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Abstract

High-throughput shotgun metagenomics sequencing has enabled the profiling of myriad natural communities. These data are

commonly used to identify gene families and pathways that were potentially gained or lost in an environment and which may be

involved in microbial adaptation. Despite the widespread interest in these events, there are no established best practices for iden-

tifyinggenegainand loss inmetagenomicsdata.Horizontalgene transfer (HGT) represents severalmechanismsofgenegain thatare

especially of interest in clinical microbiology due to the rapid spread of antibiotic resistance genes in natural communities. Several

additional mechanisms of gene gain and loss, including gene duplication, gene loss-of-function events, and de novo gene birth are

also important toconsider in thecontextofmetagenomesbuthavebeen less studied.This review is largely focusedondetectingHGT

in prokaryotic metagenomes, but methods for detecting these other mechanisms are first discussed. For this article to be self-

contained, we provide a general background on HGT and the different possible signatures of this process. Lastly, we discuss how

improved assembly of genomes from metagenomes would be the most straight-forward approach for improving the inference of

gene gain and loss events. Several recent technological advances could help improve metagenome assemblies: long-read sequenc-

ing, determining the physical proximity of contigs, optical mapping of short sequences along chromosomes, and single-cell meta-

genomics. The benefits and limitations of these advances are discussed and open questions in this area are highlighted.

Key words: horizontal gene transfer, lateral gene transfer, shotgun metagenomics, metagenome-assembled genomes,

microbiome.

Introduction

Microbes are microscopic organisms that include prokaryotes

(bacteria and archaea), viruses, fungi, and protists. These

organisms, particularly prokaryotes and viruses, are known

to rapidly adapt to novel abiotic and biotic environmental

changes. The genetic bases for these adaptations have largely

been identified by studying the genomes of isolated organ-

isms of interest, which have greatly improved our understand-

ing of the genetic bases of adaptations throughout microbial

evolution (Parkhill et al. 2003; Etienne et al. 2013; Harding

et al. 2017).

A substantial proportion of microbes in natural communi-

ties are currently uncultured (Amann et al. 1995; Martiny

2019) and acquiring isolate genomes for these organisms

has proven difficult. These uncultured microbes have been

studied through metagenomics approaches, which involve

the sequencing of all, or an enriched set, of microbial

genomes in a sample (Riesenfeld et al. 2004).

Metagenomics sequencing (MGS) enables researchers to

investigate how environmental conditions shape the taxo-

nomic and functional composition of natural microbial com-

munities. Recently, shotgun MGS—unbiased high-

throughput sequencing of all DNA in a sample—has become

the predominant method of metagenomics profiling. MGS

analyses have largely been gene-centric, meaning that the

focus has been on the relative abundances of individual genes

(and inferred pathway relative abundances) in a community.

More recently, the focus has shifted toward generating

metagenome-assembled genomes (MAGs) from this se-

quencing data (Parks et al. 2017; Stewart et al. 2018; Pasolli

et al. 2019). An important challenge for either analysis ap-

proach is to determine whether genes hypothesized to be

adaptive arose through gene gain mechanisms or alternatively

were part of preexisting genetic variation.

New genes can be acquired through three processes: 1)

gene duplication and diversification, 2) the gain of a de novo

gene (e.g., in previously noncoding DNA), and 3) horizontal

gene transfer (HGT). In addition to the gain of new genes,
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microbes are known to adapt to new environments through

gene loss. All of these processes will be described in detail

below.

Although most MGS analyses are based on gene-centric

methods, assembling MGS reads into genomes is one clear

way to improve the identification of gene gain and loss

events. The key challenge of this approach is that assembly

errors can result in gene gain and loss events being falsely

identified or missed. Several recent technological

advancements could help overcome this barrier. These tech-

nologies include long-read sequencing, mapping the physical

proximity and interactions of DNA fragments, optical map-

ping of short sequences along chromosomes, and single-cell

metagenomics.

Herein, the approaches applied so far to detect gene gain

and loss events in MGS data are reviewed. This review largely

focuses on identifying HGT events because these events are of

primary interest within the field and there have been several

recent methodological advances in HGT-detection in the con-

text of metagenomes. However, methods to identify alterna-

tive processes of gene gain and loss will first be discussed

(fig. 1). The background and mechanisms of HGT are then

described, followed by a comparison of the tools applied to

detect HGT within assembled genomes and MGS data. Lastly,

several recent technologies are described that could help ad-

dress the issue of producing high-quality MAGs from MGS

data.

Gene Gain and Loss Events

Although HGT is the predominant mode of gene gain studied

in MGS data, several other mechanisms of genic gain and loss

are important to consider: gene duplication, gene loss, and de

novo gene birth (fig. 1). The relative importance of these pro-

cesses, and HGT, in driving adaptive evolution in microbes

remains unclear. However, profiling the occurrence and adap-

tive benefit of these events could help resolve this issue. These

genic events will be described and possible methods for iden-

tifying them in MGS data will be discussed below.

Gene Duplication

Gene duplication has long been known to be an important

process underlying adaptation to novel environments

(Kondrashov 2012). In prokaryotes, gene duplication events

are typically at the order of individual genes and operons,

particularly of genes involved with transcription, metabolism,

and defense (Gevers et al. 2004). Duplication of individual

genes can similarly occur in eukaryotic genomes, but eukar-

yotes also commonly undergo larger genomic duplication

events, such as whole-genome duplications (Aury et al.

2006). The vast majority of duplicate genes gain degenerative

mutations and become nonfunctional pseudogenes (Lynch

and Conery 2000); however, surviving genes can acquire

divergent or novel functions (Ohno 1970; Force et al. 1999).

Regardless of the mechanism, gene duplicates are extremely

common in nature: an estimated 7–41% of bacterial proteins

are encoded by paralogs (Gevers et al. 2004). Duplicates can

also be retained without diverging in function as well, which

can provide higher protein expression levels (Schuster-Böckler

et al. 2010; Kondrashov 2012) or can keep dosage levels

proportional to other gene duplicates (Conant et al. 2014).

Mapping unassembled reads to gene family databases can

be used to generate hypotheses about gene duplications,

which can be evaluated with additional data. For example,

high abundances of mercury resistance genes were observed

in groundwater metagenomes dominated by Rhodanobacter

(Hemme et al. 2016) and subsequent analyses identified pu-

tative duplicated mercury resistance operons within

Rhodanobacter genomes (fig. 1A). However, in general,

gene duplicates are difficult to identify in MGS data by char-

acterizing the relative abundances of gene families within

metagenomes. This challenge is largely due to the difficulty

of distinguishing paralogous sequences from the same ge-

nome from orthologs across multiple genomes. In addition,

most methods for detecting gene duplicates, and structural

variants (SVs) in general, are intended to be applied to ge-

nome resequencing data of a single organism mapped

against a reference genome (Ye et al. 2009; Rausch et al.

2012; Yavaş et al. 2014). Applying such approaches to iden-

tify SVs in a mixed community would likely result in wide-

spread false inferences. The exceptions could be when a

community is dominated by a small number of known species

or if a subset of reads can be confidently binned into species.

In these cases, mapping species-identified MGS reads to the

appropriate reference genomes and then applying existing

SV-detection methods would be reasonable. Although these

methods are optimized for the human genome, previous

work has shown that prokaryotic strain-level SVs can be ac-

curately identified using a consensus of multiple tool outputs

(Zojer et al. 2017).

No single pipeline is available for identifying gene duplicates

in fragmented metagenomes, but numerous approaches

could be leveraged by comparing MAGs with existing refer-

ence genomes. For instance, comparative genomics could be

employed to identify clusters of homologous genes across

genomes using reciprocal BLAST matching between assem-

bled contigs and reference genomes of closely related taxa

(Drosophila 12 Genomes Consortium et al. 2007; Hahn

et al. 2007). Under this approach, orthologous genes are typ-

ically assumed to be reciprocal best-hits whereas other similar

genes are putative paralogs (Ward and Moreno-Hagelsieb

2014). There are several methods available for summarizing

species pan-genomes as well, such as Roary (Page et al. 2015)

and panX (Ding et al. 2018), which could be useful for inter-

preting gene duplication patterns across genomes. In addition,

although putative gene duplicates could be identified through

comparison with known reference genomes it is possible that
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alternative explanations such as gene loss or HGT could better

account for this signature, which would need to be reconciled

(see the Identifying HGT Events in Metagenomes section). It is

also important to emphasize that misassembled MAGs might

be especially susceptible to false inferences of gene duplica-

tion, especially if multiple closely related taxa are included in

the same assembly.

Gene Loss

Gene loss is normally associated with decreased negative se-

lection, but recently the importance of gene loss in adaptive

evolution has been demonstrated (Hottes et al. 2013; Albalat

and Ca~nestro 2016). Many adaptive loss-of-function (LOF)

mutations knockout an individual protein, such as the deletion

of the porin ompF locus in Escherichia coli, which grants tol-

erance to tetracycline by preventing its import (Thanassi et al.

1995) (fig. 1B). However, there are also cases of adaptive LOF

mutations disrupting regulatory networks, such as the knock-

out of genes in Candida glabrata required to synthesize nico-

tinic acid, which causes epithelial adhesion genes to be

expressed and enables binding to murine renal cells

(Domergue 2005). For segregating knockout mutations, there

are existing tools for profiling strain-level variation, including

single-nucleotide polymorphisms, relative to reference

genomes (Nayfach et al. 2015; Scholz et al. 2016; Costea

et al. 2017). The output of the identified mutations could

be used with existing programs such as SnpEff (Cingolani

et al. 2012), which predict the effect of mutations on

protein-coding genes. One potential issue with this approach

is that misaligned reads could result in many false LOF muta-

tions being identified. Focusing analyses instead on MAGs

could be a more straight-forward way to identify LOF muta-

tions. However, these LOF mutations could result in genes not

being annotated in assembled contigs if they are not identi-

fied to be open-reading frames. Also, large deletions would

FIG. 1.—Examples of microbial gene gain and loss. (A) Illustration of operon duplications between two genomes. Arrows indicate genes and colored

bars indicate different regions of homologous DNA shared between the two genomes. This simplified example is inspired by the mercury resistance operon

duplications identified in Rhodanobacter genomes (Hemme et al. 2016). High levels of mercury resistance genes were reported in groundwater metage-

nomes dominated by Rhodanobacter, but genomic analyses were required to identify putative duplication events. (B) An example of adaptation through loss-

of-function. Tetracycline (indicated by chemical structure) is largely imported through the OmpF porin in Escherichia coli. Deleting the gene encoding this

porin allows for higher tetracycline tolerance (Thanassi et al. 1995). (C) Example of de novo gain of the BSC4 gene in Saccharomyces cerevisiae compared

with other Saccharomycetaceae (Cai et al. 2008). Simplified visualization of orthologous region across fungi demonstrates that BSC4 is only present in S.

cerevisiae. (D) Distribution of two KEGG orthologs (Kanehisa and Goto 2000) (K08928, K08929), which are responsible for anoxygenic photosystem II

(M00597), that are broadly distributed across the prokaryotic tree likely due to horizontal gene transfer. The presence and absence of these gene families is

indicated in blue and gray, respectively. Panel created with AnnoTree (Mendler et al. 2019).
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result in genes missing entirely from MAGs. In this case, gene

loss would need to be inferred by identifying orthologous

regions of DNA using similar approaches as described above

for identifying gene duplicates.

Alternatively, the absence of genes could be identified if

they are annotated in closely related reference genomes. For

example, the ribosomal proteins L9 and L1 were recently

shown to be differentially absent within multiple MAGs

from the poorly characterized candidate phyla radiation group

(Brown et al. 2015). These ribosomal proteins are otherwise

highly conserved in bacteria, so this finding indicates a shift in

ribosome function within this lineage. These instances of gene

loss were identified consistently across multiple MAGs, which

provides additional evidence that this finding is not a technical

artifact.

De Novo Gene Birth

De novo gene birth is caused by mutations that give rise to

novel protein-coding regions, which fall into two categories.

The first category is de novo genes arising in preexisting

protein-coding regions, typically on the opposite strand or a

separate reading frame, which is referred to as overprinting.

This form of de novo gene birth was first described in the

genome of the virus phiX174 (Weisbeek et al. 1977) and nu-

merous other cases have since been identified in viruses

(Sabath et al. 2012; Van Oss and Carvunis 2019) and bacteria

(Ohno 1984; Hücker et al. 2018; Vanderhaeghen et al. 2018).

One example is of the transcript nog1 found on the reverse

strand of the gene citC in E. coli (Fellner et al. 2015). Although

the function of this gene remains unclear, it was shown that

this gene likely encodes a protein, based on experimental ev-

idence and the presence of a Shine–Dalgarno sequence up-

stream of the predicted start codon. In addition, knocking out

nog1 while maintaining the citC amino acid sequence

resulted in decreased fitness relative to wild-type. Identifying

such cases of overprinting is likely not feasible within MGS

data sets alone and instead meta-transcriptomics data would

be required to identify alternative transcripts originating from

the same locus. One major challenge facing this approach

would be distinguishing transcripts encoding proteins from

antisense transcripts producing noncoding RNAs involved in

gene regulation (Brantl 2007; Bao et al. 2015).

The second type of de novo gene birth occurs when

protein-coding regions arise from noncoding DNA (Tautz

and Domazet-Lo�so 2011). This form of de novo gene birth

is known to occur in eukaryotes, especially at low frequencies

in a population, but these cases are largely nonadaptive and

undergo pseudogenization (Tautz and Domazet-Lo�so 2011).

Nonetheless, there are many examples of such de novo genes

conferring adaptive benefits (McLysaght and Guerzoni 2015;

Schlötterer 2015). One example is of the BSC4 gene in

Saccharomyces cerevisiae, which is unique to that species

(Cai et al. 2008) (fig. 1C). This gene encodes a protein involved

in the DNA repair pathway during stationary phase (Cai et al.

2008). Importantly, such examples of de novo gene birth are

restricted to eukaryotes, likely due to the low proportion of

noncoding DNA in prokaryotic genomes. Existing methods

(Van Oss and Carvunis 2019) could be leveraged to identify

these cases within high-quality eukaryotic MAGs. One possi-

ble approach would be to identify candidate de novo genes in

a MAG that are homologous with noncoding DNA in all re-

lated taxa.

Signatures of HGT

HGT, also known as lateral gene transfer, is the transfer of

genetic material outside parent–offspring inheritance.

Importantly, HGT differs from the other processes discussed

above because it enables the rapid transfer of genes between

distantly related species and is thought to be especially impor-

tant for the adaptation of microbes to novel environments

(Ochman et al. 2000). In particular, there is a heightened in-

terest in HGT due to concerns regarding the spread of antibi-

otic resistance genes in hospitals (Spellberg et al. 2008),

livestock (Mathew et al. 2007), and waterways

(Szczepanowski et al. 2009; Bengtsson-Palme et al. 2014).

More generally, the importance of HGT for microbe niche spe-

cialization is demonstrated simply by the sparse distribution of

key functions across life (Boucher et al. 2003). One represen-

tative example is of tetrapyrrole-based photosynthesis, which is

patchily distributed across bacteria likely due to HGT (fig. 1D).

There are numerous mechanisms underlying HGT, which

differ in frequency across taxa and depend on the genetic

distance between the donor and acceptor genomes

(Thomas and Nielsen 2005). The three main mechanisms

are transformation, conjugation, and transduction. An under-

standing of these different mechanisms is important because

they can be associated with distinct genomic signatures (e.g.,

specific sequences linked to a transfer mechanism), which can

be corroborating evidence of HGT (reviewed in Zaneveld et al.

[2008]).

Transformation refers to the uptake and integration of ex-

tracellular DNA and commonly occurs across prokaryotes.

DNA uptake requires a cell to be in a physiological state

known as competency, which typically involves the activity

of 20–50 proteins (Thomas and Nielsen 2005). The transfor-

mation rate in an environment depends on both the propor-

tion of competent cells and on the concentration of

extracellular DNA, which greatly varies across environments.

For instance, concentrations of extracellular DNA in marine

sediments are typically three orders of magnitude higher than

in marine water (Torti et al. 2015). Input DNA becomes

single-stranded when translocated across the inner mem-

brane and the translocated DNA can then undergo homolo-

gous recombination with similar sequences or be used as a

source of nutrients (Finkel and Kolter 2001). Theoretically, the

potential for these transfer events might be inferred by
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identifying the presence of genes encoding proteins involved

in this process (Zaneveld et al. 2008). For instance, there are

many surface proteins involved in the uptake of extracellular

DNA, some of which are similar to surface appendages such

as type IV pili (Chen and Dubnau 2004). These proteins are

well characterized in a small number of bacteria such as

Bacillus subtilis and Streptococcus pneumoniae (Claverys

et al. 2009) and could be used as markers for the potential

to undergo transformation in these species. However, scan-

ning for the genes encoding these proteins in the genomes of

poorly characterized species would likely not yield accurate

identification of the potential for DNA uptake.

Conjugation is a mode of unidirectional DNA transfer

through cell-to-cell junctions, typically mediated by type IV

secretion systems that only transfer single-stranded DNA

(Zaneveld et al. 2008). Conjugation is the predominant mech-

anism of transfer of plasmids (Thomas and Nielsen 2005)

(which are transferred as single-stranded and circularized cop-

ies) and is especially relevant for the spread of antibiotic

resistance (Akiba et al. 1960; Kristiansson et al. 2011;

Bengtsson-Palme et al. 2014). Many conjugative plasmids

are self-transmissible and can either integrate into the host

genome or remain autonomous in the cell (Yin and Stotzky

1997). Conjugal transfer is typically between closely related

organisms but can also occur between distantly related taxa

(Dahlberg et al. 1998; Lacroix and Citovsky 2016). The most

well-known proteins involved in forming the cell–cell junction

are the tra proteins, which are conserved in certain lineages

(Lanka and Wilkins 1995). The origin of transfer (oriT) is an

element within plasmid DNA that specifies where the relaxase

protein binds (Grohmann et al. 2003). Relaxase binding pro-

motes the formation of the relaxosome complex, which nicks

the DNA at a conserved DNA motif called nic (Zaneveld et al.

2008). Identifying the presence of these proteins and DNA

motifs in metagenomics data could be used to infer the po-

tential for conjugation. However, the most straight-forward

signature for potential conjugation in MGS data is the pres-

ence of plasmids.

There are several approaches that have been developed for

identifying plasmid sequences in MGS data. One approach is

to identify circular contigs in assembly graphs, as performed

by the software Recycler (Rozov et al. 2017). Another major

approach is to compare reads or contigs to a database of

reference plasmids (Carattoli et al. 2014), which restricts

researchers to previously identified plasmids. Lastly, differing

k-mer profiles between chromosomal and plasmid DNA can

be leveraged using machine learning approaches to identify

novel plasmid sequences (Zhou and Xu 2010; Krawczyk et al.

2018). An especially promising tool using this approach is

PlasFlow, which classifies chromosomal and plasmid contigs

with a neural network trained on reference sequence k-mer

content (Krawczyk et al. 2018). This tool performed substan-

tially better than the other approaches described above and

provides the added benefit of identifying linear plasmids,

which is not possible with assembly-based plasmid identifica-

tion tools. These approaches for identifying plasmid sequen-

ces in MGS could be used to both establish that transferrable

plasmids are present in the community and to identify genes

contained on plasmids that could potentially be transferred.

The final major mechanism of HGT is transduction, which is

the form of genetic transfer mediated through phage and can

be categorized as generalized or specialized transduction (Yin

and Stotzky 1997). Generalized transduction refers to the

packaging of random DNA fragments from a bacterial ge-

nome into a phage capsid. This process can occur when a

host cell is infected by either a virulent phage or a temperate

phage undergoing a lytic cycle. In contrast, genes transferred

through specialized transduction are integrated into the

genomes of temperate phages when they are incorrectly ex-

cised from the host genome. Specialized transduction cannot

involve virulent phages because integrating into the host ge-

nome as a prophage is a required step. Transferred genes are

integrated along with the phage genome into new hosts (Yin

and Stotzky 1997). Bacteriophage tropism is generally re-

stricted to hosts within a single species (Koskella and

Meaden 2013), although there are exceptions (Malki et al.

2015), which means that overall transduction is less common

between distantly related organisms. It is also important to

recognize that acquiring novel genes can enable phages to

adapt to novel niches (Hatfull and Hendrix 2011). In addition,

the intermediate stage of transduction within phages enables

genes to rapidly evolve, which can result in novel beneficial

functions if they are eventually acquired by a bacterial host

(Comeau and Krisch 2005).

The genomic signatures of transduction have the most po-

tential to be used to identify past transfer events. These sig-

natures can be identified for specialized transduction, but not

easily for generalized transduction because DNA transfer

through the latter typically occurs through homologous re-

combination of randomly packaged bacterial DNA. In con-

trast, phages capable of specialized transduction typically

integrate at a specific attB site within host genomes through

recombination with an attP element in the phage genome

(Canchaya et al. 2003; Zaneveld et al. 2008). In addition,

only genes located nearby prophages in a bacterial genome

will be transferred through specialized transduction. It has

previously been established that genes transferred by special-

ized transduction can be identified by whether they are

nearby phage-related sequences, such as phage integrases,

or are nearby transfer RNAs (Williams 2002), which is a pref-

erential integration site for certain temperate phages.

Accordingly, the presence of prophage sequences nearby pu-

tatively transferred genes could be taken as corroborating

evidence of specialized transduction.

Approaches to identify prophage sequences in isolate

genomes typically rely on sequence similarity with known viral

genes as well as identifying regions with viral genome char-

acteristics (Akhter et al. 2012). These characteristics include
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shorter protein lengths, shared transcription directionality of

adjacent genes, and distinct k-mer profiles. Identifying viral

sequences in MGS data is more complicated than in isolate

genomes because the datatype is more diverse and frag-

mented, but nonetheless several tools have been developed

for this purpose (Ren et al. 2017; Amgarten et al. 2018;

Garretto et al. 2019). These tools have mainly been focused

on identifying viral contigs in MGS data rather than large

bacterial contigs containing a prophage, but there are excep-

tions. VirSorter is one approach that can explicitly identify

prophages in MGS data (Roux et al. 2015). This tool scans

contigs for the presence of viral genes and certain virus-like

characteristics and reports the confidence that each gene, as

well as the contig overall, is virus derived. PHASTER is a similar

tool that identifies prophage regions in contigs based on the

sequence similarity of open-reading frames with reference

phage and prophage genes (Arndt et al. 2016). The output

of these tools could be particularly useful for finding corrob-

orating evidence of specialized transduction transfer events.

Although the three mechanisms discussed above are the

best-studied modes of HGT, there are several other notable

mechanisms. The foremost of these other mechanisms are

gene transfer agents (GTAs), which are phage-like particles

that transfer DNA between cells. At least five families of GTAs

have been identified in prokaryotes (Lang et al. 2017).

Although most of these GTAs have been identified in only a

single species, homologs for the GTA family characterized in

Rhodobacter capsulatus have been identified in numerous

Alphaproteobacteria species (Lang and Beatty 2007). It

remains unclear how widespread GTAs are in nature, but it

has been suggested that they could represent a substantial

proportion of diversity identified in the marine virome

(Kristensen et al. 2010). Two additional mechanisms of ge-

netic transfer related to conjugation are intercellular nano-

tubes (Dubey and Ben-Yehuda 2011) and membrane

vesicles (Domingues and Nielsen 2017), which are conducted

through direct cell–cell physical interactions and the release

and uptake of extracellular vesicles, respectively. The impor-

tance of these mechanisms for HGT across prokaryotes also

remains controversial (Ficht 2011; Grüll et al. 2018).

Identifying HGT Events in Metagenomes

Numerous approaches have been developed for detecting

HGT in genomics data (table 1), which are largely intended

to be applied to high-quality isolate genomes (Ravenhall et al.

2015). In contrast, although HGT is often hypothesized based

on unassembled metagenomes, directly identifying putative

HGT events is less common for this datatype (fig. 2A). For

example, the higher relative abundances of antibiotic resis-

tance genes and mobile elements, such as plasmids, in water-

ways downstream of wastewater treatment plants have been

taken as putative evidence of the spread of antibiotic resis-

tance through HGT (Szczepanowski et al. 2009; Bengtsson-

Palme et al. 2014). Another example is that HGT has been

suggested to be potentially responsible for higher similarity in

chromium resistance genes than in 16S ribosomal RNA gene

sequences found in water samples with high concentrations

of chromium (Parnell et al. 2010). These and other similar

studies (Kurokawa et al. 2007; Rua et al. 2018) represent

the most common approach of inferring putative HGT in

metagenomes. This approach can be useful for generating

hypotheses but does not provide direct evidence for specific

HGT events.

In contrast, identifying potential HGT events in assembled

contigs would be a source of direct evidence. The major chal-

lenge is that it is often only possible to assemble MGS reads

into short contigs, which commonly represent a small fraction

of complete genomes and can be enriched for assembly

errors. Many existing methods for detecting HGT events in

complete genomes cannot be applied to this fragmented

data. This challenge is gradually being addressed as deeper

sequencing read depths and improvements in related tech-

nologies have enabled higher-quality MAGs to be produced,

as we discuss in the next sections. Nonetheless, methods spe-

cifically focused on poorly assembled MGS data have also

been developed. These approaches for identifying putative

HGT in both high and low-quality MAGs will be discussed

below.

Composition-Based Approaches

The first major approach developed to detect HGT was based

on comparing base and codon usage composition across

genes within a genome (M�edigue et al. 1991; Lawrence

and Ochman 1997). This general approach is motivated by

the findings that base composition and codon usage are

largely homogenous within a genome (Sueoka 1961;

Hildebrand et al. 2010). In addition, base composition is

known to be linked to taxonomy: taxa within the same line-

age tend to have genomes with similar GC-content and base

composition overall (Sueoka 1961). Genomic regions that

compositionally differ from background are referred to as

“genomic islands.” Two popular tools for identifying these

regions are GIST (Hasan et al. 2012) and IslandViewer

(Bertelli et al. 2017) although many similar tools are also avail-

able (Langille et al. 2010; Lu and Leong 2016).

Composition-based approaches have been applied to MGS

contigs (Hemme et al. 2010), but this is not typically per-

formed because longer regions are thought to be required

to accurately determine the background composition of the

genome. Nonetheless, one composition-based method has

been proposed specifically for MGS-assembled contigs

(Tamames and Moya 2008). This method involves calculating

the frequencies of k-mers within each gene in a contig to

generate a vector of frequencies per gene. Pearson correla-

tions between these vectors across genes are then calculated

and these genes are clustered by these correlations to enable
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outlier genes to be identified (fig. 2B). The challenge of this

method is that the choice of cutoff for distinguishing genes

into clusters can have a large effect on the result and it is

unclear what value should be used. This approach has been

applied previously to fosmid clones corresponding to

Verrucomicrobia to identify putative HGT events (Kielak

et al. 2010).

There are two key limitations of the above compositional

approaches. First, false positives can arise simply due to ge-

nomic variation in composition, such as variation in base com-

position related to distance from the replication terminus

(Deschavanne and Filipski 1995; Guindon and Perrière

2001). However, this issue is partially addressed in tools that

test for differences in k-mer frequencies, which are thought to

be more genome-specific (Karlin and Burge 1995), rather

than GC-content and codon usage (Koski et al. 2001;

Wang 2001). The second major limitation is that ancient

HGT events are difficult to detect because transferred genes

eventually evolve (or “ameliorate”) to become similar to the

rest of the genome (Lawrence and Ochman 1997, 1998). This

issue implies that only recently acquired HGT events can be

identified using compositional approaches.

Implicit Phylogenetic Approaches

Another common approach for detecting HGT is to identify

genes with higher sequence similarity to homologs encoded

by more distantly related taxa compared with close relatives.

This class of approach is biased toward more ancient HGT

events in contrast to the compositional approaches described

above (Ragan et al. 2006). As above, variations on this ap-

proach have been implemented for complete genomes

(Clarke et al. 2002; Ragan and Charlebois 2002; Podell and

Gaasterland 2007). One example is HGTector, which com-

pares protein sequences across genomes of varying phyloge-

netic distance and includes several improvements that make it

resilient to technical and biological confounders (Zhu et al.

2014).

For short MGS-derived contigs, one taxonomic-assignment

approach has been proposed that involves running BLASTX

(Altschul et al. 1990) on genes within contigs against the

GenBank nonredundant database and assigning taxonomy

to the genes based on the best-hits (Tamames and Moya

2008). In this case, HGT events are identified when there is

sufficient disagreement in the taxonomic assignment of genes

within the same contig. WAAFLE (http://huttenhower.sph.

harvard.edu/waafle; last accessed August 27, 2019) is a soft-

ware that implements a similar approach (manuscript in prep).

The WAAFLE pipeline involves identifying the most similar

matches in a pan-genome database for each gene in a contig.

The tool then determines whether the genes in the contig can

be explained entirely by a single species or if multiple species

are needed to account for the contig gene content. This latter

case is taken as putative evidence of HGT. The major strength

of this approach is that multiple similarity matches are

retained per gene in a contig. This information enables a con-

servative taxonomic-assignment approach to be employed

where contigs can be classified as a single species, even if

that species is not the best-hit for each gene, which is

intended to reduce the number of false positives.

Explicit Phylogenetic Approaches

Although the similarity-based HGT-detection methods de-

scribed above use phylogenetic principles, they do not make

direct use of phylogenetic trees to test for phylogenetic incon-

gruencies. Testing for phylogenetic incongruencies refers to

comparing a gene tree based on homologous sequences

across taxa with the phylogenetic tree for those taxa. The

growing number of prokaryotic genomes from pure cultures

has enabled large-scale phylogenetic methods to be

Table 1

Approaches for Identifying Putative Cases of HGT in Metagenomes

Approach MGS Specifica Example

Implementations

Identify outlier genomic

regions based on DNA

composition

No GIST (Hasan et al. 2012);

IslandViewer (Bertelli

et al. 2017)

Identify outlier genes in

contigs based on pair-

wise Pearson correlations

of k-mer content

Yes Described in Tamames

and Moya (2008)

Identify genes in genomes

displaying taxonomically

discordant similarity to

genes within a reference

database

No DarkHorse (Podell and

Gaasterland 2007);

HGTector (Zhu et al.

2014)

Identify genes in contigs

displaying taxonomically

discordant similarity to

genes within a reference

database

Yes WAAFLEb and a

method described in

Tamames and Moya

(2008)

Reconcile phylogenetic

incongruencies between

gene and species trees

No AnGST (David and Alm

2011); RANGER-DTL

(Bansal et al. 2018)

Identify putative donor and

recipient transfer events

within a given commu-

nity based on a com-

bined similarity and

phylogenetic incongru-

ency approach

Yes MetaCHIP (Song et al.

2019)

Identify genomic hotspots

of recombination be-

tween strains of a species

Yes Described in Tyson et al.

(2004) and Probst

and Banfield (2018)

aWhether an approach is intended specifically for shotgun metagenomics
(MGS) data instead of isolate genomes.

bhttp://huttenhower.sph.harvard.edu/waafle.
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developed (Beiko et al. 2005; Puigbo et al. 2009). Similar

approaches have been applied to MAGs in recent years as

well (Guo et al. 2015; Soo et al. 2017). For example, genomes

from a basal-branching clade known as Sericytochromatia

within Cyanobacteria were assembled from multiple MGS

data sets (Soo et al. 2017). These genomes were taxonomi-

cally classified based on their 16S ribosomal RNA gene

sequences and placement within a supertree of reference

genomes was performed based on concatenated protein

sequences. These MAGs enabled standard tests for phyloge-

netic incongruency to be run to identify proteins that were

phylogenetically dispersed differently from the supertree, in-

cluding key genes involved in photosynthesis missing in

Sericytochromatia. Despite such successes reconciling gene

and species trees remains a nontrivial problem because dis-

agreements in the tree can be biologically due to either gene

duplication, HGT, or gene loss. Accordingly, this has been

deemed the duplication-transfer-loss reconciliation problem

and several methods have been developed to address this

issue (Kamneva and Ward 2014). RANGER-DTL is one such

method that compares gene and species trees and identifies

the most likely positions on the species tree where either spe-

ciation, gene duplication, HGT, or gene loss have occurred

(Bansal et al. 2018). A similar method is the software

GLOOME (Cohen et al. 2010), which is a maximum-

likelihood approach that can also be used to infer the position

of gene gain and loss events across a phylogenetic tree, but

does not consider duplication and speciation events.

Identifying Putative Gene Transfers in a Defined
Community

The methods for detecting HGT presented above approach

the problem from a range of perspectives, which can result in

strikingly different inferences of HGT. One example is a com-

parison of a compositional and a sequence similarity approach

that resulted in fewer than 5% of HGT events in agreement

(Tamames and Moya 2008). This drastic difference and other

A B

C D

FIG. 2.—Key approaches to infer potential HGT in MGS data. (A) Identifying genes frequently transferred through HGT at differential relative abundance

between two sites. One possible explanation for these observations is HGT, which is frequently hypothesized in the literature although this is not based on

direct evidence. (B) Identifying outlier genes in short assembled contigs using a compositional approach (Tamames and Moya 2008). This approach involves

tabulating k-mer frequencies within each gene and calculating the pairwise Pearson correlation between all genes within the contig. Outlier genes with

atypical k-mer composition can then be identified, which are candidates for HGT (such as gene 4 in this example). (C) Isolate reference genomes have been

used with MGS data on several occasions. One example usage is to map the metagenomics reads to existing reference genomes to identify genomic regions

not found in the metagenome. HGT is one possible explanation for the absence of reads mapped to a particular region of the reference genome as shown in

this example. (D) Generating high-quality MAGs allows any method for identifying HGT in isolate genomes to be applied. The example shown here is of

detecting genomic regions that have divergent k-mer composition compared with the rest of the genome. Note that in this simplified example only one k-

mer is being compared whereas typically the profile of many k-mers would be compared.
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examples (Ragan et al. 2006) are at least partially due to the

differing sensitivity of these tools for detecting HGT events of

different ages. Importantly, these tools can be used in com-

bination to yield more robust inferences (Omelchenko et al.

2003; Schoenfeld et al. 2013).

MetaCHIP is a recently published tool that is partially based

on this idea, but intended specifically to identify HGT events

between observed donor and recipient genomes in a natural

community (Song et al. 2019). This tool first performs an all-

against-all BLASTN of genes within assembled contigs from a

given community. Potential HGT events are identified based

on genes with best-hits in other taxonomic groups (e.g., in

another family). False inferences due to duplicated regions of

contigs are explicitly accounted for in order to reduce the false

positive rate. A gene tree is then created for all genes on this

short-list of putative HGT events. These trees are compared

with a species tree based on 43 universal single-copy genes

(USCGs) with the RANGER-DTL software to determine

whether HGT, or a different mechanism, better accounts

for any phylogenetic incongruencies.

Characterizing Strain Heterogeneity

Although the majority of HGT-detecting methods are focused

on identifying transfers between different species, studying

MAGs can also yield insight into population heterogeneity

within a species. Because MAGs are based off the genomes

of numerous bacterial cells in a community there is always

some degree of genetic variation in the reads underlying

MAGs. In addition, homologous recombination is known to

occur between divergent strains, which can result in mosaic

genomes with different gene blocks (Falush et al. 2001; Papke

et al. 2004; Dunn et al. 2009). Due to the different assortment

of gene blocks between closely related organisms, these re-

combination events are examples of recent HGT. Leveraging

MAGs to assess intraspecies recombination is appealing be-

cause recombination hotspots can be readily identified with

this datatype.

Key work in this area has focused on identifying large

regions of homologous recombination within the genomes

of Leptospirillum and Ferroplasma species originating from

acid mine drainage sites (Tyson et al. 2004; Denef et al.

2007; Denef and Banfield 2012). These recombination blocks

contain genes hypothesized to be needed for rapid adapta-

tion to this extreme environment. Another recent example

was that of a novel archaeon genome assembled from water

samples of intermediate and deep aquifers (Probst and

Banfield 2018). Not only was the complete genome of the

taxon named Candidatus “Forterrea multitransposorum” as-

sembled, but population variation of this taxon was also

assessed by mapping reads to this assembled genome.

Through this approach, the authors identified hotspots of ho-

mologous recombination occurring between members of the

species. These examples highlight that because MAGs

represent a population rather than individual organisms,

they can be leveraged to identify regions of recent HGT.

Leveraging Existing Reference Genomes

Rather than directly identifying HGT in metagenome sequenc-

ing data, inferences made from metagenomes have also been

used to inform analyses on reference genomes (fig. 2C). For

instance, putative HGT events in Synechococcus reference

genomes were identified by mapping MGS reads to these

genomes and identifying unmapped regions with divergent

trinucleotide composition (Palenik et al. 2009). A different

example focused on a peptides/nickel transport complex iden-

tified to be enriched in the gut metagenomes of lean individ-

uals (Meehan and Beiko 2012). By placing the sequences of

the individual gene families involved in this module into gene

trees created from homologous genes in existing reference

genomes, it was shown that the phylogenetic position of

these genes greatly varied. The only potentially high contrib-

utor of all gene families involved in the module was the gut

commensal Faecalibacterium prausnitzii. Evidence for ram-

pant HGT of this peptides/nickel transport complex was found

by focusing on this module within Faecalibacterium prausnitzii

reference genomes. More generally, putative HGT events

identified in metagenomes can help decrease the search

space of gene families and reference genomes to help directly

identify individual cases of HGT (Palenik et al. 2009; Meehan

and Beiko 2012; Hemme et al. 2016; Llorens-Marès et al.

2017). This approach has proven useful but is highly depen-

dent on existing reference genomes and does not take ad-

vantage of the potential to assemble metagenomes.

Current Barriers and Outlook

There are two main barriers to researchers detecting HGT in

MAGs within their own data. The first barrier is the challenge

of generating adequate quality MAGs, which is closely linked

to the major goal in metagenomics of improving the quality of

assemblies overall. This issue can best be addressed through

several recent technological advances (see the Potential

Avenues to Improve Metagenome Assemblies section). The

second obstacle preventing researchers from detecting HGT

events is that these analyses require substantial bioinformatics

expertise. Determining which approach to use is nontrivial

and will largely depend on the biological question. For exam-

ple, different methods are available if researchers are inter-

ested specifically in identifying hotspots of recombination

within a single species (Probst and Banfield 2018) or identify-

ing HGT events between different species in a given commu-

nity (Song et al. 2019). In addition, researchers’ choices can be

informed by what time-scale of HGT they are interested in

investigating. However, even with a clear research question

selecting a specific tool for these analyses can be problematic

and so in practice comparing the output of several methods

would likely be best. A robust evaluation of the performance
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of these approaches is needed to better inform researchers’

choice of tools. This evaluation is especially needed for tools

applied to MGS-derived contigs and assemblies, which could

be done by simulating HGT events within a defined set of

genomes with a tool such as HgtSIM (Song et al. 2017). In

addition, although existing HGT-detection methods can be

applied to high-quality MAGs (fig. 2D), this may come at

the cost of an unacceptable false positive rate because past

evaluations of tool performances have largely been focused

on isolate genomes with relatively little contamination.

One reassuring final point is that although different

approaches to identify HGT in isolate genomes identify mainly

nonoverlapping sets of genes (Ragan et al. 2006), the genes

identified tend to be of similar functions (Lawrence and Roth

1996; Beiko et al. 2005; Cordero and Hogeweg 2009;

Kanhere and Vingron 2009). Genes related to mobile ele-

ments, central intermediary metabolism, amino acid biosyn-

thesis, and energy metabolism are enriched in gene sets

identified as horizontally transferred (Jain et al. 1999; Beiko

et al. 2005). In contrast, information-processing genes such as

ribosomal proteins are less commonly identified as horizon-

tally transferred (Beiko et al. 2005). There are exceptions to

this rule, for example, genes related to translation have been

found to be commonly horizontally transferred between bac-

teria, but not between kingdoms (Kanhere and Vingron

2009). These recurrent observations may be related to func-

tions that rely on fewer gene families and regulatory partners

being easier to transfer (Lawrence and Roth 1996; Aris-

Brosou 2005). In addition, the widespread transfer of metab-

olism genes is likely related to strong selection for survival in

novel environments with limited resources (Lawrence 2001)

although the exact genes are environment-specific (Smillie

et al. 2011). Identifying putative HGT events enriched for

the above functional categories has been previously used as

validation that an approach is working (Beiko et al. 2005),

which would also be an important output to compare in fu-

ture evaluations of HGT-detection approaches.

MAG Quality Control

The major challenge facing the identification of all the genic

events described above is poor metagenome assemblies. This

issue has recently been commented upon in the context of

low-quality MAGs being added into public genome reposito-

ries (Shaiber and Eren 2019). Either composite assemblies of

multiple taxa or incomplete genomes missing genes of inter-

est could result in incorrect inferences of HGT. One extreme

example is of the tardigrade genome, which was falsely iden-

tified as having 17% of genes acquired through HGT due to

contaminant sequences within the assembly (Koutsovoulos

et al. 2016). Such false inferences are more likely in metage-

nome assemblies compared with genome assemblies due

largely to the challenge of distinguishing many organisms at

different abundances (Ayling et al. 2019). Misassemblies can

also affect the detection of other genic events as well. For

instance, repetitive regions of assemblies are difficult to re-

solve with current short-read sequencing (Chin et al. 2013),

which can make duplication events difficult to identify. Due to

these challenges, an understanding of the workflows for gen-

erating MAGs is needed. Here, we briefly outline the current

approaches and issues in metagenome assembly to give the

reader a starting point.

There are many metagenome assembly tools currently

available, which are predominately based on De Bruijn graphs

of overlapping k-mers (Vollmers et al. 2017; Ayling et al.

2019). The outputs of these tools are assembled contigs,

which typically vary in length from �500 bp to near-

complete genomes. Some of the most popular freely available

assembly tools are MetaSPAdes (Nurk et al. 2017), Ray Meta

(Boisvert et al. 2012), Omega (Haider et al. 2014), IDBA-UD

(Peng et al. 2012), and Megahit (Li et al. 2015). Choice of

assembly tool can have a major influence on the resulting

assembled contigs, and so careful consideration needs to be

taken at this stage. An independent evaluation of these and

other methods found that MetaSPAdes performed best overall

with the caveat that it may not be appropriate for distinguish-

ing highly similar genomes (Vollmers et al. 2017). However, no

assembly tool performed best across all environments and it

was suggested that the best choice of assembly tool depends

on the study environment and research question.

Contig binning, where contigs from the same species or

strain are grouped, is another key step when generating

MAGs. Binning approaches typically group contigs based on

sequence composition (e.g., GC or tetranucleotide content)

and similar coverage of mapped reads (Ayling et al. 2019).

The most popular freely available binning tools are CONCOCT

(Alneberg et al. 2014), MaxBin2 (Wu et al. 2016), and

MetaBAT (Kang et al. 2015). As above, the choice of binning

software can have drastic effects on the resulting MAGs

(Meyer et al. 2018). One partial solution to this issue is to

run multiple binning tools and use the software Das Tool

(Sieber et al. 2018) to identify the consensus output, which

has been shown to produce high-quality bins (Meyer et al.

2018).

Evaluating the quality of MAGs is a crucial step once the

final contig bins have been generated and guidelines for how

to categorize MAGs based upon quality metrics have recently

been established (Bowers et al. 2017). The two key metrics

are completeness and contamination, which are based on the

counts of USCGs identified in an assembly. Completeness is

measured based on the proportion of USCGs identified in an

assembly and contamination is defined as the proportion of

USCGs found more than once in an assembly. Hard cutoffs

for these metrics have been suggested for categorizing the

overall quality of a MAG, for instance high-quality draft MAGs

are defined as being >90% complete with <5% contamina-

tion (Bowers et al. 2017). CheckM (Parks et al. 2015) and

BUSCO (Sim~ao et al. 2015) are two tools that will estimate
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the completeness and contamination of prokaryotic assem-

blies and BUSCO can also be used to evaluate eukaryotic as-

semblies. Determining strain heterogeneity, the degree of

contamination due to different strains, within an assembly is

also important, which can be measured using CheckM or

alternatively custom methods to identify polymorphisms in

an assembly (Pasolli et al. 2019). An assembly with high strain

heterogeneity can still be useful but should be considered

differently than an assembly of a single strain.

Importantly, when reporting gene gain and loss events

in a set of MAGs it would be important to also report the

estimated completeness and contamination within these

MAGs. In particular, it would be important to establish

within a given MAG that more gene gain and loss events

were inferred than are expected given the two quality

scores. Ideally, manual validation of inferred gene gain

and loss events would also be performed upon assemblies.

At minimum this validation would include visually assessing

the read coverage across an assembly at the site of the

inferred gene gain or loss event. In practice, manually val-

idating many events in this way would not be feasible, but

it could be performed for a representative set.

Potential Avenues to Improve
Metagenome Assemblies

Several recent technologies have been developed which po-

tentially could result in improved MAGs (fig. 3). These tech-

nologies include new long-read sequencing approaches,

metagenomics chromosome conformation capture, barcod-

ing reads from the same genomic fragment, and optical map-

ping of short sequences along genomes to inform assembly.

There are two promising long-read technologies currently

available: Single-Molecule Real-Time (SMRT; Pacific

Biosciences [McCarthy 2010]) and Oxford Nanopore

(Mikheyev and Tin 2014) sequencing. SMRT sequencing

involves binding a custom DNA polymerase with bound

DNA to be sequenced at the bottom of a zero-mode wave-

guide (Slatko et al. 2018) (fig. 3A). Fluorescently labeled

nucleotides are added to the growing chain, which enables

each base to be identified as it is added. The key advantage of

this approach is that long reads typically in the range of 10–15

kb (but ranging up to 50 kb or larger) can be produced (Slatko

et al. 2018). SMRT sequencing reads generally contain 11–

14% incorrect bases, but consensus sequences between over-

lapping sequences can be used for correction because the

errors are random (Roberts et al. 2013). In contrast, short-

read sequencing approaches result in nonrandom errors,

which are more difficult to correct. This approach has been

used mainly with hybrid approaches with short-read sequenc-

ing to make improved assemblies of isolate genomes (Koren

et al. 2012). However, algorithms have been developed to

error-correct the reads so that they can be used alone for

high-quality assembly (Chin et al. 2013). Importantly, these

long reads are better able to sequence regions that are prob-

lematic with short-read approaches, including repetitive

regions. New SMRT sequencing approaches are being devel-

oped, including circular consensus sequencing, which pro-

vides higher accuracy through repeated sequencing of the

same circularized fragment of 500–2,500 nucleotides in

length. This approach has been shown to result in improved

assembled contigs compared with Illumina HiSeq sequencing

on the same samples (Frank et al. 2016).

Nanopore sequencing refers to passing a strand of DNA

through a nanopore and measuring the changing current,

which differs depending on the bases passing through. This

method also results in extremely long reads, typically in the

range of 13–20 kb, and is rapidly improving in throughput

(Tyson et al. 2018). The main down-side of this approach is

the high error rate, which can range up to 40% of bases

being incorrect (Laver et al. 2015). Nonetheless, this technol-

ogy has been used to successfully assemble the E. coli K-12

mG1655 genome at 99.5% base accuracy by first making

multiple-sequence alignments of nanopore reads to correct

read errors (Loman et al. 2015). This technology is especially

useful for resolving large repetitive regions and merging con-

tigs derived from short-read data, as was recently demon-

strated through improvements to the Caenorhabditis

elegans reference genome (Tyson et al. 2018).

These evaluations of long-read sequencing technology are

promising and both technologies will likely confer similar

improvements to MAGs in the future. At least one example

of improved quality of the continuity of MAGs has been dem-

onstrated based on nanopore sequencing of a complex bio-

reactor community (Arumugam et al. 2019). We expect that

many more of these examples will be published as long-read

sequencing becomes more widely available. However, despite

this promising example, MGS data present many novel chal-

lenges and will take additional work to integrate into most

bioinformatics pipelines for processing long-read data. For

instance, both correcting read errors and resolving repetitive

regions with nanopore sequencing would be considerably

more challenging with MGS data due to the added compli-

cation of strain variation and homologous DNA between dif-

ferent species within the same community. MGS-specific

software for processing long-read data is beginning to be-

come available (Kolmogorov et al. 2019), but clear best prac-

tices remain to be determined.

Alternative approaches that could improve MAG quality

are based on binning genomes prior to or independent of

sequencing. One exciting development is Hi-C sequencing,

which is an extension of chromosome conformation capture

sequencing (Belton et al. 2012). This approach involves cross-

linking DNA with formaldehyde, followed by digestion, and

then religation so that interacting DNA fragments are ligated

together. The novel addition in Hi-C is that a biotin-labeled

nucleotide is incorporated at ligation junctions, which makes

it much easier to purify out chimeric ligations and identify 3D
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interactions. This approach has mainly been used to identify

long-range interactions, such as between enhancers and pro-

moters (Ron et al. 2017) and to map genome conformational

dynamics (Lieberman-Aiden et al. 2009). However, this

method can also be exploited to improve genome assemblies

by building probability maps of genetic interactions (Burton

et al. 2013) (fig. 3B), based on the observation that intrachro-

mosomal interactions are much more common than inter-

chromosomal interactions, even at long distances

(Lieberman-Aiden et al. 2009). As a proof-of-concept, this

approach has been used to distinguish genomes within

mock communities and contributed to the assembly of

high-quality MAGs of bacterial, archaeal, and fungal genomes

(Burton et al. 2014). In addition, Hi-C sequencing has been

used to supplement MGS assembly of natural communities in

river sediment (Marbouty et al. 2014) and cow rumen samples

(Stewart et al. 2018).

Optical mapping is another approach that has been shown

to improve genome assembly quality (Hastie et al. 2013). The

most recent implementation of this approach is provided by

the company BioNano (https://bionanogenomics.com; last

accessed August 27, 2019). Their method involves annealing

fluorescent probes that bind specific short sequences in DNA.

The DNA is then passed through narrow chambers that re-

quire a DNA molecule to be passed through in a straight line.

The location of the fluorescent probes along genomic frag-

ments is captured as DNA passes through the chamber. This

approach has recently been applied to human samples to

identify SVs and translocation events (Mak et al. 2016).

Optical mapping data could potentially be integrated with

MGS data to improve MAG qualities by assigning contigs to

the same genome and to order and rearrange contigs within a

genome (fig. 3C). However, this approach has not been ap-

plied to samples from natural communities and it remains

unclear what challenges would be faced. A proof-of-

concept of this technology applied to mock and natural com-

munities is required for this approach to be evaluated

properly.

Another promising approach involves barcoding reads

from the same genome prior to MGS (fig. 3D). This technol-

ogy, developed by 10x Genomics (https://www.10xgenomics.

com; last accessed August 27, 2019), results in sets of reads

that are derived from the same genomic fragment. This infor-

mation is especially useful for resolving SVs and repeats and

A B

D E

C

FIG. 3.—Promising technologies that could improve metagenome assembly. (A) Long-read sequencing as represented by single-molecule real-time

(SMRT) sequencing, which takes place in a zero-mode waveguide. Fluorescently labeled nucleotides are added one at a time at the bottom of the well as the

new strand of the input DNA is synthesized. The fluorescence of each added nucleotide is measured to determine the sequence. (B) Illustration of how

relationships between contigs based on chromosome conformation capture can be visualized. This simplified illustration is based on the previously deter-

mined relationship between Escherichia coli contigs (Marbouty et al. 2014). The darker the shade of green, the higher the contact frequency of contigs. This

visualization displays how the contig genomic ordering can be determined through chromosome conformation capture. The contig contact map can be used

to improve the scaffolding step of the genome assembly. (C) Diagram illustrating principle of optical maps (blue) improving genomic assemblies (green). Solid

black bars indicate occurrences of a short DNA sequence along the genome, which can be used to order contigs and correct assembly errors. (D) Simplified

protocol for barcoding genomic fragments so that reads originating from the same high molecular weight (MW) DNA molecule can be identified. (E) Key

steps required before single-cell sequencing. Individual cells need to be isolated using one of several technique (e.g., flow cytometry as shown in this panel)

and then whole-genome amplification is conducted using multiple displacement amplification. The small arrows indicate amplified regions.
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for phasing variants (Bishara et al. 2015; Zheng et al. 2016).

These “read clouds” could be leveraged in an analogous way

to Hi-C sequencing data to produce improved MAGs. It was

recently shown that this datatype can be used to generate

high-quality MAGs from mock and natural communities with

a barcode-aware assembler called Athena (Bishara et al.

2018). Further published work confirming this finding is re-

quired, but this promising result highlights that leveraging

“read clouds” could be a straight-forward method for im-

proving MAG qualities.

Lastly, single-cell metagenomics has recently been sug-

gested as an improved approach for isolating individual

genomes from mixed communities (Xu and Zhao 2018). This

technique involves first isolating individual cells in a sample,

extracting the DNA, and performing whole-genome amplifica-

tion before conducting library preparation and sequencing

(fig. 3E). The whole-genome amplification step can result in a

high proportion of chimeric reads (Lasken and Stockwell 2007)

and uneven read coverage (Xu and Zhao 2018), which can

complicate genome assembly. Nonetheless, single-cell metage-

nomics has been performed successfully, especially when iden-

tifying phage and the corresponding bacterial host genomes

(Labont�e et al. 2015; Munson-Mcgee et al. 2018). In addition,

single-cell metagenomics has been integrated with MGS on

numerous occasions to improve MAGs (Dupont et al. 2012;

Dong et al. 2016; Ji et al. 2017; Yu et al. 2017). Many questions

remain regarding the best practices of single-cell metagenom-

ics and the feasibility at high throughput (Xu and Zhao 2018),

but this technology is an extremely promising approach to im-

prove MAG quality.

Conclusions

Several bioinformatics approaches have been applied for iden-

tifying HGT events specifically in MGS data, but these

approaches have not been extensively benchmarked and

there are no clear best practices. These approaches have

also been largely custom bioinformatics pipelines that are dif-

ficult to compare across studies, but there are several recently

developed methods like WAAFLE and MetaCHIP that are now

available as stand-alone tools. In addition, currently there are

limited bioinformatics approaches to identify gene loss, de

novo genes, and gene duplications in MGS data sets.

Although inferring these events will become easier as the

quality of MAGs improves, there is still a need to develop

methods to detect these events in poorly assembled MGS

data sets. These methods are needed to better analyze exist-

ing MGS data sets and also to study communities with high

richness (e.g., soil samples), for which it will likely remain

unfeasible to sequence at sufficient coverage to produce

many high-quality MAGs in the near future.

There are also many open questions about how to scan for

HGT in assembled genomes. Currently, genomic context and

potential transfer mechanisms are not directly integrated into

HGT-detection pipelines. Automatically identifying corrobo-

rating evidence for a transfer, such as the presence of nearby

prophage sequences, could help identify recent HGT events,

which has been previously argued (Zaneveld et al. 2008). The

feasibility of such an approach and whether it would improve

HGT event identification accuracy is unclear. Similarly,

taxonomic-specific features such as DNA-uptake sequences

in DNA imported through transformation (Davidsen et al.

2004) could directly be used to inform inferences.

Regardless of which bioinformatics approach is used, infer-

ences of gene gain and loss in MGS data sets will continue to

improve as higher-quality MAGs are produced. The promising

technologies outlined above are still in the early stages of

application and there remain many open questions. For in-

stance, whether optical mapping can be accurately applied to

mixed communities remains unclear. Additional validation of

this approach in conjunction with MGS data is necessary to

determine whether it would actually improve MGS assem-

blies. In addition, there are several limitations specific to indi-

vidual technologies, such as long-read sequencing and Hi-C

requiring larger biomass samples. Benchmarking of all of

these promising methods is required on natural communities

of varying richness, complexity, and biomass to evaluate

whether these methods should be differentially applied

depending on sample-type or whether general best practices

could be developed using only a subset of approaches.
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