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Abstract: Introduction: Identifying the people who try to hide illegal substances in the body for smuggling is of considerable
importance in forensic medicine and poisoning. This study aimed to develop a new diagnostic method using artificial
intelligence to detect body packs in real-time Abdominal computed tomography (CT) scans. Methods: In this cross-
sectional study, abdominal CT scan images were employed to create a machine learning-based model for detecting
body packs. A single-step object detection called RetinaNet using a modified neck (Proposed Model) was performed
to achieve the best results. Also, an angled Bbox (oriented bounding box) in the training dataset played an important
role in improving the results. Results: A total of 888 abdominal CT scan images were studied. Our proposed Body Packs
Detection (BPD) model achieved a mean average precision (mAP) value of 86.6% when the intersection over union (IoU)
was 0.5, and a mAP value of 45.6% at different IoU thresholds (from 0.5 to 0.95 in steps of 0.05). It also obtained a Recall
value of 58.5%, which was the best result among the standard object detection methods such as the standard RetinaNet.
Conclusion: This study employed a deep learning network to identify body packs in abdominal CT scans, highlighting
the importance of incorporating object shape and variability when leveraging artificial intelligence in healthcare to aid
medical practitioners. Nonetheless, the development of a tailored dataset for object detection, like body packs, requires
careful curation by subject matter specialists to ensure successful training.
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1. Introduction

The act of concealing illicit drugs within an individual’s body

is a common method used for transporting small amounts

of substances. A commonly observed method entails the

ingestion of drug-filled packets, referred to as "body pack-

ing", with individuals who engage in this practice being

termed "body packers". Substances like opium, cocaine,

heroin, amphetamines, ecstasy, and cannabis derivatives like

hashish are substances commonly transported by individu-

als known as body packers. In cases where drug transporta-

tion within the body is suspected, imaging procedures are

recommended as the most effective means to verify this as-

sumption. While certain indicators, such as the "double-

condom" sign, may suggest the presence of drug packages,
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they are not commonly observed on standard abdominal X-

rays. Nowadays, abdominal CT scan is recognized as the

most efficient technique for detecting drug packets located

in the abdominopelvic region (1-3).

Timely detection of individuals who conceal drugs internally

and accurate identification of the location of the drug pack-

ets is essential in situations where drug container leakage

or rupture is suspected (4). Radiographic interpretation can

be complicated by a variety of factors, such as the expertise

level of the radiologist, limited contrast resolution inherent

to imaging modality, administration of enemas, small size of

ingested packets, increased bowel contents and gas, intesti-

nal motility, large urinary bladder stones, intra-abdominal

calcifications, and fecal impaction (5). Hence, due to the po-

tential inaccuracies in identifying body packs using radiolog-

ical imaging and the resulting social and medico-legal impli-

cations, an accurate method of identification is essential in

this particular scenario.

Medical imaging is a commonly utilized method in digital

health for the timely identification and assessment of ill-

nesses. Various techniques, such as Magnetic Resonance
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Imaging (MRI), X-ray, computed tomography (CT) scan, and

positron emission tomography (PET) scans, are employed in

this process (6). Recent progress in computer-assisted in-

terventions has demonstrated encouraging outcomes in the

realm of medical image analysis (7, 8). The rapid advance-

ment of artificial intelligence (AI) has the potential to en-

hance medical diagnostics significantly, leading to a trans-

formation in the field by enhancing predictive accuracy, ex-

pediting processes, and increasing overall efficiency (9). The

utilization of vast datasets, advanced algorithms, and sub-

stantial computational capabilities has enabled deep neural

networks to be particularly efficacious in tasks related to im-

age analysis and interpretation (10). AI algorithms can exam-

ine various types of medical images such as CT scans, MRIs,

X-rays, wireless capsule endoscopy (WCE), and ultrasounds,

aiding healthcare professionals in more precise, quick iden-

tification and diagnosis of various conditions (9, 11).

The convolutional neural network (CNN) stands out as a

well-established algorithm within the realm of deep learning

models. This class of artificial neural networks has emerged

as a prominent technique in computer vision applications

following remarkable outcomes in image processing and ob-

ject recognition competitions, as features can potentially

manifest at any location within the image. There has been

a notable increase in enthusiasm among researchers in ra-

diology regarding the promising prospects offered by CNN

(12). No research has yet explored the application of real-

time artificial intelligence for detecting body packs. To ad-

dress this research gap, this study seeks to employ a single-

step RetinaNet object detection approach (utilizing a trans-

formed neck) for identifying body packs in abdominal CT

scans, marking the first instance of such investigation.

2. Methods

2.1. Study design and setting

In this cross-sectional study, images were obtained by cap-

turing frames from the abdominal CT scan recordings of in-

dividuals with body packs, who were diagnosed and man-

aged by the toxicology and radiology specialists at Loghman

Hakim Hospital from March 2019 to February 2023.

Abdominal CT scan images featuring one or more body packs

were included in the study.

The study received approval from the ethics committee of

Shahid Beheshti University of Medical Sciences, identified

by reference number IR.SBMU.RETECH.REC.1401.260. All

methods were performed in accordance with the relevant

guidelines and regulations by the ethics committee of Shahid

Beheshti University of Medical Sciences. General informed

consent was obtained from all patients admitted to Logh-

man Hakim Hospital to use their data anonymously for edu-

cational and research purposes. In cases where participants

were unable to provide consent themselves, consent was ob-

tained from their immediate family members. The informed

consent obtained at our institutions also included authoriza-

tion for potential future analyses.

2.2. Participants

The dataset encompasses all eligible abdominal CT scan im-

ages recorded within the designated study period, thus elim-

inating the need for a sample size calculation. A total of 888

abdominal CT scan images featuring one or more body packs

were included in the study.

The study exclusively incorporated eligible cases for anal-

ysis. Subsequently, meticulous detection of all frames ex-

tracted from the films was conducted through the creation

of angled bounding boxes. The researchers thoroughly scru-

tinized the images to verify the precision of detection by out-

lining bounding boxes around the complete air packer.

Inclusion criteria encompassed instances where the pres-

ence of a body pack was verified through collaboration be-

tween a toxicologist and a radiologist utilizing abdominal

CT scans. Additionally, cases involving individuals over the

age of 18 who exhibited severe symptoms of substance over-

dose post-hospitalization, with confirmation of body pack-

ing through radiological abdominal CT scans, were consid-

ered. Excluded from the study were cases involving body

staffers, where drug packages were introduced into the body

via anal or vaginal routes.

Following the compilation of a pertinent body packer

dataset, it was subsequently segregated into two distinct sets:

train and test. The train set underwent training utilizing var-

ious object detection models, among which the model pro-

posed in this study was included. This model denoted as

Body Packer Detection (BPD) within this research, was a focal

point of the investigation.

2.3. Procedure for capturing images

A high-resolution single-lens reflex (SLR) camera, either pro-

fessional or semi-professional, was utilized for capturing im-

ages. The camera had a minimum resolution of 1024×768

pixels. The lens used for capturing images had a macro

power of either 60mm or 105mm. All medical personnel in-

volved in the process were thoroughly trained in operating

this equipment and doing the following:

P1. Adequately illuminate the surroundings using natural or

white light.

P2. Configure the camera to its highest resolution, with a

minimum setting of 1024 × 768 pixels.

P3. Position the camera at a distance ranging from 30 to 35

centimeters from the computer monitor.

P4. Ensure that the playback speed of the abdominal CT scan

film is set to 30 frames per second (FPS = 30).

P5. Align the vertical orientation of the camera lens perpen-

dicular (90 degrees) to the CT-scan images displayed on the

monitor. Hold the camera with both hands in a vertical or

horizontal position to maintain alignment.

P6. Confirm that no shadows are present in the area being

photographed, ensuring the film is clear, free from shadows,

in focus, and at an appropriate distance.
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P7. Transfer the recorded videos from the camera to com-

puter files without compromising the file size or image reso-

lution during the transfer process.

Following the capture procedure, the film frames need to be

converted into images. Additionally, in compliance with the

minimum imaging requirements, videos captured by smart-

phones, meeting the specified camera conditions, by medi-

cal professionals and toxicologists were deemed acceptable

for inclusion in this study.

2.4. Datasets

In this investigation, images were obtained by extracting

frames from videos captured by researchers using iOS and

Android smartphones, adhering to specified conditions out-

lined in the protocol. The videos processed for analysis

were standardized to a frame rate of 30 frames per second

(FPS=30). The extraction of images was facilitated through

the utilization of VLC software, with a recording ratio set at

two-second intervals for automatic screenshot capture. Sub-

sequently, the images were stored in jpg format and manually

reviewed to ensure quality and the presence of body pack by

two researchers, namely BMZ and SAM.

Images lacking body pack were excluded from the dataset, re-

sulting in a total of 888 images featuring one or more body

packs being chosen for further examination. The average di-

mensions of the images were measured at 850×310 pixels.

Software tools were employed to delineate suitable bounding

boxes (Bboxes) around the body packs. Bounding boxes are

typically defined by two points, commonly representing the

top-left and bottom-right corners of the box. These rectan-

gular labels are commonly utilized in tasks related to object

detection and localization, offering a clear method to specify

the position and dimensions of objects within an image. The

accuracy of the Bbox annotations for body packs was verified

by three researchers, namely BMS, SAM, and SS.

2.5. Data preparation

Given the diverse sizes and sources of the images, significant

pre-processing was required for each image dataset, con-

suming 80% of the time allocated for preparing a suitable

dataset for deep learning applications. Image data comes in

various formats, with RGB being a popular choice for color

images. The initial step involved generating a collection of

images with bounding box (bbox) labels denoting the body

pack positions.

Unlike object recognition in natural scenes, detecting body

packs presents unique challenges such as scale variations,

arbitrary orientations, and dense objects due to their move-

ment within the digestive system. Notably, detecting body

packs with arbitrary orientations in abdominal CT scan views

posed a specific challenge. The initial concept explored in

this study pertains to this issue. Thus, in addition to employ-

ing horizontal bounding boxes (Figure 1-a), rotated bound-

ing boxes (Figure 1-b) were utilized for rotated object detec-

tion (13, 14). The rotated bounding box approach introduced

a fifth parameter, denoted as p angle, alongside the standard

four parameters for bbox identification. The value of p angle

was determined through the following equation:

θP = {θ i f θ≤ π/2

(θ−π/2) i f θ >π/2

The Morphology Transformation technique was employed to

alter the shape and appearance of images with bounding box

labels. Initially, the data underwent normalization, a crucial

preprocessing step involving the rescaling of pixel values to a

specific range. This process is essential for addressing issues

such as exploding and the vanishing gradient. In the regres-

sion phase of the proposed model, an angle transform was

applied to the head region (Head) to introduce angle varia-

tions during the normalization process.

The subsequent phase involved augmentation, a technique

utilized in data preprocessing for image-based deep-learning

applications to enhance the quantity and diversity of the

training data. Augmentation was specifically applied to the

training set (Figure 2), resulting in a notable enhancement in

the mean Average Precision (mAP) of the model when tested

on images by toxicology experts for real-time body packer

detection from abdominal CT scan images under authentic

conditions.

In the examination of body packer images conducted by re-

searchers, a notable observation was the utilization of ra-

diopaque body packs positioned at varying angles to corre-

spond with the movement through distinct segments of the

gastrointestinal tract, such as the stomach, small intestine,

and large intestine. Consequently, DropBlock, a regulariza-

tion method for convolutional networks, was employed in

the course of this investigation.

2.6. Validation

The assessment of the object recognition model involves

identifying all instances of body packs within the images. It is

important to note that an image may contain multiple body

packs, and the detection process should specifically target

body packs while excluding objects from other categories,

such as kidney stones or fecal impact, which may require

differential diagnosis. In this research, the mean average

precision (mAP) metric was utilized, with the data structured

like the COCO dataset, using standard bounding box (bbox)

parameters (x1, y1, width, height).

Additionally, an angle parameter was incorporated into the

bbox parameters in our study, resulting in the following

format: x1, y1, width, , height.

In assessing the presence of an object, the Intersection over

Union (IoU) metric is employed as a means of determin-

ing similarity. This metric is derived by dividing the area

of overlap between two bounding boxes by the total area

encompassed by their union. IoU is a crucial component in

the computation of Average Precision, with mAP serving as

a metric that gauges the average precision across all object

categories. It is commonly utilized for the evaluation of

object recognition models (Figure 3).
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Precision and recall were calculated through the bellow

equation in which TP(c) TP(c) represents true positive, FP(c)

represents false positive, and FN(c) represents false negative.

In the case of TP(c) a proposal was made for class c, and

there was an object of class c, and in the case of FP(c) a

proposal was made for class c, but there is no object of class

c and in case of FN(c) no proposal was made for class c, and

there was an object of class c.

Precision = TP(c)/TP(c)+FP(c)

Recall = TP(c)/TP(c)+FN(c)

The standard interpretation of Average Precision (AP) in-

volves determining the area under the precision-recall curve.

Precision and recall values typically range from 0 to 1, re-

sulting in AP scores also falling within this range. The mAP

is computed by averaging the AP values across all classes

and/or various IoU thresholds, which may vary based on the

specific detection challenges being addressed (15). The AP

and mAP metrics are computed using the following formula:

AP =
∫ 1

0
p(r )dr

m AP = 1/N
N∑

i=1
APi

2.7. Technical evaluation

In this study, Python programming language along with

PyTorch, pandas, numpy, and sci-kit-learn libraries were uti-

lized for the development, training, and validation processes.

Additionally, a novel model was employed to enhance the

outcomes. The objective of the research was to establish

conditions conducive to simulating real-world scenarios

based on images captured by medical professionals using

mobile devices. The aim was to facilitate the practical ap-

plication of this research in the development of an assistant

tool to enhance the precision and reliability of body packer

identification. The proposed model underwent rigorous

testing during the image preparation and augmentation

stages. The dataset was partitioned into 80% for training

and 20% for evaluation, following an 80:20 split ratio. The

optimization algorithm employed in this model was Adamw.

Optimizer = dict(type=’AdamW’, lr=base_lr,

weight_decay=0.05).

Furthermore, the selection of the number of epochs for

training was determined to be between 100 and 500, guided

by the analysis of the diminishing loss curve and the stabi-

lization observed in the loss curve. The adjustment of the

learning rate within the model was made by the following

conditions:

# learning rate

param_scheduler = [

dict(

type=’LinearLR’,

start_factor=1.0e-5,

# use cosine lr from 10 to 20 epoch

type=’CosineAnnealingLR’,

eta_min=base_lr * 0.05,

begin=max_epochs // 2,

end=max_epochs,

T_max=max_epochs // 2,

by_epoch=True,

convert_to_iter_based=True).

In this research, all the models underwent training utilizing

MM Detection, a tool for object detection, to mitigate poten-

tial issues related to model implementation and to provide a

standard training pipeline (16).

2.8. Proposed framework (Body Packer Objec-
tion Model)

Object detection is commonly assessed through two primary

models: one-stage and two-stage detectors (17). One-stage

detectors prioritize rapid inference speeds, while two-stage

detectors emphasize high accuracy in localization and recog-

nition. The two-stage detection model involves a dual-step

process: initially identifying Regions of Interest (RoI) by gen-

erating candidate boxes, followed by classifying these RoIs

and refining location predictions. The first step utilizes a Re-

gion Proposal Network (RPN) to propose RoI candidates, en-

abling the model to identify potential object regions within

the image or video. This network essentially guides the

model on where to focus its attention.

Traditionally, methods such as selective search were em-

ployed for this purpose, but these were computationally in-

tensive. The advent of RPN significantly enhanced efficiency

and speed, thereby reducing the computational burden, par-

ticularly in detection networks like Fast RCNN. The two-stage

object detection models are commonly referred to as the R-

CNN family, with numerous instances of such models avail-

able.

Conversely, one-stage techniques involve a single model that

partitions the image into regions, revealing bounding box

and label possibilities for each region (18-20).

The Faster R-CNN model represents an enhanced iteration

of the Fast R-CNN framework, designed to achieve improved

computational efficiency. This advancement is achieved

by incorporating a convolutional neural network (CNN) as

the feature extractor for suggesting rectangular objects dur-

ing the proposal phase, as opposed to employing a selec-

tive search algorithm. The features of the proposed objects

are subsequently shared with the detector model, facilitating

tasks such as bounding box regression and classification (19).

In two-stage detectors like R-CNN or Faster R-CNN, the ini-

tial stage involves a region proposal network (RPN) that di-

minishes the number of potential object locations and filters

out a majority of background instances. Subsequently, in the

second stage, classification is performed for each identified

candidate object location. Techniques such as adjusting the

balance between foreground and background through their

respective proportions or employing strategies like Online
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Hard Example Mining (OHEM) to select a limited number of

anchors per batch are utilized for effective management of

object detection processes.

One widely used technique in machine learning is OHEM,

which involves the selection of examples that the model con-

fidently predicts as positive but are actually negative. This

strategy, referred to as Hard Example Mining aims to identify

and prioritize challenging examples for the model.

In certain object detection datasets, easily identifiable exam-

ples are prevalent alongside a limited number of difficult in-

stances. The automated identification and inclusion of these

challenging examples can enhance the efficiency and effec-

tiveness of the training process. OHEM is a method that

adapts Stochastic Gradient Descent (SGD) by sampling ex-

amples in a non-uniform manner based on their current loss

values.

SGD is an iterative optimization method that utilizes mini-

batches of data to estimate the gradient expectation rather

than calculating the full gradient using all the available

data. OHEM autonomously identifies challenging instances,

thereby enhancing the effectiveness and efficiency of train-

ing, while eliminating the need for various heuristics and hy-

perparameters commonly employed in this process (21).

Initially, the RPN module provides a refined selection of

boxes with certain backgrounds eliminated. Subsequently,

a balance between backgrounds and objects is achieved in

the following stage through the utilization of OHEM, such as

maintaining a ratio of 3:1.

In single-stage object detectors, a large number of potential

object locations are systematically selected within the im-

age, typically around 100,000 locations, to comprehensively

cover spatial positions and scales (including scaler and as-

pect ratios). Additionally, the training process involves utiliz-

ing background samples that are readily distinguishable. The

issue of imbalance between background samples and object

classes during training poses a significant challenge in the ac-

curacy of single-stage detectors, a problem not encountered

in two-stage detectors.

In single-stage networks, the generation of numerous

bounding boxes makes it impossible to address this imbal-

ance solely through techniques like OHEM and other heuris-

tic approaches (22).

RetinaNet employs a focal loss function, which is a cross-

entropy loss that is dynamically scaled. The scaling fac-

tor diminishes to zero as the confidence in the correct class

grows. This feature enables the automatic reduction of the

impact of straightforward examples during the training pro-

cess, thereby swiftly directing the model’s attention towards

more challenging instances. The utilization of this focal loss

contributes to the enhancement of accuracy in a one-stage

framework (23).

Three distinct state-of-the-art object detection models were

employed in the study. These included one-stage models

such as RetinaNet (23), PAFPN (24), and DropBlock (25), as

well as two-stage models like Faster R-CNN (19) and Cascade

R-CNN (26). The proposed model was primarily inspired by

the RetinaNet model, known for its utilization of focal loss,

which has been attributed to enhancing the performance of

RetinaNet (23).

2.9. Focal loss function

The cross-entropy loss is defined as follows:

CE(p,y) = { -log(p) if y=1

-log(1-p) otherwise

The above equation can be written as follows:

Pt = { p if y=1

1-p otherwise

CE(p,y) = CE(pt ) = - log(pt )

The Focal Loss function introduces a scaling factor (denoted

as coefficient ) to the cross-entropy function, which reduces

the emphasis on easily distinguishable samples. Conse-

quently, these straightforward instances contribute less to

the overall loss (Figure 4).

CE(pt ) = - αt log(pt )

FL(pt ) = -(1- pt )γ log (pt )

The RetinaNet architecture comprises three fundamental

components, namely the Backbone, Neck (FPN), and Head

as illustrated in Figure 5-A.

The primary aim of the Feature Pyramid Networks (FPN) is

to amalgamate features across diverse scales via a technique

referred to as Cross Scale Feature Fusion. In the RetinaNet

framework, this feature integration process is executed in a

direct manner. An inquiry arises regarding the optimality of

this configuration for feature combination across different

problem domains. Furthermore, it is pertinent to investigate

whether all features hold equal significance in the formation

of the output, or if there exists an imbalance in their contri-

butions. Notably, a range of structures have been put forth

for the FPN in various research endeavors, as depicted in Fig-

ure 5-B (27).

In our proposed framework, ResNet18 was utilized as the

backbone architecture. Nevertheless, the majority of ideas

aimed at improving network efficiency were put into practice

in the intermediate segment, commonly known as the neck.

Additional pathways and the integration of Dropblock were

incorporated in the neck segment of the network (25), result-

ing in improved outcomes for body packer detection and ac-

celerated convergence.

Additional paths for disseminating information within neu-

ral networks play a crucial role. Modifications were imple-

mented in the neck region to establish information pathways

connecting the lower layers with the topmost features, and to

create a path between the convolutional layers and the up-

per layers in both the descending and ascending directions

of the hierarchical structure. To enhance the feature set, im-

ages were utilized to transfer the output to the head regions
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(24).

Given the notable diversity in size observed in the body pack

images, the establishment of sub-paths proved to be highly

beneficial in enhancing the precision and adaptability of the

model in identifying the range of body pack sizes.

Furthermore, by introducing additional pathways in the neck

region and taking into account the utilization of the Dropout

technique within neural networks, particularly in the Foley-

connected layer, more favorable outcomes can be achieved.

Dropout involves the exclusion of units (both hidden and

visible) within a neural network. This process temporarily

eliminates all connections, both forward and backward, as-

sociated with the dropped node, thereby generating a modi-

fied network architecture derived from the original network.

Dropout serves as a straightforward method to mitigate over-

fitting in neural networks. The fundamental concept in-

volves randomly discarding units, along with their connec-

tions, from the neural network during the training phase.

This strategy prevents units from excessively co-adapting.

Throughout the training, dropout selects from a vast number

of distinct thinned networks. By reducing the squared norm

of the weights, dropout aids in diminishing overfitting (28).

However, the application of the Dropout technique has lim-

ited effectiveness on convolution layers due to the spatial

correlation of activation units within these layers, allow-

ing information to still propagate through convolution net-

works despite Dropout. Consequently, DropBlock, a variant

of Dropout that eliminates contiguous regions from feature

maps, is employed in convolution networks. This concept

was integrated into the proposed neck model for bodypacker

detection, resulting in improved outcomes. DropBlock op-

erates as a structured Dropout method where units within a

connected region of a feature map are simultaneously deacti-

vated. Implementing DropBlock in skip connections, along-

side convolution layers, enhances accuracy. Furthermore, in-

crementally increasing the number of deactivated units dur-

ing training enhances accuracy and boosts resilience to vari-

ations in hyperparameter selections (25).

Both ideas, namely the integration of DropBlock and modifi-

cations in the neck of RetinaNet, were implemented in con-

junction with a streamlined backbone architecture, specifi-

cally ResNet18, to decrease computational complexity (Fig-

ure 6). This strategy was primarily directed towards achiev-

ing real-time performance and developing a compact and

mobile-friendly model suitable for application design. The

intended user base for this model includes toxicologists and

emergency physicians in treatment facilities.

3. Results

In this study, the researchers were able to explore a va-

riety of deep architectures by leveraging the user-friendly

nature of the Backbone family, exemplified by ResNet in

the RetinaNet network. By experimenting with ResNet101,

ResNet50, ResNet34, and ResNet18, it was determined that

the most favorable outcomes were achieved with the Back-

bone ResNet18.

To assess the efficacy of the proposed body packer detec-

tion model, the mAP was employed as a performance metric.

The average mAP value across different Intersections over

Union (IoU) thresholds ranging from 0.5 to 0.95 in our model

was documented as 45.6, which outperformed alternative

single-stage and two-stage models. Furthermore, our model

demonstrated superior performance in detecting body pack

instances of varying sizes, particularly excelling in identifying

cases with small and large dimensions at an IoU threshold of

0.75 in comparison to analogous models, as illustrated in Ta-

ble 1.

In the model we have put forth, the Average Recall sensitiv-

ity at maxDets = 100 outperformed that of alternative mod-

els across all scenarios, as indicated in Table 2. It obtained

a Recall value of 58.5%, which was the best result among the

standard object detection methods such as the standard Reti-

naNet. The outcomes presented in Tables 1 and 2 demon-

strate that our proposed model achieves the highest AUC

value relative to other models. Two additional gif files were

included in the supplementary information to enhance the

visualization of the proposed body packer detection model’s

performance.

4. Discussion

A thorough examination conducted in 2023, utilizing

databases including Web of Science and Scopus focused on

the exploration of "body packer detection" through compu-

tational methodologies like artificial intelligence and image

processing. The review revealed a lack of prior studies em-

ploying such techniques, prompting researchers to curate

and categorize a dataset specifically for this investigation.

The Bounding Box (Bbox) is a tool commonly employed in

computer vision for object detection. However, while this

method is effective in various scenarios, it may not be the

most suitable for detecting certain objects, such as body

packers, which are angled rectangles oriented in different

ways. In our research, we utilized the display of angled rect-

angles (oriented bounding boxes) to precisely locate body

packs in the training dataset, drawing parallels to the work

of Etten et al. (15) who employed spherical Bbox for identify-

ing spherical objects like red blood cells in medical applica-

tions. Similarly, Jiang’s study (29) utilized a dataset contain-

ing angular objects to enhance image analysis, resulting in

outcomes akin to our research findings.

This research employed RetinaNet with focal loss to analyze

the effectiveness of abdominal CT scans in detecting body

packers. Several other studies have also been conducted in

this field, including research by Paul F. Jaeger et al. on the in-

tegration of RetinaNet and U-Net networks, known as Retina

U-Net. This study demonstrated improved performance in

diagnosing malignant or benign lesions in lung CT scan med-

ical images, achieving an mAP10 score of 35.8%, surpassing

results obtained by other networks (30). Ke Yan et al. also

investigated the use of a cannulation network to detect im-
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paired regions in CT scans, employing a three-dimensional

network based on Convolutional Neural Networks (CNN) as

opposed to traditional two-dimensional approaches, result-

ing in enhanced outcomes compared to detectors such as

Faster-RCNN (31). San-Gil Lee and colleagues utilized a

modified Single Shot MultiBox Detector (SSD) to predict hep-

atic lesions in CT scans, achieving an average precision score

of 53.3% in identifying such lesions (32). Additionally, Zi-

hao Li and colleagues introduced the concept of utilizing a

multi-view feature pyramid network (FPN) for interpreting

hepatic lesions, which demonstrated a 2.91% higher mean

average precision (mAP) compared to the baseline approach.

In their model, a 3D MVP-Net derived from the primary CT-

scan data was integrated into the system, and through inno-

vative techniques, the features were amalgamated to provide

a comprehensive analysis of the lesion using R-CNN and RPN

algorithms (33). In another study, Ethan H. and co-authors

proposed a novel circular representation for medical object

detection, presenting CircleNet as an anchor-free detection

framework in lieu of traditional bounding boxes. Their circle-

based approach exhibited enhanced detection performance

and greater rotation invariance when identifying glomeruli

and nuclei in pathological images (34).

Abdominal CT scans were found to exhibit higher sensitivity

and specificity than abdominal X-rays due to their enhanced

contrast clarity.

Abdominal computed tomography (CT) imaging without

contrast reveals the presence of body packs as numerous

oval or circular foreign objects dispersed throughout the ab-

domen, emitting radiation (35, 36). These objects exhibit hy-

perdensity on abdominal CT scans, typically falling within

the 20-70 Hounsfield units (HU) range. Radiologically, body

packs manifest in various forms, including the "egg bag" or

"tic-tac" sign denoting the presence of multiple uniformly

dense objects with distinct borders, the "double condom"

sign indicating air trapped between layers, the "rosette" sign

representing air trapped within package knots, the "halo"

sign characterized by a bright rim encircling the package, the

"black crescent" sign showing a crescent of air surrounding

the package, the "air sign" depicting a transparent triangle

between closed objects, and the "feces-like" appearance re-

sembling sharp-layered feces between the body packaging

and intestinal wall (37, 38). The diverse shapes and sizes of

these objects pose a diagnostic challenge, prompting the ini-

tiation of this study as a preliminary step towards leveraging

artificial intelligence for object detection to aid in diagnosis.

Various body pack forms and sizes have prompted re-

searchers to seek a more adaptable machine-learning frame-

work. To address this, the network architecture was mod-

ified to allow for flexible adjustments in the network hier-

archy, establishing connections between the Feature Pyra-

mid Network (FPN) outputs as proposed by Wang et al. (13).

The transmission of information within neural networks is

crucial for object recognition, with low-level features being

particularly important for detecting large objects. However,

the lengthy path between high-level and low-level features

in the feature pyramid poses challenges in accurately local-

izing large objects. To address the issue of recognizing body

packers of varying sizes, one approach involves enhancing

the feature pyramid with precise low-level positional data

and reducing the information path. An enhancement to the

bottom-up path based on FPN, known as PAFPN, has been

introduced to refine the feature pyramid architecture and

shorten the information path. PAFPN facilitates information

flow between lower and higher network layers by establish-

ing sub-paths and enhancing network accuracy (24).

To evaluate the model’s ability to detect body packers, a spe-

cific regularization technique known as DropBlock was em-

ployed, resulting in improved accuracy of the model on the

body packers dataset (25, 39). The authors utilized this ap-

proach to enhance the model’s performance by generating

diverse shapes and perspectives of body packs as they tra-

verse various regions of the digestive system during abdomi-

nal CT scans.

The suggested framework demonstrates adaptability, offer-

ing significant potential to enhance model accuracy through

the utilization of more intricate CNNs as the foundation and

diverse RPNs. In striving to achieve real-time capabilities

for detecting body packers in abdominal CT scans, the re-

searchers deliberately refrained from escalating computa-

tional demands.

5. Limitations

The main limitation of this study is the small sample size

for image processing using deep learning algorithms. Our

research was conducted exclusively with data from a single

center, Loghman Hakim Hospital. To enhance the applica-

bility of results, future studies should consider enlarging the

sample size or incorporating data from various hospital or

provinces.

6. Conclusions

This research utilized a deep learning network to detect body

packs in abdominal CT scans, demonstrating the significance

of considering object shape and diversity while exploiting ar-

tificial intelligence in the medical field to support healthcare

professionals. However, the creation of a specialized dataset

for object detection, such as body packs, necessitates metic-

ulous curation by domain experts for effective training.

Moreover, the development of extensive detection datasets

holds promise in maximizing the capabilities of deep learn-

ing models for object detection within both artificial intelli-

gence and clinical contexts. The precise identification facili-

tated by this approach enhances the practical utility of intelli-

gent assistants in real-world clinical settings. Future endeav-

ors will focus on expanding the dataset to encompass thou-

sands of samples and incorporating differential diagnoses.

Enhancements in data fine-tuning and the adoption of ad-

vanced object detection techniques are anticipated to en-
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hance the overall outcomes of the study.

7. Abbreviations

AI: artificial intelligence

Bbox: oriented Bounding box

BPD: Body Packer Detection

CAD: computer-aided diagnosis

CNN: convolutional neural network

CT: computed tomography

FN(c): false negative

FPN: Feature Pyramid Network

FPS: frames per second

HU: Hounsfield units

IoU: intersection over union

mAP: mean average precision

MRI: Magnetic Resonance Imaging

OHEM: Online Hard Example Mining

PET: positron emission tomography

RoI: Regions of Interest

RPN: Region Proposal Network

SGD: Stochastic Gradient Descent

SLR: single-lens reflex

SSD: Single Shot MultiBox Detector

FP(c): false positive

TP(c): true positive
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Table 1: Average Precision (AP) and mean AP for body packer detection

Methods Backbone AP0.50:0.95 AP50 AP75 APs APM APL
Two-stage
Faster-rcnn _fpn ResNet50 41.7 85.8 35.3 41.4 43.2 46.7
Cascade-rcnn_ sac_Detectron ResNet50 42.4 85.7 36.4 42.8 42.2 36.8
One-stage
RetinaNet _fpn ResNet50 42.3 85.7 35.6 43.1 40.2 40.4
RetinaNet _fpn ResNet18 42.3 86.7 36.7 42.8 41.5 46.7
RetinaNet _ FPN_DropBlock ResNet18 43.7 85.5 37.6 43.3 44.9 56.7
RetinaNet _PAFPN ResNet18 42.7 85.5 37.0 43.4 40.8 46.8
Proposed model* ResNet18 44.6 85.7 41.5 44.7 43.9 58.9
Proposed model*+oBbox ResNet18 45.6 86.6 42.4 45.8 45.9 59.8
Intersection over union (IoU) threshold =X: APX (Example: IoU threshold =50%: AP50); APS: Small objects are defined as
being between 02̂ and 322̂ pixels in area; APM: Medium objects are defined as being between 322̂ and 962̂ pixels in area;
APL: Large objects are defined as being between 962̂ and 1e52̂ pixels in area; oBbox: oriented bounding boxes.

Table 2: Average recall (AR) for Body package detection

Methods Backbone AR ARs ARM ARL
Two-stage
Faster-rcnn _fpn ResNet50 50.1 59.7 51.6 46.7
Cascade-rcnn_ sac_Detectron ResNet50 51.6 51.9 51.0 36.7
One-stage
RetinaNet _fpn ResNet50 53.2 53.0 54.1 40.0
RetinaNet _fpn ResNet18 53.1 52.8 53.9 46.7
RetinaNet _ FPN_DropBlock ResNet18 53.3 52.8 54.8 56.7
RetinaNet _PAFPN ResNet18 52.6 52.6 52.5 46.7
Proposed model* (our model1) ResNet18 57.7 57.0 59.9 60.0
Proposed model*+oBbox (our model2) ResNet18 58.5 58.1 60.1 62.1
Intersection over union (IoU) threshold =X: APX (Example: IoU threshold =50%: AP50); APS: Small objects are defined as
being between 02̂ and 322̂ pixels in area; APM: Medium objects are defined as being between 322̂ and 962̂ pixels in
area; APL: Large objects are defined as being between 962̂ and 1e52̂ pixels in area; oBbox: oriented bounding boxes.
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Figure 1: Object detection model with oriented bounding boxes.

Figure 2: Schematic diagram of the image dataset preparation.
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Figure 3: Intersection over Union (IoU).

Figure 4: The Focal Loss introduces a modification to the conventional cross entropy criterion by incorporating a factor of (1 pt). When

is set to a value greater than zero, it diminishes the loss proportion for accurately classified instances (pt > .5), thereby emphasizing more

on challenging, misclassified instances. The parameter denotes the focusing parameter that directs attention towards difficult misclassified

instances, while represents the balancing coefficient as suggested in the primary literature (23).
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Figure 5: (A) The RetinaNet architecture utilizes the ResNet backbone network in conjunction with the Feature Pyramid Network (FPN) as

the feature extractor, while two additional Convolutional Neural Networks (CNNs) are responsible for classification and regression tasks. (B)

Various neck architectures can be explored within the RetinaNet framework.

Figure 6: In the proposed model, both concepts, namely the integration of DropBlock and modifications in the neck of RetinaNet, were

implemented in conjunction with a streamlined backbone architecture, specifically ResNet18, to decrease computational complexity.
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