ulators (CpxR, CusR, FhlA, Fur, IscR, ModE, NarL, NrdR and

PdhR) that exhibited responses in the stable environments of
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Figure 2. FNR activity under steady-state conditions. (a) The relative activity of FNR estimated from measurement of b-galactosidase activities from the model
FNR-dependent FF-41.5 promoter fused to lacZ (data shown in table 1) in cultures grown at the indicated aerobiosis values (white bars). The black bars show the
relative activity of FNR inferred from the transcript profiles at the indicated aerobiosis values (as shown in figure 1). In both cases, 1 represents the maximum
activity. In the validation experiments (white bars), the chemostats set to achieve 56 per cent aerobiosis actually reached 42 per cent aerobiosis; thus only a single
white bar is shown for 42 per cent aerobiosis and a single black bar for 56 per cent aerobiosis. (b) Model illustrating how oxygen consumption at the bacterial cell
membrane is sufficient at aerobiosis unit (AU) values less than or equal to 85 per cent to exclude oxygen from the bulk of the cytoplasm. In the absence of oxygen
(0% AU), the aerobic electron transport chain is inactive. ArcB autokinase activity is enhanced by: (i) the absence of inhibition by oxidized quinone (Q) [28]; and (ii)
fermentation product (D-lactate, acetate, pyruvate) mediated activation of kinase activity and inhibition of ArcA�P dephosphosphorylation [29,30]. The direct oxygen
sensor FNR activates ‘anaerobic’ gene expression in the absence of oxygen [31,32]. Progress up the aerobiosis scale in the greater than 0 – 85 per cent AU range
enhances flux through the aerobic electron transport chain (fed by the major primary dehydrogenases, Nuo and Ndh, and terminating in the major oxidases, Cyd
and Cyo) such that oxidized Q is available to inhibit ArcB autokinase activity and the concentrations of fermentation products are lowered, resulting in conversion of
ArcA�P to inactive ArcA. However, FNR remains active, because the abundances of the terminal oxidases [4] are such that oxygen consumption at the membrane
protects the cytoplasmic FNR iron – sulphur cluster from oxygen attack (dashed line). Thus, in this ‘micro-aerobic’ range, ArcA-activated genes are switched off but
FNR-activated genes remain on. At aerobiosis values greater than or equal to 85 per cent (greater than 85% AU), ArcA is inactivated (dashed line) but the supply of
oxygen now exceeds the rate of consumption at the membrane (table 1), exposing FNR to oxygen, thereby switching off FNR-activated genes. Thus, locating sensors
in the membrane (ArcB) and the cytoplasm (FNR) allows optimal coordination of gene expression in the ‘micro-aerobic’ range. The model illustrates the data analysis
provided in table 1.
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Figure 3. The oxygen-responsive TF network of E. coli K-12. The three ovals
represent the steady-state cultures, the anaerobic – aerobic transition and the
aerobic – anaerobic transition. TFs that are predicted to respond are indicated.
Sectors that overlap contain TFs that respond in two or all three of the
conditions tested.

Table 1. The capacity for oxygen consumption exceeds oxygen input leading to an anaerobic cytoplasm, as indicated by FNR activity, in micro-aerobic steady-
state cultures of E. coli.

AUa

(%)

(O2) in
solutionb

(mM)

O2
c

(3 10216 moles
cell21 min21)

Cydd

(3 10220

moles cell21)

Cyod

(3 10220 moles
cell21)

maximum
potential rate O2

consumed by Cyo
and Cyde

(3 10216 moles
cell21 min21)

FNR-dependent
FF-41.5 promoter
activityf (Miller
units)

0 0 0 1.9 0.72 2.5 5222+ 171 (100%)

31 0 5.8 8.6 1.0 8.0 4795+ 170 (92%)

42 4648+ 149 (89%)

56 0 9.6 11.1 1.3 10.3

85 0 10.8 11.1 2.3 11.8 3550+ 232 (68%)

115 15 8.1 3.2 1.9 5.3 864+ 23 (16%)

217 115 12.6 1.7 1.5 3.6 230+ 20 (4%)
aAerobiosis units (AU) as defined by Alexeeva et al. [16].
bConcentration of dissolved oxygen measured by a TruDO dissolved oxygen sensor.
cCalculated from the measured number of cells in the steady-state cultures and the oxygen input into the chemostat.
dCalculated from the amounts of bo0 (Cyo) and bd (Cyd) reported by Rolfe et al. [4].
eCalculated from the Cyo and Cyd values using the data of Kita et al. [33,34].
fb-Galactosidase activities of steady-state cultures with the FNR-dependent semi-synthetic FF-41.5 promoter fused to lacZ to
report FNR activity. The values in parentheses are percentage activity assuming that 100% activity is achieved in the absence
of oxygen.
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steady-state cultures across the aerobiosis scale and in the

unstable environments of the transitions (figure 3). Thus,

changes in oxygen availability (sensed directly by FNR, and

indirectly by ArcA) affect the redox state of the system, leading

to consequences for metal ion homeostasis (copper, molybdate,

iron; sensed by CusR, ModE and Fur), iron–sulphur cluster

turnover (sensed by IscR), ribonucleotide reductase activity
(regulated by NrdR), over-metabolite production (formate

and pyruvate; sensed by FhlA and PdhR) and cell-envelope

stress (sensed by CpxR). Therefore, it is clear that the influence

of oxygen availability on the E. coli K-12 transcriptome extends

beyond those genes controlled by the known oxygen-respon-

sive regulators, ArcA and FNR, and it is suggested that the

activity of a core network of 16 TFs is modulated to coordinate

E. coli K-12 gene expression in environments with different, but

stable, oxygen availabilities or in the unstable environments of

the transitions (figure 3).

A comparison of the TF responses for the steady-state and

transient cultures revealed that changes in activities were

apparent in the latter but not in the former, and vice versa.

Thus, additional TFs interact with the core network to integrate

the response to specific signals into the transcriptional

programming of the bacterium (figure 3). For example, in

steady-state cultures, as aerobiosis increased, the excretion of

acidic fermentation end-products decreased [4], and the acid

responsive regulators EvgA and GadX exhibited correspond-

ingly lower activities (figure 3). These TFs did not feature in

either transition because there was insufficient time for the

acidic end-products to sufficiently accumulate (aerobic to

anaerobic) or diminish (anaerobic to aerobic) to affect their

activity (table 2). OxyR and SoxS are the major regulators of

the oxidative stress response in E. coli K-12 [37]. Both these

TFs were predicted to respond only during the anaerobic to

aerobic transition (figure 3), presumably reflecting the need

to manage a burst of reactive oxygen species (peroxide and

superoxide) specifically during adaptation to aerobic growth.

Thus, it is concluded that ArcA, CRP, Fis, FNR, H-NS,

IHF and Lrp are truly global regulators, at least as far as

the response to oxygen availability is concerned, in the

sense that their outputs create the transcriptional framework

upon which local regulators operate in response to specific

unstable environments.



Table 2. Measurements of extracellular metabolites during transitions of E. coli MG1655 between environments with different oxygen availabilities.

time after
transition
(min)

acetate
(mM)

formate
(mM)

succinate
(mM)

pyruvate
(mM)

lactate
(mM)

fumarate
(mM)

ethanol
(mM)

to aerobic conditions

0 17.9+ 0.2 35.3+ 0.3 4.6+ 0.1 ,0.10 0.19+ 0.04 0.03+ 0.01 9.5+ 0.02

20 19.0+ 0.2 36.2+ 0.6 4.3+ 0.1 1.1+ 0.01 0.29+ 0.01 0.17+ 0 9.8+ 0.2

to anaerobic conditions

0 ,0.10 ,0.1 ,0.05 ,0.10 ,0.05 ,0.01 ,0.10
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Figure 4. Profiles of transcripts encoding alternative NADH dehydrogenases during adaptation to changes in oxygen availability. (a) Diagram showing the
components of the best characterized branched aerobic electron transport chain of E. coli. The central rectangle represents the cytoplasmic membrane. NADH is
oxidized by either the proton-translocating NADH dehydrogenase I (Ndh-I, solid line) or by the non-proton-translocating NADH dehydrogenase II (Ndh-II, broken
line). Electrons are fed into the quinone pool (Q) and then used by the terminal oxidases (cytochrome bd, Cyt bd-I; or cytochrome bo0, Cyt bo0) in the reduction of
oxygen to water. Cyt bo0 has a relatively low affinity for oxygen, whereas Cyt bd-I has a higher affinity for oxygen. Because of the different properties of the
dehydrogenases and the oxidases, between one and four protons can be translocated for each electron. (b,c) Transcript profiles of (b) nuoA-N and (c) ndh, during
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(black bars). The infinity symbol represents the final steady state (anaerobic for the white bars and aerobic for the black bars).
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4.4. PdhR behaviour during transitions accounts for the
irreversibility of the ndh transcript profile

One of the key adaptations made by E. coli in response to altered

oxygen availability is switching between alternative aerobic

electron transport chains by ‘mixing and matching’ combina-

tions of primary dehydrogenases (e.g. NADH dehydrogenase

I, Ndh-I, encoded by the nuo operon, and NADH dehydro-

genase II, Ndh-II, encoded by ndh) and terminal oxidases

(e.g. cytochrome bo0, encoded by the cyoA-E operon, and cyto-

chrome bd-I, encoded by the cydAB operon) to optimize

energy conservation and growth potential (figure 4a).
In both transitions, the responses of the nuo operon tran-

scripts encoding the energy conserving Ndh-I were minimal

(figure 4b). By contrast, the ndh transcript, encoding the non-

proton translocating Ndh-II, responded strongly in the

transition from anaerobic to aerobic conditions (figure 4c,

black bars), but not in the reverse transition (figure 4c,

white bars). Transcription of ndh is repressed by FNR [38]

and gene expression profiling suggests that it is activated

by ArcA [39]. Therefore, to determine whether the observed

asymmetry of the ndh response could be accounted for by

changes in the activities of ArcA and FNR, a dynamical

model was developed based on high-resolution RT-PCR
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Figure 5. ArcA and FNR activities during transitions between aerobic and
anaerobic conditions, and repression of ndh transcription by ArcA in vitro.
(a) Predicted activities of ArcA (solid lines) during transition from aerobic to
anaerobic (i) and anaerobic to aerobic (ii) conditions. The ordinate axes are
the ArcA activities (0 – 1, where 0 is off and 1 is on) estimated from a model
based on a two-state Markov jump process in which the TF activity moves
quickly between on and off states. To validate the model, the
phosphorylation state of ArcA in the bacterial cells at the indicated times was
determined by quantitative densitometry of Western blots (representatives
shown below the charts) of ArcA separated by Phos-tag-acrylamide gel
electrophoresis [4] 0, 1, 2, 5, 10, 15 and 20 min into the transitions (lanes
1 – 7). Lane 8 shows purified unphosphorylated His-tagged ArcA, and lane
9 shows the phosphorylated form (ArcA�P) [4]. For each transition, the
maximum amount of ArcA�P measured was set at 1 so that relative ArcA
activity could be calculated (diamond data points on the charts) for
comparison with the model. (b) Predicted activities of FNR (solid lines) during
transition from aerobic to anaerobic (i) and anaerobic to aerobic (ii)
conditions. The ordinate axes are the FNR activities (0 – 1, where 0 is off and
1 is on). To validate the model, the activity of FNR was estimated by
measuring transcription from a single-copy synthetic FNR-dependent
promoter by RT-PCR (dashed lines). (c) In vitro transcription of ndh in the
absence and presence of ArcA. Lanes 1 – 6, 0, 0.8, 1.3, 1.9, 2.5, 5.0 mM
ArcA�P; lane 7, 5.0 mM dephosphorylated ArcA. The locations of the ndh
transcript and the loading control are indicated.
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data for a training set of genes that were either ArcA- (hypB
and icd) or FNR- (dmsB, hybO) regulated. Details of the mod-

elling procedure are given in §3.6. This model is based on a

differential equation representation of the system [10], yield-

ing more realistic estimates for the response times of ArcA

and FNR in the transitions than could be obtained from the

low-resolution global transcript profiling data. The model

implied that in both transitions the response times of ArcA

(figure 5a, solid lines) and FNR (figure 5b, solid lines) were

similar. The modelled behaviours of ArcA and FNR were

validated by direct measurements of the abundance of phos-

phorylated ArcA (figure 5a, diamonds) and by quantifying

the transcript generated from activation of the synthetic

FNR-dependent promoter FF-41.5 (figure 5b, dashed lines)

during the transitions. The predicted profiles show a remark-

able symmetry in that response times of both TFs are similar

in both directions. Therefore, a model based solely on ArcA

and FNR control could not account for the observed asymme-

try in the ndh expression profile. Moreover, in vitro
transcription reactions showed that rather than activating

ndh expression phosphorylated ArcA acted as a repressor

(figure 5c). This latter observation is consistent with the

locations of the predicted ArcA binding sites in the ndh
gene (one upstream of the transcript start at 257; and five

downstream at þ36, þ52, þ57, þ66 and þ68) [18]. Therefore,

the dynamical behaviour and regulatory outputs of ArcA and

FNR cannot account for the asymmetric nature of the ndh
transcript profile in the transitions.

In addition to regulation by ArcA and FNR, ndh
expression is repressed by the pyruvate-responsive TF

PdhR; repression is relieved by pyruvate [40]. The TFINFER

model implied that the PdhR response was fast and strong

upon transfer of anaerobic cultures to aerobic conditions, con-

sistent with the presence of pyruvate in the culture medium

from this transition (figure 6a, diamonds, solid line;

table 2). In the reverse transition, the PdhR response was rela-

tively slow and weaker, consistent with the failure to detect

pyruvate excretion (table 2), presumably because when PFL

is synthesized, pyruvate is rapidly consumed. But, crucially,

the PdhR response was predicted to have the same

sign in both transitions (figure 6a)—that is, in both

anaerobic–aerobic (figure 6a, diamonds, solid line) and

aerobic–anaerobic (figure 6a, squares, dashed line)—and

PdhR activity was predicted to decrease. Thus, the model

generated the hypothesis that PdhR was the source of the

asymmetrical ndh transcript profiles in the transitions. To

test this, high-resolution (every 2 min for 20 min) RT-PCR

measurements of ndh transcript abundance in wild-type

E. coli cultures were obtained. These measurements

(figure 6b) were qualitatively similar to those obtained by

microarray analysis (figure 4c). Thus, ndh expression was

rapidly and strongly enhanced in the anaerobic to aerobic

transition, which could be explained by ArcA, FNR and

PdhR all repressing ndh expression under the initial anaerobic

conditions followed by rapid de-repression upon introduc-

tion of oxygen, which inactivates ArcA and FNR, and

causes pyruvate accumulation, by inhibition of pyruvate for-

mate-lyase [20], to inactivate PdhR. Despite the activation of

the repressors ArcA and FNR by the withdrawal of oxygen in

the aerobic–anaerobic transition, ndh expression did not

decrease (figure 6b), consistent with the microarray data

(figure 4c). The predicted activity of PdhR (figure 6a) implied

that it slowly switched to a lower activity during the
transition. This would de-repress ndh expression to oppose

ArcA and FNR-mediated repression, maintaining relatively

constant ndh expression. This explanation of the asymmetry

of the ndh transcript profiles in the transitions implies that

the ndh transcript response in a pdhR mutant should resemble
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the wild-type for the anaerobic–aerobic transition (ndh
repression is still relieved upon inactivation of ArcA and

FNR). By contrast, the ndh transcript abundance should

decrease in aerobic–anaerobic transitions of the pdhR
mutant because there is no PdhR-mediated de-repression to

counter-balance ArcA and FNR-mediated repression that

occurs upon oxygen exposure. Therefore, in the pdhR
mutant the ndh transcript profile was predicted to be revers-

ible. This proved to be the case (compare figure 6b,c). Thus,

changes in PdhR activity account for the asymmetric behav-

iour of the ndh transcript during transitions between

environments with different oxygen availabilities. This obser-

vation emphasizes the need to examine dynamic as well as

steady-state behaviour to fully understand adaptive processes

mediated by gene regulatory circuits in bacteria.

4.5. Conclusion
A core network of TFs that includes the major oxygen-respon-

sive regulators ArcA and FNR has been identified that

controls transcriptional adaptation when E. coli encounters

environments with different oxygen availabilities (figures 1

and 3). The predicted ArcA [4] and FNR activities have

been experimentally verified (figure 2a) and are indicative

of significant spatial effects that affect the reprogramming

of gene expression in the micro-aerobic range. Thus, cyto-

plasmic FNR (and other oxygen-sensitive proteins) are

protected by oxygen consumption at the membrane by the
terminal oxidases—a form of respiratory protection that

allows ‘hybrid’ anaerobic and aerobic metabolism to function

under micro-aerobic conditions (figure 2b and table 1).

The core oxygen-responsive TF network is extended by

additional TFs that operate to manage specific challenges

posed by particular steady-state or dynamic conditions. The

mechanistic insight that can be gained by applying the sys-

tems approach advocated here is clearly illustrated by

identifying the TF PdhR as the source of the asymmetric be-

haviour of the ndh transcript in transitions (figures 4 and 6).

Thus, the combination of transcript profiling in stable

and dynamic environments, mathematical modelling, and

biochemical measurements demonstrates the added value

of a systems approach to fully appreciate and understand

the mechanisms underpinning fundamental adaptive

processes in bacteria.
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