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Quantifying the roles of space and stochasticity 
in computer simulations for cell biology and 
cellular biochemistry

ABSTRACT Most of the fascinating phenomena studied in cell biology emerge from interac-
tions among highly organized multimolecular structures embedded into complex and frequent-
ly dynamic cellular morphologies. For the exploration of such systems, computer simulation has 
proved to be an invaluable tool, and many researchers in this field have developed sophisti-
cated computational models for application to specific cell biological questions. However, it is 
often difficult to reconcile conflicting computational results that use different approaches to 
describe the same phenomenon. To address this issue systematically, we have defined a series 
of computational test cases ranging from very simple to moderately complex, varying key fea-
tures of dimensionality, reaction type, reaction speed, crowding, and cell size. We then quanti-
fied how explicit spatial and/or stochastic implementations alter outcomes, even when all 
methods use the same reaction network, rates, and concentrations. For simple cases, we gener-
ally find minor differences in solutions of the same problem. However, we observe increasing 
discordance as the effects of localization, dimensionality reduction, and irreversible enzymatic 
reactions are combined. We discuss the strengths and limitations of commonly used computa-
tional approaches for exploring cell biological questions and provide a framework for decision 
making by researchers developing new models. As computational power and speed continue 
to increase at a remarkable rate, the dream of a fully comprehensive computational model of a 
living cell may be drawing closer to reality, but our analysis demonstrates that it will be crucial 
to evaluate the accuracy of such models critically and systematically.

INTRODUCTION
Twenty-first century cell biology has been transformed by rapid de-
velopment of new technologies that have delivered our field into an 
era where scientists can now easily generate vast amounts of quan-
titative data, providing a broad and comprehensive view of prob-
lems that were previously accessible only by brief, laboriously 
achieved glances through tiny chinks. Northern blots have been re-
placed by RNA sequencing, Western blots are being replaced by 
proteomics, and the central cell biological tool of imaging has been 
revolutionized by a wealth of dramatic improvements in labeling 
methods, optical design, and digital imaging. While currently avail-
able data are just a tiny fraction of the amount that will eventually be 
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needed to model entire cells, sufficient data are available for a num-
ber of cell biological processes to ask whether and how we can use 
it to understand the biological mechanisms underlying those 
processes.

Mathematical modeling can help (Cohen, 2004; Gunawardena, 
2014). By generating a model of a process that we want to study, 
where we are able to define and control all the inputs and parame-
ters, we can directly determine whether a mechanism we have hy-
pothesized is actually sufficient to explain the phenomenon we have 
observed. While mathematical modeling of cell biological processes 
can take many forms, here we will focus exclusively on computa-
tional simulation. One of our goals is to discuss the current state of 
the art in computational cell biology and remaining open chal-
lenges, particularly regarding the spatial organization of signaling 
processes, the inclusion of stochastic effects, and the multiscale na-
ture of many cell biological processes.

Computers are much better than humans at keeping track of 
large, complex systems with many interacting parts and also at mer-
cilessly following predetermined rules. One subfield of cell biology 
that has been able to make great use of these abilities is the study 
of signal transduction, where typically many different molecular spe-
cies interact with one another in branching and reticular networks. 
Biochemical and genetic experiments have been able to map out 
and characterize many individual pairwise interactions in multicom-
ponent signaling pathways. However, the resulting “wiring dia-
grams” have provided little direct insight into how these networks of 
molecular interactions could give rise to the diverse and fascinating 
outputs of these systems, which might be able to generate oscilla-
tions, high-pass or low-pass filtering of receptor-mediated input sig-
nals, conversion of analog signals into switch-like binary outputs, 
and so forth. Computational simulations have been instrumental in 
bringing order and insight into this tangled web so that now it is 
possible to recognize recurrent motifs in the design of signal trans-
duction systems and, sometimes, accurately predict cellular re-
sponses to external stimuli (Eungdamrong and Iyengar, 2004; Kes-
tler et al., 2008; Janes and Lauffenburger, 2013; Cao et al., 2016).

Within this context, a very fertile ecosystem of computational 
tools for modeling cellular biochemistry has flourished (Bartocci and 
Lio, 2016).There are now also approaches that enable scientists who 
are not computational experts themselves to translate their hypoth-
eses about cellular signaling mechanisms into formal models in 
compact and intuitive ways; these include using textual rules 
(Faeder, 2011; Maus et al., 2011; Tiger et al., 2012; Harris et al., 
2016; Boutillier et al., 2018) or iconographic symbols (Zhang et al., 
2013; Schaff et al., 2016; Sekar et al., 2017) to specify molecular in-
teractions. Based on those specifications, the tools generate the 
resulting computational representations of the signaling networks 
and allow modelers to easily modify their assumptions to explore 
the consequences of such simulated manipulations on cellular be-
havior (Lopez et al., 2013). To allow for tool-independent formula-
tion and sharing of computational models, the widely used “sys-
tems biology markup language” SBML was developed. (Hucka 
et al., 2003) SBML is continuously evolving and is supported by a 
large number of software systems for simulation and data analysis 
(Keating et al., 2020; SBML.org). While there are many variations, 
generally simulations of this kind are able to keep track of concen-
trations and interactions of many individual molecular species as 
they change over time, often the most interesting dimension for the 
study of signal transduction.

However, many cell biological processes, including some kinds 
of signaling, cannot be analyzed without the notion of space. Cell–
cell communication is frequently based on the exchange of soluble 

messenger molecules, such as hormones, cytokines or chemokines, 
that diffuse through extracellular space before being captured by 
specific receptors at particular locations on cellular membranes. Di-
rect cell–cell contacts also typically involve only a few of the recep-
tors on a cell and generate localized signals that activate cascades 
of protein interactions and modifications to propagate from the 
membrane into the cytoplasm. Spatial simulation of cell biological 
phenomena is not new; in 1952, Hodgkin and Huxley simulated the 
propagation of an action potential down a neuronal axon (Hodgkin 
and Huxley, 1952; Hellander et al., 2015), and in the same year, Alan 
Turing used computational simulation to demonstrate how chemical 
systems featuring both diffusion and reaction could generate regu-
lar spatial patterns from an initial uniform state (Turing, 1952). More 
recently, many researchers have developed computational simula-
tions that employ state-of-the-art knowledge about the properties 
and interactions of individual molecular components to attempt 
spatially resolved reproduction of complex cell biological phenom-
ena. Reaction–diffusion models of intracellular biochemistry have 
been used to explore a variety of cellular symmetry-breaking pro-
cesses, including the establishment of cell polarity (Jilkine and Edel-
stein-Keshet, 2011). Although the exact mechanistic details vary, 
spatial simulation approaches have yielded insights for symmetry-
breaking systems as diverse as yeast bud site selection (Wedlich-
Soldner et al., 2003), asymmetric cell division in early Caenorhabdi-
tis elegans embryos (Dawes and Munro, 2011) and neutrophil 
chemotaxis (Onsum and Rao, 2007). Establishment of spatial gradi-
ents that determine cell fate has been explored in cells ranging from 
giant syncytial Drosophila embryos (Gregor et al., 2007) to tiny indi-
vidual bacteria (Chen et al., 2011). Simulations that explicitly con-
sider spatial effects as one cell communicates with its neighbors 
have been used to understand the formation of regular stripes in 
Drosophila embryos (von Dassow et al., 2000) and bizarre noncell-
autonomous effects in the patterning of wing bristles in adult flies 
(Amonlirdviman et al., 2005).

In many of the modeling efforts that we have mentioned so far, 
the computational model and/or simulation was formulated explic-
itly for the problem at hand. While this approach has enabled impor-
tant scientific insights, we believe that spatial simulation for cell bio-
logical processes can become a much more widely used tool in the 
cell biologist’s toolbox if there was more general access to user-
friendly implementations of general spatial modeling frameworks 
that do not require extensive computational expertise. Consider, for 
example, the wide variety of user-friendly open-source software 
packages now available for analysis of sequencing data (Rice et al., 
2000; Trapnell et al., 2012). One particularly important benefit of 
more standardized approaches to spatial simulations in cell biology 
is that standardization may help to resolve whether conflicting con-
clusions arise because of fundamental scientific differences in model 
assumptions or because of details of numerical implementation.

Another aspect gaining importance as we zoom in closer on the 
building blocks of cellular structures is the fact that, at the molecular 
level, cellular biochemistry is governed by stochastic processes such 
as thermal Brownian motion and the collisions and interactions 
among individual particles (Schnoerr et al., 2017). Only in the limit of 
high concentrations and homogenous spatial distributions can the 
behavior of the molecular components of cellular signaling path-
ways be described in terms of deterministic reaction rate equations. 
Many subcellular mechanisms operate far from this limit either due 
to highly nonhomogenous clustering of receptors and of the signal-
ing components they recruit, such as studied in the MAPK signaling 
pathway (Takahashi et al., 2010), or due to locally low copy numbers, 
for instance of multimolecular complexes regulating transcription in 
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the nucleus (Cho et al., 2018). To accurately capture the stochastic 
characteristics of such processes, computational models have to 
simulate the motion and interactions of individual molecules. A full 
simulation of Brownian dynamics (BD), following each single 
“Brownian hop” of all molecules of a cellular region would, how-
ever, in most cases be too computationally expensive and time con-
suming. Moreover, by choosing a particular time step for recreating 
Brownian hops on the computer, we would impose this timescale on 
our simulations, missing events, such as molecular encounters, that 
may occur ‘in between’ our time steps. Many approaches have been 
developed to deal with this problem and we will discuss several of 
them below. A common theme among all of them is, however, sav-
ing computational cost through temporal and spatial coarse grain-
ing without sacrificing too much accuracy in the simulation results. 
This challenge unites researchers looking at spatially resolved mod-
eling (without a focus on stochastic effects) and those who try to 
capture the manifestations of stochastic fluctuations in cellular 
systems.

The question of how the field could best go about building and 
sharing broadly applicable computational tools for spatial and sto-
chastic modeling of cell biological processes was the focus of our 
working group, organized by J.R.F. and R.F.M., which met with the 
support of the National Institute for Mathematical and Biological 
Synthesis (NIMBioS). We chose to focus specifically on the biochem-
ical scale of molecular interactions. We did not attempt to include 
the enormous field of molecular dynamics (MD) simulations that ex-
plores forces and movements of individual atoms within proteins or 
other macromolecules. The reason is that, because of their intensive 
computational demands, MD simulations are currently limited to ex-
ploration of very small biological systems (a few macromolecules) 
over very short periods of time (typically in the microsecond range 
or below), too small and too fast to be incorporated into cell-scale 
computational simulations. Conversely, we also limited ourselves to 
considering simulations of interactions within systems of molecular 
complexes with specific stoichiometry rather than extending our 
analysis to mesoscopic-scale models that abstract the behaviors of 

complex molecular systems into continuum 
physical descriptions, such as those describ-
ing cytoskeletal filaments as elastic beams 
(Nedelec and Foethke, 2007; Odell and 
Foe, 2008) or the plasma membrane as a 
flexible thin film (Fowler et al., 2016). While 
these kinds of models are enormously useful 
in cell biology, they rely on fundamental 
simplifying assumptions. In contrast, we are 
specifically interested in exploring whether 
detailed simulations of the behaviors and 
interactions among biomolecular com-
plexes can succeed in predicting certain 
kinds of mesoscopic phenomena and hence 
may help determining under which condi-
tions the simplifying assumptions are justi-
fied. As we will discuss in our conclusion, it 
will be an exciting future direction for the 
field of biological simulation when all these 
three levels of spatially resolved simulations 
can be seamlessly interconnected.

In this article, we will first briefly survey 
several existing approaches for spatial and 
stochastic cell simulations and then apply 
them to a series of “unit tests” and bench-
mark problems. The problems we chose are 
categorized to cover a variety of different 
aspects of spatially resolved and/or stochas-
tic simulations of cellular behavior. Concep-
tionally, they are relatively simple and are 
meant to capture specific challenges related 
to essential aspects of biological processes. 
They must be accurately modeled by a sim-
ulation tool to ensure that that tool’s results 
are reproducible for the problem category 
covered by the unit tests or benchmark 
problems. With these examples in hand, we 
then summarize how features of a particular 
cell biological problem should guide selec-
tion of the appropriate modeling approach. 
One should note that, in practice, finding or 
developing the appropriate approach for a 
given cell biological phenomenon involves 
far more decisions than “just” whether the 
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FIGURE 1: Overview of nonspatial and spatial simulation approaches for describing the time 
dependence of interacting and reacting species. Different colors represent different species. 
Spatial models are illustrated at one point in time. Left: deterministic approaches to modeling 
biological systems solve (a) ordinary or (c) partial differential equations (ODE/PDE) using 
standard numerical methods, benefiting from extensive method development across science, 
math, and engineering fields. For example, PDEs can be numerically solved on a mesh as shown. 
Right: stochastic simulation approaches sample from a time- (and space-) dependent probability 
distribution that typically models unimolecular and bimolecular reactions, as well as diffusion for 
spatial methods. (d) Reaction–diffusion Master Equation (RDME) methods are the extension of 
the (b) chemical master equation (CME) methods on to a spatial lattice, where integer copy 
numbers of species are tracked and can diffuse between lattice subvolumes. (e) Single-particle 
methods propagate individual particles undergoing diffusion in continuous space, where 
bimolecular reactions can occur only on collision or colocalization in space. We provide a guide 
to corresponding software tools of each approach in Supplemental Table S1.
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model should capture spatial or stochastic aspects (or both). A simi-
larly important and related challenge is to find the right balance 
between biological realism and detail on the one hand and compu-
tational manageability and parameter estimation on the other hand. 
However, a systematic exploration of methods for identifying the 
right degree of model granularity would go beyond the scope of an 
article exploring the roles of space and stochasticity. Here, we will, 
therefore, limit our discussion of topics such as model reduction and 
parameter estimation to pointing out where we think these aspects 
become particularly important. Finally, we will present the results of 
our wide-ranging and, sometimes, highly opinionated discussions 
on future directions and challenges for the field. We all share an 
ambitious vision of the future power of spatial cell simulations both 
for exploring hypotheses about mechanisms and for coming to 
grips with the massive amounts of quantitative data now available to 
cell biologists. Our overall goal here is to map out where the field 
currently stands and propose a trajectory for the future.

MODELING APPROACHES
Overview of approaches for spatial and stochastic modeling 
and simulation of molecular reactions underlying cell 
biological phenomena
Computational models that simulate the biochemistry underlying 
cell biological processes need to be able to describe molecular 
players and their reactions. However, depending on the particular 
question at hand, taking into account spatial aspects and stochastic 
effects (Figure 1) may or may not be essential, as we show in Results. 
The addition of spatial resolution is computationally demanding, 

and stochastic simulations are usually more costly than their deter-
ministic counterparts. To attempt a whole-cell simulation, for ex-
ample, one must choose whether more components and a more 
complex reaction network are necessary, generally requiring the 
sacrifice of spatial resolution (Tomita et al., 1999; Sanghvi et al., 
2013), or if spatial resolution is necessary, then the reaction network 
must be simplified (Ghaemi et al., 2020). If spatial resolution is a 
priority, must species be resolved as individual particles, capturing 
fluctuations in copy numbers but at considerable extra expense 
(Supplemental Table S3), or is an efficient deterministic approach 
sufficient?

Whether to include spatial or stochastic resolution will also affect 
the kind of data and (a priori known) parameters that are required 
and the results that can be expected. Differential equation-based 
models can incorporate phenomenological elements such as Hill-
type functions bridging different model elements whose interde-
pendencies are either not well understood or whose details are con-
sidered less important for the overall quality of a modeling effort. 
Moreover, more abstract models sometimes permit identifying 
components (species or mechanisms) whose kinetics contribute lit-
tle to the behavior of a model or that can be lumped with other 
species to simplify its computational representation (Rao et al., 
2014). This can be particularly useful for very large systems with well-
defined constraints, such as metabolic network models (Masid et al., 
2020). With decreasing complexity of a model, it also becomes 
easier to perform robust parameter estimations and to determine 
how well the model is justified based on the available data (Raue 
et al., 2009). However, model abstractions are also at risk of losing 

BOX 1: REACTION RATE EQUATIONS
Technically speaking, reaction rate equations are ordinary differential equations (ODEs). Here, the “ordinary” refers to the fact that they 
involve only time (as opposed to, for instance, time and space). To describe the time evolution of multiple interacting molecule types, 
one uses coupled differential equations that express how the components’ concentration changes are linked (or coupled). For applica-
tions, see, for example, Aldridge et al. (2006) and Tyson et al. (2003). From a numerical/mathematical point of view, ODEs describing 
biochemical reactions are typically simple, and many tools exist that can solve them to obtain the temporal evolution of the concentra-
tions in ODE models.

Consider a simple model of a receptor binding to a ligand. We call R the concentration of the receptor, L that of the ligand, and RL 
that of the complex formed by the binding of the two. The rate equations giving the time derivatives of RL, R and L for this reaction 
could be written as

= ⋅ ⋅ − ⋅

= − ⋅ ⋅ + ⋅

= − ⋅ ⋅ + ⋅

dRL

dt
k R L k RL

dR

dt
k R L k RL

dL

dt
k R L k RL

on off

on off

on off

Here, kon and koff are the association and dissociation constants, respectively. The time course of RL would look similar to the red 
curve in Figure 1a, whereas time courses of R and L would be similar to the blue curve. These equations can be solved analytically, but 
the additional complexity of most biologically relevant models generates equations that require numerical solution by computer.

The chemical master equation (CME; McQuarrie, 1967; Gillespie, 1992; Ge and Qian, 2013) considers the discrete and stochastic 
nature of the biochemical system, which can cause differences from deterministic rate equations (Samoilov and Arkin, 2006). The CME 
describes how the probability of the system being in a specific state evolves over time by using reaction probabilities (likelihood of oc-
currence per unit time) rather than the equivalent reaction rates. Just like reaction rate equations, the CME assumes well-stirred (homo-
geneous) systems. In most practical modeling applications, the CME cannot be solved analytically (i.e., with a closed-form expression), 
but simulations of the CME are conceptually straightforward and widely used (see Box 2).

Both the reaction rate approach and the CME approach simply cannot capture effects of inhomogeneous distributions of molecules 
in space, such as receptors clustered on membranes, or intrinsic time delays due to diffusion to localized targets such as membrane-
bound receptors. For more realistic simulations of cellular process, we must turn to different computational approaches that explicitly 
include space.
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BOX 2: THE CHEMICAL MASTER EQUATION (CME)
The CME is a set of coupled linear ODEs that describe the time dependence of the probability to occupy each of a set of discrete states, 
with each state defined by the copy numbers of molecular species. The CME may be written as

dP N t

dt
N P N t N P N t

,
, ,

r

R

r r r
r

R

r∑ ∑υ υ
) ) ) ) )( ( ( ( (= α − ⋅ − − α ⋅

where the composition vector N is composed of copy numbers of each molecular species, and thus one has a set of equations, one for 
each possible instantiation of N. Here, the sum runs over all possible reactions R. The υr is the stoichiometric vector of reaction r that 
describes how this reaction changes the number of molecules in the composition vector N and αr (N) is the probability per unit time that 
reaction r occurs, given that the system is in the state described by N. The CME is important from a conceptual point of view as it rep-
resents a framework to describe probabilistic transitions and thus captures the stochasticity underlying all molecular interactions (Grima 
and Schnell, 2008; Schnoerr et al., 2017). The computational cost of solving the CME equations scales exponentially with the number 
of chemical species, and, although clever approaches have extended the size of systems for which the CME can be solved (Munsky and 
Khammash, 2006), high computational cost still limits biological applications. An intuitively simple way to calculate a solution of the 
CME would be to set up a simulation where time ticks forward in small, discrete intervals (time steps). However, the fixed time step in 
this integration scheme has finite error that is only eliminated in the limit Δt → 0, since reactions may occur even during shorter time 
steps than the one chosen to propagate the system in time.

One popular and precise method used to generate trajectories through the state space sampled by the CME without the need to 
choose a discrete time step is the stochastic simulation algorithm (SSA) (Gillespie, 1976; see Gillespie et al., 2013, for a detailed review). 
In an SSA simulation, the time interval until the next reaction occurs is itself sampled, as is the type of reaction that will occur (Gillespie, 
1976). Molecular species that can react quickly and have many possible interaction partners will be selected frequently, while rarer 
molecules associated with slower reactions will be selected rarely. Since the simulations proceed with one reaction at a time, the com-
putational cost depends strongly on the number of particles and reaction rates in the system. In contrast, the effort required to integrate 
(or solve) reaction rate equations depends mostly on how many molecule types are involved and whether their interactions occur on 
different or similar timescales. Various approaches have been developed to increase the efficiency of both exact (Gupta and Mendes, 
2018) and approximate (Schnoerr et al., 2017) stochastic simulations of the CME. In addition, efficient methods have been developed 
to compute distributions and moments directly from the CME itself (Hasenauer et al., 2014; Hellander et al., 2017). A stochastic simula-
tion of the example system from Box 1 would look similar to Figure 1b. Note, however, that such a trajectory represents only one pos-
sible time course compatible with the underlying CME. This means that many stochastic simulation trajectories must be collected to 
determine probability distributions and moments of the CME.

the ability to describe the behavior of biological entities (for instance 
molecular signaling components) considered relevant by experi-
mental biologists and, ultimately, the choice between model sim-
plicity and biological realism can be difficult (Meier-Schellersheim 
et al., 2019).

Nonspatial modeling approaches
In many situations, we can describe a biochemical system ade-
quately in terms of the overall concentrations of interacting mole-
cule types and complexes (collectively called “species”), while ne-
glecting the spatial variations in these concentrations. Reaction rate 
equations (see Box 1) describe how the species concentrations 
evolve in time. The terms in these equations arise from the rates of 
the reactions that can occur in the system, which are often described 
by the Law of Mass Action. The rate of reaction between two inter-
acting species can be given by the product of their concentrations 
and a rate constant, for example, kon for the ligand-receptor binding 
described in Box 1. The bimolecular rate constants that appear in 
these equations are sometimes referred to as “macroscopic” rate 
constants because they describe the average rate of reaction as-
suming homogenous distribution of the reacting species. In con-
trast, “microscopic” rate constants, which govern reaction kinetics 
at the scale of interacting particles, may take into account more de-
tails about the way the molecules approach each other, as discussed 
below.

Spatial modeling approaches
The molecular components of living systems are not distributed ho-
mogeneously and the high spatial resolution of today’s fluorescence 

microscopy is continuously giving us more examples of biological 
phenomena where the spatial arrangement of the underlying bio-
chemical processes is fundamentally important. To model such phe-
nomena, we have to switch from nonspatial to spatial simulations. 
However, this switch is frequently not easy due to a growth in the 
number of model and system features that must be specified (Figure 
2a). The most important difference between nonspatial and spatial 
simulations is that the latter take into account the translocation of 
the interacting molecules. In the simplest case, this means that, in 
addition to reactions, the diffusion of molecular species in space 
must be simulated. Along with diffusion, the system geometry must 
be specified and what happens at the “walls.” This is significantly 
more challenging to implement when the spatial system containing 
the interacting molecules is not simply a square box with rigid walls. 
Realistic spatially resolved models often aim to capture aspects such 
as particular cell morphologies; examples include synaptic struc-
tures with narrow regions connected to larger cell bodies (Ranga-
mani et al., 2016; Cugno et al., 2019) or geometries that are flat and 
almost two-dimensional, like lamellipodial extensions in migrating 
eukaryotic cells (Nickaeen et al., 2017) (Figure 2b). Geometries for 
cell simulations can be designed by hand, derived from microscope 
images (Schaff et al., 2000), or generated from machine-learned cell 
models (Majarian et al., 2019). Currently, there are only a few simula-
tion tools that can model cellular biochemistry within dynamic mor-
phologies (Angermann et al., 2012; Tanaka et al., 2015) and the 
computational treatment of reaction–diffusion processes within do-
mains that exhibit moving boundaries is still a very active field of 
research (Wolgemuth and Zajac, 2010; Novak and Slepchenko, 
2014). We note that models allowing moving boundaries (which 
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usually represent the membrane) do not necessarily capture the bio-
physics of membrane dynamics (Figure 2d). They can be decoupled 
methodologically, although fundamentally, they are not.

Spatial models have the capacity to build in many additional fea-
tures such as mechanics, electrostatics, or coarse molecular struc-
ture that may be particularly important for useful simulations of cell 
biological processes (Figure 2d). However, modeling efforts that 
take these additional features into account to render their simula-
tions of cellular behavior more realistic are exceedingly rare. One 
reason for this is that they introduce further challenges to both the 
numerical implementation and the mathematical descriptions of the 
physical model. Another reason for shying away from this level of 
detail is that, frequently, it would be difficult or (currently) impossible 
to measure sufficient parameters to be able to estimate the remain-
ing, unknown, parameters through computational “fitting.” Limiting 
themselves to smaller regions of cellular membranes, several stud-
ies have integrated (simple) biochemical processes with membrane 
biophysics to explore how actin dynamics drive membrane protru-
sions (Mogilner and Rubinstein, 2005; Atilgan et al., 2006). There is 
reason for hope that such efforts may, at some point, be scaled up 
to comprise larger membrane domains or even entire cells, given 
the ever increasing resolution and quantitative information contents 
in imaging-based measurements of the underlying molecular diffu-
sion processes (Saha et al., 2016; Swaminathan et al., 2017).

Reaction–diffusion equations represent the most straightforward 
extension of reaction rate equations for the inclusion of spatial as-
pects. Instead of depending just on time as a variable, the behavior 
of molecular species now additionally depends on spatial coordi-
nates. Equations describing these reactions must therefore be for-
mulated as partial differential equations (PDEs) rather than as ODEs 
(Figure 1c). As is frequently the case for mathematical models of 
biological phenomena, only very simple situations can be described 
through equations that can be explicitly solved in such a way that 
the solution describes the behavior of the modeled system as a con-
tinuous function of space and time (Lipkow and Odde, 2008). In 
most cases, one has to explore reaction–diffusion equations through 
numerical simulations that divide space into subvolumes (frequently 
called ‘voxels’) and calculate how diffusion leads to exchange 
among the subvolumes. Reaction–diffusion equations have been 
widely used to model spatially resolved biomolecular dynamics and 
interactions of cell biological systems (Loew and Schaff, 2001). The 
spatial dynamics can be extended beyond pure diffusion (e.g., to 
include advection), and reactions can be defined phenomenologi-
cally (Hill-type or Michaelis–Menten). Like reaction rate equations, 
deterministic PDE reaction–diffusion equations do not capture sto-
chastic fluctuations in species numbers and thus cannot, for exam-
ple, capture pattern formation driven by a system’s sensitivity to low 
copy numbers (Howard and Rutenberg, 2003).

σ r0

preact(t | r0, ka, D, σ)

preact(t | kon, D, Ω)

Ω

+

-

V(r | q1, q2)
Fext

large Δ t

R
ea

ct
iv

e 
co

lli
si

on

SINGLE-PARTICLE MODELS

READDY
Spring Salad

eGFRD
NERDSS

SMOLDYN 

ADVANCED SPATIAL FEATURES

Drot

Intermolecular and External 
Forces

Curved Surfaces

Protein structure & 
multi-valency

Moving Boundaries

Compartments

Diffusion

2nd order

0th order

1st ordeer

time

STANDARD SPATIAL FEATURES

EXTENSIONS FOR SINGLE-PARTICLE METHODS

Realistic Geometries

Membrane Mechanics 
and Dynamics

Hydrodynamics

a) b)

d)c)

Excluded Volumesmall Δ t

R
ea

ct
iv

e 
vo

lu
m

e MCell

FIGURE 2: Demands on spatial approaches and their extensibility. (a) For all spatial models, in addition to treating 
fundamental reaction types in all dimensions (3D, 2D,1D) and between all dimensions (for instance molecular exchange 
between bulk [3D] and surfaces [2D]), they must specify an equation of motion, typically diffusion, and boundary 
conditions on the system geometry. (b) More advanced treatments of curved and complex boundaries require 
additional care for treating reactions and diffusion. (c) Single-particle spatial methods can be classified based on the 
model they use and further whether they support large time steps. In both models, the ability to take large time steps 
generally requires reaction probabilities (preact) that are determined by finding analytical solutions for the fraction of 
diffusive trajectories that are reactive (not all collisions lead to reactions when the microscopic rate ka<∞). In the 
volume-reactive methods here, short-time step approximations are used, except MCell, which is described in the text. 
(d) Single-particle methods have the capacity to build in higher-resolution features, although these will alter their 
equation of motion, requiring new definitions of preact. We note that PDE-based models can also expand beyond purely 
diffusive dynamics. In Supplemental Table S2, we summarize features available in commonly used software tools.



192 | M. E. Johnson et al. Molecular Biology of the Cell

One way that stochastic reaction–diffusion equations can be formu-
lated is the spatial extension of the CME, known as the reaction–dif-
fusion master equation (RDME) (Figure 1d). In the RDME, instead of 
only defining how a system switches from one set of numbers of 
molecules in particular states to another (for instance when a com-
plex in the system decays into two molecules), the RDME includes 
“hops” from one location to another. Importantly, just like the CME, 
the RDME describes discrete changes. That means, it requires a spa-
tial discretization into subvolumes within each of which well-mixed 
conditions are assumed to prevail. Diffusion events of molecules are 
tracked only when they occur between adjacent subvolumes, not 
within an individual subvolume (Fange et al., 2010). Similar to the 
nonspatial case, it is usually not possible to solve the RDME analyti-
cally, and instead it is standard practice to compute solutions by 
simulating a particular stochastic time evolution of the system with, 
for instance, the SSA (see Box 2) that adds diffusional hops to the list 
of events that can occur, as is done with Lattice Microbes (Roberts 
et al., 2013), StochSS (Drawert et al., 2016), and STEPS (Wils and De 
Schutter, 2009; Chen and De Schutter, 2017). However, care must 
be taken to choose the right degree of spatial resolution that strikes 
the appropriate balance between capturing spatial details and 
avoiding subvolume sizes that are so small that discretization dilutes 
the molecules to a point where they essentially do not “see” their 
potential reaction partners anymore because the molecules are 
spread out over distinct subvolumes (see Box 3). A recent review 
(Smith and Grima, 2019) discusses the relationship between the 
RDME model and the particle-based models of reaction–diffusion.

Particle-based spatial simulation methods take into account the 
stochastic motion and interactions of individual molecules in con-
tinuous time and space and are thus capable of modeling biochemi-
cal processes that involve low copy numbers and strongly heteroge-
neous molecular spatial distributions (Figure 1e). These methods 
have the highest resolution (Figure 2c), but they come with a high 
computational cost. Importantly, simulations that treat each particle 
as an individual also offer the possibility of building in more detailed 

molecular features (Figure 2d). Typically, particle-based approaches 
resolve a bimolecular reaction A+B→C of a pair of molecules as two 
physically distinct stochastic processes. First, the molecules’ diffu-
sive (Brownian) motion leads to their encounter. Then, the molecules 
either form a bond with a reaction probability determined by the 
reaction rate constant and their current separation or else they dif-
fuse away from each other. Because the macroscopic kinetics of as-
sociation must depend on both diffusion and reaction rate con-
stants, this generally results in a distinction between a microscopic 
and macroscopic rate (see Box 4). Numerical approaches to single-
particle reaction–diffusion calculations for biological systems can 
perhaps be best categorized into classes based on whether they 
model reactions to occur on collisions (von Smoluchowski, 1917; 
Collins and Kimball, 1949), or whether they model reactions to oc-
cur within a reactive volume (Doi, 1976; Erban and Chapman, 2009). 
Within both of these classes, different algorithms introduce approxi-
mations that affect accuracy in recovering the underlying physical 
model, flexibility, and connection to experimental (macroscopic) 
rates (Figure 2c).

The definition of the reaction probability is the primary challenge 
and distinguishing feature of different single-particle algorithms. For 
the first class of collision-based numerical methods, the reaction 
probabilities are derived or matched to the Smoluchowski model of 
diffusion-influenced reactions, which naturally captures excluded 
volume (Figure 2c). We note that excluded volume is a critical fea-
ture for dense systems and for single-particle simulations of cluster-
ing or assembly where molecular structure/volume impacts interac-
tions between species. For either class of models, the Green’s 
function (GF) approaches provide the most accurate solution by 
predicting the encounter probability for pairs of particles based on 
the particles’ initial positions. GF methods allow for much larger 
time steps, although they can only calculate the encounter probabil-
ity for two particles at a time, meaning that the simulated system has 
to be segmented into two-particle subsystems (see Box 5). In prac-
tice, this turns out to be feasible for many interesting biological 

BOX 3: SPATIAL DISCRETIZATION OF REACTION–DIFFUSION EQUATIONS
To numerically solve reaction–diffusion processes modeled as PDEs, it can be challenging to choose the appropriate spatial discretization 
of the modeled biological geometry. A discretization that is too coarse will suppress many spatial details and will represent a poor ap-
proximation of the underlying biology. However, keeping track of the contents of many very small voxels will not only be very expensive 
computationally but may also lead to situations where the assumptions of mass-action kinetics no longer strictly hold since the fraction 
of the molecules in the system that populate a single voxel becomes so small that the very concept of an average concentration becomes 
problematic. Furthermore, the accuracy and efficiency of PDE solvers is not just sensitive to the resolution of the spatial discretization 
(sometimes called lattice or mesh) but also to the discretization scheme as manifested, for instance, in the shape of the voxels. The prac-
tice of designing adaptive meshes, that is, combining voxels of different shape and size in one simulation to capture small-scale spatial 
details where needed while keeping the total number of voxels as low as possible, is a field of active research. The structure of the mesh 
also has to be adjusted to the numerical method chosen to solve the reaction–diffusion PDEs. Finite volume methods directly simulate 
diffusional exchange between voxels. In contrast, finite element algorithms optimize the coefficients of interpolation functions at the 
nodes of the mesh to achieve good approximations of concentration profile resulting from the combination of reactions and diffusion. 
See, for example, Richmond et al. (2005). We note that mesh-free approaches to solving PDEs provide an alternate to spatial discretiza-
tion methods.

Similar to PDEs, the accuracy and cost of the RDME is sensitive to the spatial mesh; this problem is inherent to all spatially discretized 
simulations. Computational costs grow rapidly as the mesh resolution increases. Importantly, the accuracy of an RDME model does not 
always increase with a finer mesh. A very small mesh size violates the assumption that species are dilute and their own molecular volume 
is small relative to the voxel (Erban and Chapman, 2009; Isaacson, 2009; Wolf et al., 2010; Isaacson and Zhang, 2018). For specific non-
fundamental reaction types, RDME has an additional limitation in that it does not always converge to the CME solutions in the limit of 
fast diffusion, as expected (Smith and Grima, 2016). Hence, the RDME may be viewed as a nonconvergent approximation of more mi-
croscopic spatially continuous models, such as the Smoluchowski model discussed below. We note that a variety of lattice methods have 
been designed to overcome the small voxel size issue (Chew et al., 2018) and to address convergence to a more microscopic model 
(Isaacson, 2013; Isaacson and Zhang, 2018).
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problems. Frameworks that have been developed to take advan-
tage of this GF approach include FPR (Johnson and Hummer, 2014), 
NERDSS (Varga et al., 2020), GFRD (van Zon and ten Wolde, 2005), 
and eGFRD (Sokolowski et al., 2019). The SpatioCyte methods are 
performed on a lattice and recover the correct kinetics (beyond 
short times) and equilibrium of the Smoluchowski model (Chew 
et al., 2018, 2019). Smoldyn is also derived to use large time steps 

(albeit without excluded volume), and it is simpler to implement 
than GF approaches (Andrews and Bray, 2004a; Andrews et al., 
2010; Andrews, 2017). However, the reaction parameters are cou-
pled to the time step size, rather than representing independent 
model features (e.g., binding radii and microscopic rates), resulting 
in a time dependence (and 2D equilibrium) that is not as rigorously 
correct.

BOX 4: MICROSCOPIC VERSUS MACROSCOPIC RATES, AND THE SENSITIVITY OF STRONG BINDING TO 
DIFFUSION
For all nonspatial models, as well as PDE and RDME models, bimolecular association reactions are parameterized by the macroscopic 
rate constants, kon, corresponding to the rates one would measure from a binding experiment in bulk solution. This is because in all these 
spatial models, species that are localized in a small volume are assumed well mixed, thus obeying the same mass-action kinetics used in 
nonspatial models. In the single-particle methods, however, molecular interaction kinetics is split into two steps, as described in the text. 
This results in a purely diffusive contribution to the bimolecular encounter and then what is effectively an energetic contribution defined 
by a microscopic on-rate. In the Smoluchowski model, the encounter occurs on collision at a specific binding radius σ with microscopic 
rate ka. In 3D, this results in the long-known relationship:
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where D is the sum of both species’ diffusion coefficients. With this relationship we can directly assess the impact of diffusion on control-
ling macroscopic kinetics. As shown in the image on the left below, for large macroscopic rates, the macroscopic kinetics of the A+B→∅ 
reaction is noticeably dependent on diffusion. For smaller rates, as shown in the Figure on the right, the effect of diffusion is negligible, 
despite DA = DB dropping from 100 to 1 µm2/s. Here, A0 = B0 = 1000 particles (here corresponding to 62 µM). Hence, large ka, or strong 
binding, is diffusion-limited, and small ka is rate-limited.

In two and one dimensions (e.g., on surfaces and filaments), the relation between microscopic and macroscopic parameters is more 
complicated, due to the properties of diffusion in lower dimensions smaller than three. No single relationship exists between microscopic 
and macroscopic rates (see, e.g., Yogurtcu and Johnson, 2015a), but meaningful theoretical relationships can be defined if the system 
size is considered (Szabo et al., 1980), where in 2D we further correct for system density using (Yogurtcu and Johnson, 2015a):
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NA and NB are the copy numbers of reactants A,B and the system size is S.
For our test cases below, we thus always derive the microscopic rates ka to reproduce the macroscopic rates using Eq. A or Eq. B. This is 
because it is already clear from nonspatial models that changes to the macroscopic rates will necessarily alter the reaction kinetics. Since 
we are not focused on probing the influence of kinetic parameters on molecular behavior, but rather the role of explicit spatial representa-
tions in controlling species distributions and encounter times, we preserve all kon values. However, it is worth noting that for a reaction 
pair with a large ka value, if diffusion slows throughout the simulation due to, for instance, formation of large complexes, then the mac-
roscopic kinetics will also slow down, an effect that is naturally captured in GF-based methods.
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BOX 5. SINGLE-PARTICLE REACTION–DIFFUSION SIMULATIONS
Single-particle methods simulate the stochastic behavior of individual and (in spite of the name) pairs of interacting molecules. Any bio-
chemical network whose description does not include ad-hoc phenomenological processes (such as, for example, Hill coefficients de-
scribing nonlinear dose–response characteristics) can be described as composed of uni- and bimolecular reactions. As unimolecular reac-
tions are only time-dependent, they are typically modeled as Poisson processes. For bimolecular reactions, the distance between a pair 
of particles influences the probability that they will diffuse to either collision or their reactive volume and react with one another in a time 
step. The time evolution of the molecules’ positions is described by a stochastic differential equation, the overdamped Langevin equa-
tion (Van Kampen, 2007). Its numerical implementation, known as BD (Ermak and Mccammon, 1978; Northrup et al., 1984), requires tiny 
time steps to accurately resolve molecular encounters, which renders the BD scheme highly inefficient. It is, however, possible to derive 
reaction probabilities for pairs of molecules that are nonetheless propagated using BD updates but use larger steps. GFRD is the only 
method that does not use BD updates for reactive pairs. To calculate the distance-dependent reaction probabilities for pairs of mole-
cules, the most accurate approach is to use the GF defined below. This can enhance the efficiency of BD simulations by resolving bimo-
lecular reactions within one large time step, Δt, without approximation.

The GF p(r, Δt|r0) can be obtained as the solution of the diffusion equation that describes a pair of molecules A, B that diffuse with 
diffusion constants DA,DB, respectively, and may undergo a reaction A + B→ as follows

∂
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where D = DA +DB and r, r0 refer to the distance between A and B after and before the time step, respectively. In accordance with the 
two-step picture described in the main text, reactions are incorporated by imposing boundary conditions that specify the physics at 
or within an encounter distance r = σ. In the collision-based Smoluchowski model, r is always ≥ σ, and the Collins-Kimball Boundary 
Conditions (Collins and Kimball, 1949) in 3D is written as:
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where ka refers to the intrinsic reaction constant. In the volume reactive, or Doi model, reactions occur whenever r ≤ σ, with intrinsic rate 
λ, creating a reactive sink between the two particles (Doi, 1976). It is worth noting that finding the appropriate GF to capture the desired 
properties of the molecular interactions can be a challenge. For the case of reversible diffusion-influenced bimolecular reactions of an 
isolated molecule pair in 2D, the GF was derived only in 2012 (Prüstel and Meier-Schellersheim, 2012).

For the second class of volume-reactive numerical methods, the 
reaction probabilities are derived based on a distance cutoff be-
tween particles (often called Doi model), which thus naturally lacks 
excluded volume (Figure 2c). There are no GF-based algorithms for 
this model. Erban and Chapman derived reaction probabilities and 
corresponding microscopic rates for this model in the limit of small 
time steps (Erban and Chapman, 2009), which is the basis for the 
implementations ReaDDy (Schoneberg and Noe, 2013), and Spring-
SaLaD (Michalski and Loew, 2016). Both these implementations in-
troduce methods to capture excluded volume via, for example, re-
pulsive short-range forces, which ultimately require adjustments to 
properly recover reversible reactions, as done in ReaDDY 2 (Hoff-
mann et al., 2019). With these methods, the ability to reproduce the 
underlying model will depend on using small time steps and assess-
ment of the extent to which the modeled forces introduce error into 
the kinetics of many-body systems. Last, the widely used implemen-
tation MCell (Kerr et al., 2008) is not based on either the Smo-
luchowski or the Doi model, and instead derives reaction probabili-
ties that quantify collisions within a volume, where this instantaneous 
volume depends on time step and diffusion constants. MCell lacks 
excluded volume, but it can take large time steps and recover the 
proper equilibrium in reversible reactions.

The future extensibility of all methods hinges on the feasibility of 
finding mathematical expressions for the crucial reaction probabili-
ties that incorporate additional features and details, such as curved 
surfaces, intramolecular constraints, and external and internal deter-
ministic forces (Figure 2, b and d). Reaction probabilities for multi-
site molecules have been derived, for example, by assuming rigid 

molecules and simplifying the dependence on orientation (Johnson, 
2018). The addition of any interaction potentials (and therefore 
forces) between particles can significantly alter reaction kinetics 
(Zhou, 1990), and quantifying reaction probabilities has required ei-
ther substantial computational overhead (Johnson and Hummer, 
2014) or steady-state assumptions in dilute systems (Dibak et al., 
2019). Careful validation of these additional features is critical for 
producing models that can be quantitatively reproduced across 
multiple simulation platforms.

RESULTS
We present a series of test problems relevant to spatial modeling of 
cellular and subcellular processes. This list is not meant to be ex-
haustive, but rather to permit a manageably sized survey of the 
kinds of problems that different simulation programs may be chal-
lenged to solve within a larger biological study. Our selection thus 
includes very simple problems that can be solved by many simula-
tion tools as well as complex problems that can be solved (at pres-
ent) by only a few. By framing the problems explicitly, we facilitate a 
direct comparison among different simulation packages both with 
respect to accuracy of execution and how they encode these par-
ticular scenarios. While all the models presented have been simu-
lated previously, they have not been subject to the quantitative 
comparative analysis performed here across multiple model and 
method types. This comparison provides us with distinctive insight 
into the sensitivity of quantitative and qualitative behavior that 
emerges with specific biologically relevant features, which we sum-
marize at the end of Results.
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For these test cases, we contrast results from stochastic, deter-
ministic, spatial, and nonspatial modeling approaches. We use Vir-
tual Cell software for all nonspatial simulations and spatial determin-
istic simulations. For spatial stochastic simulations, we use the 
single-particle softwares NERDSS, Smoldyn, MCell, and eGFRD. We 
provide executable model inputs and numerical outputs for each 
model in our publicly accessible repository (https://github.com/spa-
tialnimbios/testcases/). We summarize a broader range of actively 
developed tools and their features in Supplemental Table S2, as 
distinct software tools have introduced selected complex features of 
RD systems (also discussed previously; Takahashi et al., 2005; 
Schoneberg et al., 2014), and this is an additional consideration for 
users when selecting a tool for their biological problem.

Category 1: “unit test” cases
This category of problems represents fundamental building blocks 
for which there is a known correct answer (at least at steady state). 

We emphasize that because these reactions form the basis of much 
more complex models and geometries, it is essential that they be 
carefully tested for accuracy with regard to reaction kinetics and, in 
the case of bimolecular reactions, reversibility. For all of these, we 
initialize simulations with well-mixed components, and thus one 
may expect that any modeling approach would give the same out-
come. However, due to differences in both approaches and algo-
rithmic choices, we find that differences do in fact emerge in specific 
parameter regimes, particularly at short times before the system ap-
proaches steady state (Figure 3).

1A: bimolecular association in 3D, 2D, and from 3D to 
2D. Although seemingly simple, bimolecular association events re-
quire both a diffusional encounter and a reactive event; thus, the 
rate-constants and the kinetics are dependent on the dimensionality 
of the systems, and even for well-mixed systems, spatial details can 
cause deviations from nonspatial models. For reversible bimolecular 
association of well-mixed reactants in a closed system, the equilib-
rium state is analytically solveable and the kinetics of nonspatial rate 
equations also have analytical solutions. The effects of diffusion 
(Agmon and Szabo, 1990; Zhou and Szabo, 1996; Gopich et al., 
2001; Gopich and Szabo, 2002a, b), electrostatics (Zhou, 1993; 
Schreiber et al., 2009), orientation (Shoup et al., 1981; Zhou, 1990), 
and dimensionality (Szabo et al., 1980; Torney and McConnell, 
1983; Prüstel and Meier-Schellersheim, 2012; Yogurtcu and John-
son, 2015) on reaction kinetics have also received considerable 
theoretical study, providing a rich basis for understanding spatial 
effects. One may note that when bimolecular association is revers-
ible, recovering the proper equilibrium is a simple test that can 
nonetheless be challenging for single-particle methods. Reaction 
probabilities and the placement of reactants on un/binding events 
must be derived to ensure equilibrium is reached (Box 5).

In 3D, all models and tools produce nearly identical results, even 
for this strongly diffusion-influenced reaction (kon = 1.48 107 M–1s–1). 
This is as expected (Figure 3, top panel). Although at short times the 
kinetics is slightly faster for Smoluchowski-type simulations 
(NERDSS), the kinetics rather rapidly converges to the macroscopic 
rate equations (Johnson and Hummer, 2014). Differences between 
single-particle and nonspatial methods can also emerge for revers-
ible reactions as they approach equilibrium (Mattis and Glasser, 
1998; Tauber et al., 2005), but these can only be effectively ob-
served with high numerical precision and statistics—usually they are 
dwarfed by the copy number fluctuations.

Unlike in 3D, macroscopic rate equations in 2D only approximate 
the dynamics captured in Smoluchowski-type approaches at all times 
(Fange et al., 2010; Hellander et al., 2012; Yogurtcu and Johnson, 
2015) (see Box 4). All macroscopic rate-based methods produce the 
same kinetics as each other (Figure 3, middle panel). Here we see 
distinctions between the spatial PDE and the spatial single-particle 
methods. Although species diffuse in the PDE, because they are 
present at all positions in space (due to uniform initial conditions), 
association is not dependent on their spatial distribution. For single-
particle methods, there is always a distribution of starting separations 
between species that leads to some very fast reactions initially and at 
long times produces slower reactive collisions as particles that started 
off close to each other have already been consumed in the reaction. 
The Smoldyn method uses the steady-state solution to the Smo-
luchowski model to derive reaction parameters (Andrews and Bray, 
2004b), but in 2D there is no steady state, and thus the reaction pa-
rameters are approximate. Because of this, Smoldyn can generate 
inaccurate kinetics in certain parameter regimes, with deviations be-
ing typically small in 3D but significant in 2D.

FIGURE 3: Reversible bimolecular reactions provide fundamental 
building blocks for any complex biological systems and thus warrant 
careful testing. In all dimensions, we use well-mixed initial conditions 
in closed systems, such that the reactions will reach a well-defined 
thermodynamic equilibrium. We test them using the nonspatial ODE 
and SSA methods, which match each other for all systems. The 
analytical solution to the rate equation is essentially exactly captured 
by the ODE. We compare the spatial PDE solved using VCell with 
single-particle methods solved via the FPR algorithm (NERDSS) and 
Smoldyn. For the 3D→2D reaction, we see the first difference 
between the ODE and PDE solution, because in the spatial models 
the reactants are well mixed in distinct locales (volume vs. surface), 
whereas in the nonspatial models, they are all well mixed in one 
volume. For 2D, single-particle methods will differ from other 
approaches, with NERDSS essentially capturing the theoretical 
diffusion-influenced reaction dynamics in 2D (Yogurtcu and Johnson, 
2015a).
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For binding between 3D particles and 2D particles (relevant for 
biological cases where soluble cytoplasmic proteins bind to mem-
brane proteins or lipids), all models produce the same equilibrium, 
but the spatial models have slower kinetics delayed by diffusion to 
the surface (Figure 3, bottom panel). The extent of divergence be-
tween the nonspatial and the spatial models is driven by three fac-
tors, the “height” the solution volume stretches from the membrane 
surface, the diffusion coefficient of the 3D particles, and the speed 
of the binding. Here we simulated a fast, strongly diffusion-influ-
enced reaction (8.4 × 107 M–1s–1), meaning nearly every collision re-
sults in a reaction. For a simulation box with h = 0.2 µm, one can 
estimate an average time to diffuse to a surface particle would be 
∼60 µs (D3D = 30 µm2/s), which is relatively fast. However, with the 
numerous 2D particles mixed in the solution volume for a nonspatial 
simulation, the time to diffuse to a “surface” particle drops to ∼6 µs. 
Thus we find a mean relaxation time of ∼200 µs without space versus 
∼700 µs with space (Figure 3, bottom panel). By dropping the reac-
tion rate to more moderate protein–protein interaction levels, the 
spatial and nonspatial results begin to converge. Smoldyn shows 
excellent agreement for larger steps, here 10–6 s, although the kinet-
ics shift slower for shorter steps. We note that when particles can 

only collide with one another from one side (because one is embed-
ded in a surface, for example), this reduces the binding by a half, 
and solvers should explicitly account for this so that user-defined 
rates produce the equilibrium expected from a nonspatial model.

Last, transitions to the surface can be modeled using adsorption, 
which uses an effectively 1D rate. This is more efficient but impor-
tantly, it need not reach the same equilibrium as explicit particle 
simulations, because the occupancy of surface binding sites is not 
accounted for. Modeling explicit particles thus gives more control 
over the surface properties, and algorithms for binding to surfaces 
while accounting for site occupancy using implicit sites rival adsorp-
tion models in speed (Fu et al., 2019). Not all tools allow for all types 
of surface binding; hence, it is important to recognize these distinc-
tions between adsorption versus single-site binding.

1B: crowding. Inside of living cells, the extremely high density of 
macromolecules (with typical spacing on the order of nanometers) 
can alter the speed of molecular diffusion (Ando and Skolnick, 2010) 
and kinetics of intermolecular reactions, either increasing or de-
creasing biochemical reaction rates as compared with rates in dilute 
solution, depending on the size and mobility of the crowders 

A+B       B+C

t = 0 s t = 2 µs t = 6 µs

++

a) b)

c)

d)

FIGURE 4: The effects of volume exclusion, or crowding, can be tested by a simple model of bimolecular association in 
the presence of inert particles. (a) For the simple model B+A→B+C, the total population of catalytic B molecules (blue) 
remains fixed. A molecules (red) are converted into C molecules (green) when they collide with B molecules. C 
molecules do not react but do exclude volume and so can act as physical crowders. A molecules (red) are depleted over 
time. (b) The kinetics of A depletion depend strongly on the initial concentration of inert crowders C. For each 
simulation, the rate of depletion of A is fit to a single-exponential based on the solution to the rate equation (see 
Materials and Methods). The best fit rate is plotted here as a function of the volume fraction occupied by all A, B, and C 
particles. (c) For low crowding fraction where the initial concentration of C molecules C0 = 0, the kinetics is well 
described by a single exponential with a rate close to the nonspatial solution of 63.5 nm3/µs (65.4 FPR, 64.9 GFRD). 
(d) For high crowding with a large initial C0, the simulated kinetics is not as well described by a single exponential, 
exhibiting slower decay as the density of A approaches zero. Snapshots display the actual volume of the particles (r = 
0.5 nm) given the full volume (23.2 nm box length), with 100 initial A particles (13.3 mM), 100 initial B particles (13.3 
mM), and variable C. The walls use periodic boundary conditions. Simulations were performed with the NERDSS and 
eGFRD software using the FPR and GFRD algorithms, respectively.
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(Zimmerman and Minton, 1993; Schreiber et al., 2009). As crowders 
become larger and less mobile (e.g., vesicles), they act more like 
barriers to encounters, slowing down rates of association (Minton, 
2006; Zhou et al., 2008). However, as we see here in our test-case, 
when crowders are of comparable sizes and similar mobility to the 
reactant species, they drive up rates of association. This rate in-
crease is due to a reduction in the total volume available to the re-
actants, effectively concentrating them without providing substan-
tial barriers to encounters (Minton, 2006; Zhou et al., 2008). To 
quantify how increasing concentrations of crowding agents alter bi-
molecular association rates, here we simulated the bimolecular re-

action A+B→B+C in the presence of additional, inert, C crowders, 
where all species are mobile, the same size, and exclude volume 
(Figure 4a). The analytical solution for no crowding/no excluded vol-
ume, A (t) = A0 exp (–kmacro Btott), provides a convenient baseline 
and fit function for interpreting deviations due to crowding/ex-
cluded volume (Figure 4b).

For the single-particle algorithms that capture excluded volume 
(GFRD, van Zon and ten Wolde, 2005; and FPR, Johnson and Hum-
mer, 2014), two main results emerge. First, the overall kinetics of as-
sociation increase with increasing crowding fraction, up from kon = 
63.5 nm3/µs at zero crowding/no excluded volume (3.8 × 107 M–1s–1) 
to ∼85–100 nm3/µs with 25% crowding fraction. This result is consis-
tent across both algorithms, indicating that for GF-based solutions to 
the Smoluchowski model applied to a strongly diffusion-influenced 
reaction, small mobile crowders will enhance reaction rates for con-
centrated reactants (here A0 = 13.3 mM). This same trend was ob-
served for simulations at lower reactant concentrations but compa-
rable rate constants (Kim and Yethiraj, 2009). In contrast, simulations 
that immobilized the crowders caused them to act as a rigid barrier, 
leading to a reduction in reaction rates despite using the same reac-
tant concentrations studied here (Andrews, 2020). Second, for high 
crowding regimes, we find that the kinetics is not described by a 
single rate constant (Figure 4d), whereas at low crowding, the results 
fit extremely well to the nonspatial analytical solution, with a new 
rate-constant (Figure 4c). This is perhaps not surprising; for diffusion-
influenced reactions, short-timescale kinetics is dominated by reac-
tants that are already close together where we expect crowding 
agents to promote their repeated collisions. Then, as the reactant 
populations decrease either to zero or toward an equilibrium state, 
the kinetics slows relative to nonspatial predictions, although this 
shift may be hard to detect (Mattis and Glasser, 1998; Tauber et al., 
2005; Johnson and Hummer, 2014; Yogurtcu and Johnson, 2015a). 
Our results suggest that crowding agents exacerbate this slow search 
for the final reactants, similar to what happens in 2D, making the 
deviations from a single-rate constant kinetics easier to detect.

Although we show here that mobile crowders impact observed 
reaction rates, the changes are often quite modest. For the strongly 
diffusion-influenced reaction simulated here, we measure clear in-
creases in rates, but for more rate-limited reactions (kon = 6 × 
105 M–1s–1), the effect of crowders on the reaction rate is minimal 
(data not shown). Finally, FPR and GFRD are not in perfect agree-
ment in terms of the quantitative size of the change in kinetics, al-
though qualitatively they both predict a higher rate. At these high 
densities, GFRD converts to a brute-force BD algorithm, rather than 
its exact event-driven method, because the overhead cost of propa-
gating GFRD is more expensive in dense systems. Because FPR com-
bines the GF approach with simple Brownian updates and reweight-
ing corrections, it performs well in dense systems, but still must also 
take extremely small time steps (10–10 to 10–12 s) to prevent particle 
overlap. It is not clear which method is more correct, as neither will 
preserve exactly two-body problems at each step. Further, we note 
that over the span of a picosecond time step (10–12 s), particle dy-
namics is not truly diffusive but is inertial. Capturing these dynamics 
would require a different model (e.g., generalized Langevin Dynam-
ics; Van Kampen, 2007) that tracked both positions and velocities of 
particles and would be a valuable comparison in future work.

Category 2: “intermediate” cases
This category includes slightly more realistic biological cases with 
interesting emergent properties. These are particularly useful for 
illustrating the fundamental conceptual differences among the dif-
ferent modeling approaches.
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FIGURE 5: Membrane localization can tune speed and stability of 
protein complex formation. (a) A pair of protein binding partners A 
and B that can also localize to the membrane surface through binding 
a lipid M can exploit the 2D search space to promote complex 
formation. There are three binding interactions (below the plane) that 
involve 2D interactions between protein A and B on the surface, or 
between a protein and the lipid M. (b) The species can partition 
reversibly between solution and the membrane, forming nine distinct 
species, which are listed in c. (c) Model species and fraction of A or B 
proteins in each at equilibrium. (d) Time-dependent formation of a 
single protein–lipid complex MA. (The time course for BM is identical 
due to the choice of model parameters.) The initial rise in MA 
concentration is followed by a drop as the MA and BM complexes 
combine to form MABM, which dominates at equilibrium. The spatial 
simulations (PDE and NERDSS) exhibit slower MA formation kinetics 
and a lower peak concentration than the well-mixed simulations (ODE 
and SSA) due to slower recruitment of proteins to the surface, which is 
limited by diffusion. Relaxation of MA to equilibrium is also slower for 
the same reason. For smaller simulation volumes, where diffusion to 
the surface is fast, these differences disappear. Smoldyn does not 
reproduce the proper equilibrium due to inaccuracies of binding in 2D.
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2A: exploiting membrane localization to stabilize protein–pro-
tein interactions. In a variety of biological processes, including 
clathrin-mediated endocytosis and initiation of signal transduction, 
multivalent proteins localize to membranes and assemble into 
larger, multiprotein complexes. Reducing dimensionality from a 3D 

search to a 2D search can accelerate kinetics of receptor binding 
(Adam and Delbruck, 1968; Berg and Purcell, 1977; Axelrod and 
Wang, 1994) and stabilize interactions for macromolecules re-
stricted to the surface (Minton, 1995; Kholodenko et al., 2000; Abel 
et al., 2012). For soluble cytoplasmic protein binding partners, 
however, localization to the 2D membrane can further drive dra-
matic increases in protein complex stability, as was recently quanti-
fied using a simple model of two proteins that bind to one another 
and to a specific membrane lipid (Yogurtcu and Johnson, 2018) 
(Figure 5, a and b). The origin of the increased stability is largely a 
concentration effect, where the proteins collide with one another 
more frequently on the surface than in solution. While a change 
also must occur in 3D versus 2D equilibrium constants (Wu et al., 
2011), the magnitude is usually much smaller than the change in 3D 
versus 2D search space (V/A > K3D/K2D) (Yogurtcu and Johnson, 
2018).

With the ability to localize to the membrane and reduce their 
search space, over 90% of proteins end up bound to one another 
(Figure 5c), which contrasts markedly with the purely 3D solution 
binding result calculated at equilibrium where only 4.6% would end 
up bound (for KD = 20 µM and [A]0 = [B]0 = 1 µM). Although all simu-
lation methods are expected to produce the same equilibrium, and 
in this example stochastic effects are minimal, we find here that spa-
tial effects arise because diffusion slows the localization of A and B 
molecules to the membrane (Figure 5d). The height of the box in 
the spatial simulations is 5 µm, and so despite efficient solution dif-
fusion (50 µm2/s), the proteins are recruited more slowly to the 
membrane in spatial simulations than in the well-mixed simulations 
(compare red and green curves in Figure 5d with purple and blue 
curves). The protein–lipid complexes plotted in Figure 5d peak be-
fore dropping, as they bind to one another to equilibrate, and the 
peak is lower when they do not localize rapidly to the membrane. 
Errors in the results calculated using Smoldyn arise due to approxi-
mate treatment of purely 2D interactions, which lead to quantitative 
deviations from expected equilibria and kinetics for these reactions. 
This current limitation is being actively addressed in Smoldyn soft-
ware (S. Andrews, personal communication).

Overall, these types of reactions form a critical component of 
more complex models of membrane-mediated assembly. Due to 
the quantitative differences we observe here in time dependence of 
species numbers, if the model is coupled to reactions that drive it 
out of an equilibrium steady state, this could then drive qualitative 
changes in the biological outcomes (as in case 2B below).

2B: increasing stochastic fluctuations in a system with multiple 
steady states. Positive feedback in combination with other interac-
tions can give rise to systems with multiple, distinct steady states. 
Such systems can exhibit large differences in their dynamics de-
pending on whether they are simulated deterministically or stochas-
tically. A simple model that illustrates such effects is the autophos-
phorylating kinase model first introduced by Lisman (Lisman, 1985) 
and studied more recently by Agarwal et al. (Agarwal et al., 2012), 
who analyzed a stochastic version of the model. Figure 6a shows a 
diagram of the model, which consists of a kinase that can activate 
itself through phosphorylation (reactions 2 and 3) and a phospha-
tase that can bind and dephosphorylate the active kinase (reactions 
4 and 5). Because the production rate of active kinase (Ap) increases 
with the amount of Ap starting at low concentrations (Figure 6b, red 
curve), the system exhibits positive feedback. The rate balance plot 
shown in Figure 6b illustrates a case where the production and 
degradation rates of Ap as a function of Ap intersect multiple times 
to give rise to multiple steady states. This model has three steady 
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FIGURE 6: Positive feedback induces stochastic switching in a kinase 
autophosphorylation circuit. (a) Model reactions. The kinase A (blue 
circle) becomes active on phosphorylation (purple start; reaction 1) 
and serves as its own substrate (reactions 2 and 3). A phosphatase P 
(purple rectangle) binds and dephosphorylates the phosphorylated 
kinase (reactions 4 and 5). The activation reactions 2 and 3 form a 
positive feedback for kinase activation. A low rate of spontaneous 
activation of the kinase (reaction 1) is also included to prevent the 
system from being trapped in a state with no active kinase. (b) Rate 
balance plot identifying steady state concentrations of 
phosphorylated kinase (Ap). The red and blue lines show the rates of 
production (sum of rates of reactions 1 and 3) and degradation (rate 
of reaction 4) of Ap for the parameter values and initial concentration 
simulated here (Materials and Methods). Intersections of these curves 
indicate points at which production and degradation rates are equal 
and hence give rise to a steady state of the system. The two 
intersection points shown with filled circles indicate the stable steady 
states of the system, which occur at Ap concentrations of 1.7 and 35.5 
molecules, respectively. A third steady state (open circle) indicates an 
unstable steady state, which occurs at a value of 8.3 Ap molecules. 
(c) Model trajectories computed with deterministic and stochastic 
methods. Deterministic trajectories starting from different initial 
conditions may relax to either of the two stable steady states (black 
dashed lines). Stochastic trajectories exhibit fluctuations about each 
of the steady states and occasionally switch between states with low 
and high kinase activation as shown by the blue trajectory. The top 
panel shows the result of a nonspatial stochastic simulation (SSA) and 
the bottom panel shows the result of a spatial stochastic simulation 
using the same paramenters (NERDSS). Regions of the trajectories 
shaded gray indicate where the system is in the state with low kinase 
activation with correspondingly high levels of inactive kinase (orange 
lines). In the regions with no shading the system is in a state with high 
kinase activation, as indicated by the active kinase level (blue lines) 
generally being above the inactive kinase level. The spatial stochastic 
simulations performed with NERDSS exhibit small differences from 
the nonspatial simulations carried out using SSA when performed in 
3D with all species having a diffusion constant of 100 µm2 /s, and the 
same macroscopic rate is targeted (see Materials and Methods for full 
details on parameters used in simulation).
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states, also called “fixed points,” two of which are stable (Figure 6b, 
filled circles). For a stable fixed point, the balance of production and 
decay returns the system back to the fixed point following any slight 
changes in Ap away from the steady state value, whereas at an un-
stable fixed point, the balance of rates carries the system away from 
the fixed point as a result of any tiny fluctuation.

Deterministic simulations of the system, whether spatial or not, 
converge rapidly to one of the stable steady states depending on 

the initial level of Ap (Figure 6c, black dashed lines). Simulations 
starting from a state with low initial Ap will reach the steady state 
with lower Ap and vice versa for high Ap. Stochastic trajectories, on 
the other hand, may initially stay in the vicinity of the closer steady 
state, but fluctuations due to noise occasionally induce switches be-
tween states. In both trajectories shown in Figure 6c, the system 
starts in the lower steady state (as indicated by gray shading) but 
after a minute or so switches to the higher steady state where it 
continues to display fluctuations, some of which lead to short-lived 
excursions back to the lower state. For the set of rate parameters we 
used here, the system spends more total time in the higher state 
than the lower state (88% vs. 12%). In addition, the length of each 
segment in the higher state, called the residence time, is longer on 
average (2.6 s vs. 0.34 s) (see Materials and Methods and Supple-
mental Figure S1).

Despite the dramatic differences between the deterministic and 
the stochastic simulations for this model, we find the addition of 
space has relatively modest effects, with spatial models still produc-
ing bistable switching as diffusion slows. Figure 6c shows a nonspa-
tial SSA simulation in the top panel (SSA) and an explicitly spatial 
simulation in the lower panel (NERDSS). For the geometries and 
diffusion constant values chosen here, these two simulations yield 
small differences between the probabilities and the residence times 
for each state (Supplemental Table S4). When the diffusion constant 
is reduced by a factor of 10, the probabilities of the lower state drop 
significantly although not dramatically, and the residence times of 
both states drop (Supplemental Figure S2 and Supplemental Table 
S4). The shorter residence times in spatial simulations relative to the 
nonspatial likely result from larger fluctuations in copy numbers due 
to transient spatial inhomogeneities, making both steady-states 
slightly less stable. Reduction of the diffusion coefficient by another 
factor of 10 makes simulation incompatible with the macroscopic 
reaction rates specified in the model. In other words, the reaction 
rate is limited by diffusion (see Box 4). We found that the effect of 
varying diffusion constant was quantitatively similar in the same 
model, but with all rates reduced by a factor of 10, reducing the 
fastest rate from 8 × 108 to 8 × 107 M–1s–1 (Supplemental Table S5). 
A study on a similar model of bistability found that slow diffusion 
limited the parameter regimes where one observed bistable switch-
ing due to fluctuations in local concentration, but also by changing 
the effective rates (Endres, 2015). Here we kept the macroscopic 
rates the same as the nonspatial model even as diffusion constants 
slow, and our results therefore indicate that timescales are sensitive 
to spatial inhomogeneities that persist longer with slower diffusion.

Category 3: “application” cases
Proper implementation of the test cases in this category requires the 
building blocks described above. These well-defined problems 
yield rich, biologically interpretable outputs that are sensitive to 
parameter choices.

3A: stochastic effects in gene expression. Proteins that are impor-
tant for controlling circadian clocks exhibit regular oscillations in ex-
pression levels. These oscillations are quite robust even in the pres-
ence of stochastic copy-number fluctuations. In fact, stochastic 
fluctuations can support oscillations in regimes that a purely deter-
ministic model cannot (Supplemental Figure S3). Using a simple 
model of circadian oscillations (Vilar et al., 2002) (Figure 7a), we 
simulated the behavior of an activator protein A and repressor pro-
tein R that are produced from mRNA transcribed from a single copy 
of a gene (one for each protein). Coupling of A and R expression is 
driven by positive feedback of the activator A, which binds to each 
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FIGURE 7: Circadian clock model shows robustness of oscillations 
to stochastic fluctuations. (a) Model of two proteins, A and R, 
translated from corresponding mRNA and transcribed from the 
corresponding genes (Prm A/R). Protein A is an activator that binds 
to the promoter of both genes and increases their transcription. 
Protein R acts as a repressor that binds to A and catalyzes its 
degradation. All proteins and mRNA also undergo spontaneous 
degradation with a specific lifetime (dashed arrows). (b) Growth of A 
copy numbers (dashed) peaks and then decreases as it is depleted 
by repressor R. Initially most R molecules are present in the AR 
complex, but the number of unbound R molecules increases as A is 
degraded. Next, the free R peaks and then begins to decrease 
because not enough A is present to promote its transcription at a 
rate that is greater than its rate of spontaneous degradation. The 
cycle then restarts, with the ODE solution producing highly regular 
oscillations of 25.2 s between A peaks and a 6 s lag between A and 
R peaks. The stochastic single-particle simulator Smoldyn produces 
noisier oscillations, but the average behavior is very comparable 
to the deterministic ODE model, with peak oscillations at 25.9 s 
and a 6.1 s lag between A and R peaks. (c) After localization of the 
promoters to the cell center and slowing of DA from 10 to 2 µm2/s, 
the A molecules become more concentrated in the cell center (red 
vs. green), which leads to noticeably faster oscillations relative to the 
nonspatial solution (blue).
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gene’s promoters to enhance transcription. Protein R also binds to A 
to effectively degrade it, and all proteins and mRNA are also de-
graded spontaneously at a constant rate. If the spontaneous degra-
dation rate of protein R is slow, the oscillations will quench in the 
deterministic model, but persist in the stochastic solutions, as dem-
onstrated in the original work and reproduced in Supplemental 
Figure S3.

We find that with the addition of space to the model, with all 
species diffusing at D = 10 µm2/s, the oscillation times show no real 
significant differences in single-particle or deterministic solutions 
relative to the nonspatial model (Supplemental Table S6). To quan-
titatively compare the kinetics across all models, we cannot use 
simple steady-state values due to the oscillations. These time-de-
pendent oscillations are nearly perfectly regular in the deterministic 
models, but are quite imperfect (although recurring) in all stochastic 
and single-particle methods (Figure 7b). We therefore measure the 
average time interval between peaks in the expression of A and the 
lag time between the appearance of a peak in A expression 

followed by a peak in R (see Materials and Methods). The similar 
results across all methods show how with relatively small spatial di-
mensions (sphere of R = 1 µm), purely 3D reactions, and all species 
diffusing at the same D = 10 µm2/s, no spatial dependence was 
distinguishable.

The lack of any significant spatial dependence is somewhat sur-
prising because we pushed the reaction rates into the strongly diffu-
sion-influenced regime. The model was actually formulated to 
describe the slow oscillations of gene expression regulation, with all 
rates reported in units of hr–1, rendering diffusion times irrelevant. 
Here, we chose to accelerate the rates by a factor of 3600 (from hr–1 
to s–1) due to the computational expense of simulating spatial models 
with explicit diffusion. This result overall indicates that the reactants 
still mixed faster than any spatial inhomogeneities could emerge, 
preventing deviations between spatial and nonspatial simulations.

We were finally able to measure a significant dependence on 
diffusion when we simulated the same set of reactions but we local-
ized and immobilized the promoters for A and R to a small nucleus 
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FIGURE 8: Spatial oscillations in protein abundance for the MinCDE cell division model. (a) The MinD protein can exist 
in two states, ADP or ATP bound (named MinD-ADP and MinD-ATP). Only MinD-ATP localizes to the membrane in a 
3D→2D reaction (producing MinD-ATP2D). Once on the membrane MinD-ATP2D can recruit additional cytoplasmic 
MinD-ATP (3D→2D) or MinE (3D→2D). The MinD-ATP.MinE2D complex on the membrane recruits MinD-ATP from 
solution as well (3D→2D), or it dissociates to return MinE to solution and MinD-ATP2D to MinD-ADP. None of these six 
reactions is thus reversible. (b) Simulations in a cylindrical cell with L = 4 µm and R = 0.5 µm, with 2.1143 µM MinD-ATP 
and 0.74 µM MinE initially well mixed. (c, d) The kymographs show how the copy numbers of MinD-ATP2D on the 
membrane in molecules/µm² oscillate in space and time. (c) Single-particle simulation Smoldyn. (d) PDE with uniform 
initial concentrations has faint symmetric oscillations visible up to ∼300 s before symmetry breaks. (e) Time dependence 
of MinD-ATP2D at a point on the left (blue) and right (orange) end of the cell. The oscillations are perfectly symmetric 
until ∼300 s in the top panel. However, if the error tolerance is tightened on the numerical integration, the symmetric 
oscillations persist longer out to ∼550 s in the bottom panel, illustrating the dependence on numerical precision.
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in the center of the volume, with unrestricted diffusion in and out of 
this nucleus (Figure 7c). For the same diffusion constants of D = 10 
µm2/s for all other species, this immobilization of promoters was not 
enough to have an effect, and oscillation times remained not signifi-
cantly different (Supplemental Figure S4 and Supplemental Table 
S7). However, when the diffusion constant of the activator A was 
slowed to 2 µm2/s, we observed a persistently higher concentration 
of A and its mRNA near the cell center relative to the cell periphery 
(Figure 7 and Supplemental Figure S4). This localization of A near 
the gene promoters had the effect of shortening the oscillation pe-
riod in the PDE from 25 to 22.5 s (Supplemental Table S7). This 
change was independent of the diffusion constant of R, which does 
not bind the genes. Further, this same trend was observed in the 
single-particle simulations, which also produced faster oscillations 
as DA slowed to 2 µm2/s (Supplemental Table S7). Overall, we thus 
found that while slowing the search time for the Activator for both 
genes does modulate the oscillation times, the oscillations are quite 
robust and strongly dictated by total copy numbers and the unimo-
lecular decay reactions, which are inherently independent of diffu-
sion and spatial dimensions. This fairly complicated scenario is one 
where intuitively we had expected to see strong spatial effects, so it 
is rather interesting that the actual spatial effects are minor in this 
case. Certainly this outcome might vary depending on the para-
meter regimes selected.

3B: spatial and temporal oscillations in MinCDE. When coupled 
to reactions, diffusion that is sufficiently slow or occurs over large 

enough length scales can establish spatial gradients of concentra-
tions and subsequent oscillations in space and time. By construc-
tion, spatial oscillations are lost in nonspatial models, and no tem-
poral oscillations occur either (Supplemental Figure S5). In a 
simplified model of bacterial cell division, the MinD and MinE pro-
teins (Huang et al., 2003) spatially control the location of cell division 
by creating an oscillating spatial gradient of both proteins in the 
cytosol and on the membrane (Figure 8). The site of cell division is 
determined by assembly of a ring constructed from the bacterial 
tubulin homolog FtsZ. Because the Min proteins inhibit the assem-
bly of the FtsZ ring, the spatial oscillation of the Min proteins from 
one end to the other in the cylindrical bacterial cell results in the 
localization of the FtsZ ring to a site very close to the geometrical 
center (Raskin and de Boer, 1999). This model involves 3D and 
3D→2D bimolecular reactions and unimolecular reactions with no 
2D reactions. Instead of forming explicit polymers, the membrane-
bound proteins act to locally increase protein density through 
recruitment.

We are able to produce very similar spatial and temporal oscilla-
tions of the MinD-ATP protein on the membrane in both a stochastic 
single-particle model (Smoldyn; Andrews, 2017) and a deterministic 
PDE solution (using Vcell; Moraru et al., 2008; Schaff et al., 2016). 
The major distinction between the two models is that the determin-
istic PDE is able to support symmetric or striped oscillations in the 
protein, as would be generated by two traveling waves in opposite 
directions. However, we find that these dynamics are not stable 
even in the deterministic solution—the accumulation of numerical 

FIGURE 9: Summary of the impact of spatial modeling and simulation approaches on quantitative (small, medium, 
large) and qualitative (major/minor) biochemical behavior. For quantitative behavior, our tree structure separates 
parameter and geometry regimes to specifically identify the scale of change observed and expected. For qualitative 
behavior, we note that, especially for reaction-network elements and stochastic effects, observing major changes also 
depends on additional parameter specifications, but in a less predictable way than the spatial effects (e.g., relative sizes 
of distinct rates or copy numbers). Minor changes are the default, as we observe for models with purely reversible 
reactions (rxns). The test cases range from very simple problems (U1: bimolecular association in 3D, 2D, and from 3D to 
2D, U2 crowding) via intermediate tests (I1: exploiting membrane localization to stabilize protein–protein interactions; 
I2: increasing stochastic fluctuations in a system with multiple steady states) to applications that combine different 
spatial features (A1: stochastic effects in gene expression; A2: spatial and temporal oscillations in MinCDE). Various 
tools have been applied in the test cases: U1: ODE, PDE, SSA/Gillespie, particle-based (NERDSS, Smoldyn); U2: 
particle-based (NERDSS, eGFRD); I1: ODE, PDE, SSA/Gillespie, particle-based (NERDSS, Smoldyn); I2: ODE, SSA/
Gillespie, particle-based (NERDSS); A1: ODE, PDE, SSA/Gillespie, particle-based (NERDSS, MCell, Smoldyn); A2: PDE, 
particle-based (Smoldyn). A detailed description of the theoretical basis and the features offered by these tools/
methods can be found in Supplemental Table S2.
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precision error eventually breaks the symmetry and transitions to 
pole-to-pole oscillations. We show that by tightening the error toler-
ance on the numerical integration (by a factor of 10) or by increasing 
the PDE mesh resolution (by 2), one can delay the onset of this 
transition, clearly demonstrating the dependence on numerical pre-
cision (Figure 8e and Supplemental Figure S6). The stochastic sin-
gle-particle method is therefore not able to support the symmetric 
oscillations due to copy number fluctuations and always produces 
pole-to-pole oscillations (Figure 8b). This shows quite clearly that 
the pole-to-pole oscillations are more robust to stochastic fluctua-
tions in copy numbers for this geometry, and in the wild-type bio-
logical systems, these are the types of oscillations always observed 
for cells of this length (Raskin and de Boer, 1999).

A challenging aspect of model comparison for any simulations 
tracking the spatial and time-dependent concentration of species is 
deciding how best to quantify the results. Analysis is often defined 
in a problem-specific way. For the MinCDE model, depending on 
the cell geometry and model parameters, it may not even reach a 
steady state over long timescales, but can continue to oscillate and 
change oscillation amplitude or frequency. For symmetric geome-
tries (like cylinders), we reduced the analysis to a function of time by 
tracking the MinD-ATP2D molecules at a specific point on the mem-
brane (Supplemental Figure S7). Then, similar to the analysis for 
Figure 6, we calculated the average period between oscillations 
(Materials and Methods), finding values of 43.0 ± 0.7 s for Smoldyn 
and 41.3 ± 0.3 s for the PDE.

The oscillations in this model are fairly sensitive to initial concen-
trations of species (Supplemental Figure S6) and their relative stoi-
chiometry. If the initial concentrations were cut in half, we found the 
oscillations disappeared in both models. The MinCDE model has 
been extensively studied, with the major determining features of 
oscillations being initial concentrations and cell geometry (see 
Halatek and Frey, 2012 and reference therein). The oscillations are 
relatively robust even to small changes in the reaction network, as 
long as membrane recruitment (3D→2D) and ATP hydrolysis are in-
cluded (Halatek and Frey, 2012). We note that for Smoldyn, the os-
cillations were sensitive to the diffusion coefficients of the mem-
brane-bound particles, set here to D = 0.05 µm2/s. If proteins did not 
diffuse on the membrane, the oscillations disappeared in Smoldyn, 
whereas they were retained in the PDE.

Summary of test case outcomes
By simulating the same biological cases using a range of spatial, 
nonspatial, stochastic, and deterministic methods, we have shown 
here how specific biological features and in some cases algorithm 
selection (e.g., classes of single-particle approaches) can alter quan-
titative and and even qualitative outcomes. As summarized in Figure 
9, quantitative differences can be small, medium, or large based on 
system geometry and parameter regimes. Our results with fast ver-
sus slow diffusion are consistent with a recent review on spatial sim-
ulations that contain a more detailed analysis of the RDME method 
(Smith and Grima, 2019). We find that qualitative differences can be 
minor, but can also be major, producing entirely new behavior pat-
terns that emerge. For example, major impacts could be observed 
in application scenario A2, which combines an elongated geometry 
with a comparatively slow diffusion (in comparison to the reaction 
rate), and includes both 3D and 2D dynamics. In general, we find 
that effects of introducing stochasticity to a system may be orthogo-
nal to its spatial properties, as wrongly applying a deterministic 
method is likely to dominate all other choices. This can be most 
clearly seen for the results as shown in I2. Overall, we found that, 
while stochasticity played a minor role in models with reversible in-

teractions (U1, I1), it was capable of driving major changes in mod-
els with irreversible interactions and feedback (I2, A1). Quantita-
tively, crowding might have a large impact, in particular if combined 
with slow diffusion and high reaction rates. Also, the impact on dy-
namics that involve reactions in 2D, be this 3D→2D or 2D dynamics, 
is significant and cannot be ignored in many cases. The suitability of 
specific simulation methods and their limitations must also be taken 
into account when any investigator is making choices about which 
methods to employ for a particular biological problem (see Supple-
mental Table S2). For example, if crowding and sterics need to be 
considered, particle-based approaches, in particular those with ex-
cluded volume, should be applied. However, in the case of very 
dense crowding, these approaches do not scale well because of 
their computational cost.

The spatial dimension in our test cases primarily drives quantita-
tive changes in outcomes of varying magnitude. However, once 
multiple features are combined, as in the A2 MinCDE model, major 
qualitative differences emerge. We expect that our results will ex-
trapolate to informing model selection in a broader range of bio-
logical processes. For example, the effect of clustered molecules 
acts to spatially localize interactions, which similar to the membrane 
localization (I1) can drive dramatic increases in complex stability and 
changes to kinetics. Compartmentalized or highly elongated and 
narrow geometries also can act to locally alter species concentra-
tions, not unlike the role of dimensionality in driving quantitative 
changes (U1, I1) or qualitative changes (A2). Last, in all the models 
studied here, all species were initially well mixed in their system 
volumes, albeit in U1 (3D→2D) and I1 there was both a membrane 
and a solution volume. By introducing an explicit spatial concentra-
tion gradient via localized sources or sinks of molecules, spatial ef-
fects are inevitable and can only be captured with explicit spatial 
representations.

DISCUSSION
Since the use of GFP as a genetically encoded fluorescent tag came 
into widespread use over a quarter-century ago (Chalfie et al., 1994), 
methods for live-cell light microscopy have advanced spectacularly, 
and the spatial resolution and temporal resolution now possible for 
imaging experiments in living cells is truly awe-inspiring (Chen et al., 
2014; Guo et al., 2018; Liu et al., 2018). At the same time, a great 
deal of technical development has gone into the generation of live-
cell fluorescent reporters for biological readouts including signaling 
events, enzymatic activity, and force generation (Greenwald et al., 
2018; Yasunaga et al., 2019). Many of the cell biological phenomena 
illuminated by direct observation of dynamic molecular events in 
living cells reveal a spatial component that could not be fully ap-
preciated during the era when the most sensitive assays for mole-
cular events were biochemical in nature (Machacek et al., 2009; Tay 
et al., 2010).

At this point, the quality of time-resolved live cell imaging data 
for cell biological events, and its quantitative accuracy, is far ahead 
of our ability to model these events computationally. As a commu-
nity we could avoid doing the work to develop detailed, spatially 
resolved models when the data quality was relatively poor, relying 
on images of fixed cells at poor spatial resolution, but now that the 
data are excellent there is no excuse. Quantitative data demand 
quantitative models.

Accurate, spatially resolved 3D modeling of subcellular pro-
cesses is inherently challenging, particularly as compared with the 
larger field of time-resolved cellular modeling where space is not 
taken into account. In exploring the currently available tools for 3D 
modeling, and dreaming about what the future might hold, we have 
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identified several sticking points that will require focused commu-
nity effort to overcome.

Spatially accurate modeling is intrinsically computationally 
expensive
Most interesting cell biological events unfold over minutes, hours, 
or days, requiring that relevant computational models be able to 
simulate comparable lengths of real time. For spatially resolved 
models, keeping track of the positions as well as the numbers and 
identities of relevant molecular species requires substantially greater 
computational overhead than simpler models that include only 
numbers (or concentrations) changing over time. In practice, this 
difficulty often limits spatially resolved models to keeping track of 
only a few molecular species.

An interesting analogy can be drawn to the field of MD simula-
tions, which aim to model relative movements of atoms within pro-
teins (Dror et al., 2012), while models of the scales that we are dis-
cussing typically aim to simulate the relative movements and 
transformations of molecules within cells. The equations of motion 
for atoms within protein molecules are relatively well understood, 
but accurately calculating their trajectories over even the millisec-
ond timescales relevant for protein folding or conformational 
changes requires massive computational power (Shaw et al., 2010). 
Generally, increases in complexity and timescale for simulations of 
atoms in proteins have benefited from two types of efforts, improve-
ments in hardware including purpose-built computers and distrib-
uted computing architectures for parallelization (Snow et al., 2002), 
accompanied by improvements in statistical sampling approaches 
to capture rare but significant events (Zuckerman, 2011). Even so, 
most MD simulations still cannot simulate processes central to the 
lives of proteins such as enzymatic catalysis, because they essen-
tially treat atoms as hard balls subject to defined forces, but ignore 
the quantum mechanics that would be required to describe chemi-
cal transformations. Some hybrid methods have shown promise by 
including quantum-mechanical detail only in the enzyme’s active 
site (Karelina and Kulik, 2017), but naturally this improvement in 
chemical detail comes at substantial computational cost.

Similarly, for spatially resolved models at the cell biological scale, 
there is room for substantial improvement in efficient design of 
hardware and computational parallelization, development of appro-
priate statistical sampling methods, and hybrid methods that could 
smoothly integrate full detail in some particular locations or at some 
particular times with computationally efficient approximations else-
where (Hellander et al., 2017). GPU architectures offer many advan-
tages for efficient parallelization and have been effectively used by 
several groups to push cell biological models to much larger scales 
(Hallock et al., 2014; Ghaemi et al., 2020), though these approaches 
have not yet been widely adopted. There are also some kinds of 
modeling problems that intrinsically cannot be parallelized, where 
each step in time depends on the state of the system as a whole 
(Enculescu et al., 2010).

Several features of cell-scale modeling render this a massively 
more difficult computational challenge as compared with MD. One, 
of course, is the scale; a protein may include thousands or tens of 
thousands of atoms, while a typical cell will include 2–4 million pro-
teins per cubic micrometer of volume (Milo, 2013), or over 1010 in an 
average mammalian cell, not to mention lipids, nucleic acids, carbo-
hydrates, small metabolites and ions that may all be relevant to 
propagation of cellular signals. At present, all spatially resolved 
models for cell biology therefore necessarily include only a very 
small sampling of the molecular species that may influence the pro-
cess. Furthermore, most parameters as fundamental as molecular 

concentrations and reaction rate constants are not known, or known 
only approximately (Gutenkunst et al., 2007; Schillings et al., 2015). 
For that reason, cell biological models must typically also perform a 
broad sampling of “parameter space.” There are increasing efforts 
to accelerate and optimize this parameter search (Mitra et al., 2018; 
Shockley et al., 2018; Mitra et al., 2019), but the size of parameter 
space nonetheless limits the depth to which any particular instantia-
tion of a spatially resolved model can be explored.

There is no common framework for sharing and reproducing 
spatially resolved models
Over the past decade, there has been a humbling realization that a 
large fraction of published results in experimental biology, including 
many that have led directly to significant efforts toward drug devel-
opment, cannot be reproduced (Prinz et al., 2011; Begley and Ellis, 
2012). This has led to widespread reform in both the performance 
and the publication of experimental research, notably with the US 
National Institutes of Health (NIH) now requiring explicit training in 
experimental rigor and reproducibility and altering the structure of 
research grant applications to address these issues directly (Health, 
2018). In order for the modeling enterprise to advance, it will be 
necessary for our community to establish standards for sharing and 
reproducing spatially resolved computational models as well.

Sharing and reproducing models are only possible if every quan-
titative parameter is strictly defined in a meaningful way. This will 
require a common “language” that is flexible enough to describe a 
wide variety of complex cell biological problems, and it is particu-
larly challenging to define parameters that can be implemented in 
an equivalent way for both PDE-based and particle-based simula-
tions of the same process. Even within the confines of our small 
working group, where we had all agreed to work together closely 
and were in constant communication throughout the process, we 
frequently found it challenging to run the “same” model on differ-
ent platforms because of inconsistent parameter definitions. We 
also found that published models often lack critical parameters even 
if they appear at first glance to be completely described.

For time-resolved cell biological models that do not include an 
explicit spatial component, the SBML represents a large-scale com-
munity effort to improve standardization of model representation. 
An extension to SBML explicitly designed for spatially resolved 
modeling, SBML-spatial, is nearing completion (SBML.org) and is 
supported to varying degrees by some modeling systems, although 
the specification has not yet been formally released and is not 
widely adopted. Some leaders in the field have begun to organize 
resources to aid in efforts toward verifying simulation results (https://
reproduciblebiomodels.org). Several related fields that require 
highly complex computational models, such as finite element mod-
eling in biomechanics, have also begun to define community stan-
dards for reporting and verifying model parameters and results (Er-
demir et al., 2012).

Minimal steps toward ensuring reproducibility in cell biological 
spatial modeling must include a general expectation that all code 
will be readily accessible (via GitHub or equivalent) and directly run-
nable by outside users, not dependent on local files or libraries. All 
code for spatial modeling should include explicitly defined unit 
tests, such as those we have included here. Furthermore, all param-
eters used in any model must include meaningful units. This is not a 
trivial consideration; for example, if the problem being studied in-
volves a transition between a soluble form and a membrane-associ-
ated form of a particular molecular species, we have found that rate 
constants and their units are usually not carefully documented in 
most published models, and in some cases it is not even clear that 
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different researchers agree on what the “right” units are for some 
typical problems.

It is difficult to compare outcomes of different types of 
models and to compare model results to experimental data
A typical goal for cell biological modeling is to determine whether a 
particular underlying mechanistic hypothesis is consistent with ex-
perimental observation. For processes with a spatially dependent 
stochastic component, which includes many cell biological prob-
lems of interest, each computational run (and indeed each indepen-
dent experiment) will give a slightly different result. To compare ex-
perimental results with simulations, and to compare outcomes of 
different simulations with one another, the simplest approach is to 
use some kind of summary statistics that described probabilities of 
various outcomes. However, it is not often trivial to determine which 
summary statistics are most appropriate. For example, one influen-
tial early model illustrating the importance of stochasticity in genetic 
regulation leading to cell fate determination was an exploration of 
the events underlying the switch for bacteriophage lambda from a 
lysogenic to a lytic state, published in 1998 (Arkin et al., 1998). How-
ever, more than a decade passed before a useful method for calcu-
lating summary statistics on these extremely rare switching events 
was developed (Morelli et al., 2009). Ironically, it may in many cases 
be easier to repeat an experiment for thousands or tens of thou-
sands of cells, for example using automated videomicroscopy (Cai 
et al., 2018) than to run a computationally intensive spatial simula-
tion the same number of times. In general, the field would benefit 
from greater attention to scalability in model construction.

Some statistical strategies that were originally developed in 
other fields have been creatively adapted for applications in spa-
tially defined stochastic simulations. These include extensions to the 
singular spectrum analysis methods that are widely used for analysis 
of time-series data (Shlemov et al., 2015) and the weighted ensem-
ble sampling method that is useful when rare events are of particular 
interest (Donovan et al., 2016).

Visualization of model outcomes should also be standardized. 
This is much more conceptually challenging for spatially resolved 
models than for models where the only output is a change in con-
centration of molecular species over time. Here recent develop-
ments in the field of visual analytics, which combines statistical analy-
sis with visualization and user interactions to cope with large complex 
data sets, may offer some promise (Matković et al., 2018). Visual ana-
lytics take the human into the loop for exploring data and the space 
of simulation experiments. Other approaches aim at testing require-
ments and confirming behavioral expectations automatically. One 
example of a promising avenue for automatic analysis would be 
spatio-temporal model checking approaches, which rely on explicitly 
stating spatio-temporal properties to be checked on the produced 
trajectories of the spatial simulation (Bartocci et al., 2015).

It may not be possible to address distinct model features 
required for different kinds of cell biological problems 
within a single modeling framework
In our comparative work, we emphasized simple biochemical inter-
actions because we were able to implement these examples in com-
parable ways across multiple different computational platforms. We 
chose to use only very simple geometries for our example cases, but 
some of the stochastic simulation platforms we considered are ca-
pable of incorporating complex cell geometries, and complex ge-
ometries are also standard in most PDE solvers. However, none of 
the packages we used here are designed to incorporate correct sub-
cellular physics for cytoskeletal mechanics, force generation, fluid 

flow, or electrostatics. Clearly these physical elements are important 
in accurate simulations of cellular behaviors. It has been widely rec-
ognized for over a century that cellular organization is tightly cou-
pled to cellular structure (Abbot, 1916).

In our opinion, the highest priorities for integration of correct 
subcellular physics with stochastic molecule-based methods of the 
kind described here are accurate mechanical models for cytoskele-
tal filaments, molecular motors, and membranes. Interactions of the 
cytoskeleton and its associated motors with membranes determine 
overall cell shape and organelle localization, and these also underlie 
interactions of cells with one another and with their extracellular ma-
trix. Actions of cytoskeletal filaments and motors directly deform 
membranes to produce invaginations or protrusions, and mem-
brane surfaces influence cytoskeletal filament growth both because 
of their mechanical resistance (Keren et al., 2008) and because of 
their ability to accumulate and spatially organize key regulators 
(Mullins et al., 2018). Simulation frameworks that could properly 
deal with these kinds of mechanical and biochemical interactions 
should be adaptable for a wide variety of related problems, for ex-
ample, exploring the assembly of viral “replication factories” on in-
tracellular membranes of host cells, a process which requires large-
scale oligomerization of viral polymerase (Spagnolo et al., 2010).

While we recognize that all models are necessarily approxima-
tions, we believe that some approximations are better than others. 
For membrane mechanics, the Helfrich model (Helfrich, 1973) is the 
most widely used framework for calculation of energies associated 
with membrane bending and deformation (Guckenberger and 
Gekle, 2017). While the theory itself is simple and elegant, calcula-
tion of energies for highly complex geometries in a continuum me-
chanics model can become complicated. A few interesting ap-
proaches have been used to enable cellular geometries to adapt in 
response to biochemical reactions (Angermann et al., 2012; Tanaka 
et al., 2015), but so far none of them have attempted to incorporate 
correct Helfrich-derived bending energies. PDE-based models for 
membrane–protein interactions can better approximate the correct 
underlying physics, but have so far been limited to fairly simple ge-
ometries (Rangamani et al., 2014; Wu et al., 2018). Ultimately, the 
membrane mechanics must be coupled to the proteins and protein 
assemblies that provide most of the force necessary to induce mem-
brane bending and remodeling.

Capturing the dynamics of protein assemblies, both as highly 
ordered filaments or lattices (e.g., microtubules or clathrin-coated 
vesicles) and as disordered condensates, will be essential for bridg-
ing biochemical interactions with mechanics. Recent advances in 
extending single-particle methods to include rigid (Varga et al., 
2020) or polymer-like structures (Michalski and Loew, 2016; 
Hoffmann et al., 2019) have enabled simulations of highly ordered 
clathrin lattices and viral shells (Varga et al., 2020), or disordered 
condensate-like assemblies (Chattaraj et al., 2019), respectively. For 
these simulations, excluded volume is a critical feature to reproduce 
realistic molecular features and prevent unphysical overlap between 
multicomponent assemblies. For cytoskeletal mechanics, in many 
cases a simple approximation of cytoskeletal filaments as elastic 
rods and motor proteins as discrete localized generators of quan-
tized directional force can give impressively realistic simulation out-
comes (Nedelec and Foethke, 2007). This approach has been widely 
used for studies of dynamic microtubule and actin structures in eu-
karyotic cells (Karsenti et al., 2006; Odell and Foe, 2008; Rubinstein 
et al., 2009). It has recently been demonstrated that mechanically 
accurate modeling of cytoskeletal filament dynamics can be fruit-
fully combined with a continuum model for membrane bending in 
order to simulate endocytosis (Akamatsu et al., 2020).
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More generally, it is clear that much more work needs to be done 
in the development of multiscale simulations and hybrid computa-
tional approaches (Groen et al., 2019). For example, in some inter-
mediate regimes, approximate subvolume-based simulations may 
be able to bridge the gap between well-mixed and particle-based 
simulations. It will require careful work to understand what approxi-
mations are generally useful when jumping across scales in hybrid 
models and what approximations give rise to propagating errors.

Overall, the members of our working group have thoroughly en-
joyed this opportunity to critically evaluate the state of tools that are 
currently available for simulation of cell biological processes. Al-
though we have of course identified important gaps, we are gener-
ally optimistic about recent developments and look forward to in-
corporation of more sophisticated computational methods to 
improve the efficiency and accuracy of cell biological modeling as 
these methods are developed. Spatially accurate cellular simulation 
is a field still in its infancy, but its future is bright.

MATERIALS AND METHODS
Request a protocol through Bio-protocol.

Simulation solvers
ODE, PDE, and SSA simulations were all run using Virtual Cell, ver-
sion 7 (Moraru et al., 2008). Unless otherwise noted, the PDE solver 
used a fully implicit finite volume, regular grid (variable time step), 
max step of 0.1 s. Absolute error tol: 10–9, relative error: 10–7. The 
mesh used the default values, which typically resulted in mesh side 
lengths of ∼0.02 µm. We note that for the PDE, the mesh, volume, 
or concentrations sometimes had to be adjusted slightly to ensure 
the copy numbers were the same for accurate comparisons. The 
ODE used the Combined Stiff Solver (IDA/CVODE), abs error tol: 
10–9, relative error tol: 10–9. SSA simulations used the Gibson–Bruck 
method, an exact SSA, implemented in Virtual cell, or for the auto-
phosphorylation model, RuleBender (Smith et al., 2012).

All single-particle solvers propagated BD, with no additional 
forces added. Smoldyn simulations were run either through Virtual 
Cell, version 7, or using the stand-alone Smoldyn software, version 
2.60/2.61 (Andrews, 2017). FPR or NERDSS simulations were run 
using the NERDSS software, version 1 (Varga et al., 2020), which 
uses the FPR algorithms (Johnson and Hummer, 2014; Yogurtcu and 
Johnson, 2015; Johnson, 2018) to solve the single-particle reaction–
diffusion model. GFRD simulations were run using eGFRD software 
(Sokolowski et al., 2019) from August 3, 2019. MCell simulations 
were run using MCell version 3.3 (Kerr et al., 2008).

Models and simulation parameters
Unless otherwise noted, species in spatial simulations were initial-
ized as uniformly distributed.

1. Units tests. 1a. 3D Reversible binding A+B ⇌ C. Model param-
eters: V = 3.1934 µm3 cube, [A]0 = [B]0 = 52 µM, or 100,000 copies, 
[C]0 = 0. kon = 1.476 × 107 M–1s–1, koff = 0.02451 s–1. Microscopic 
rates, ka = 1000 nm3µs–1, kb = 1s–1. KD = 0.00166 µM. For FPR/
NERDSS, σ = 1 nm. DA = DB = DC = 1 µm2/s. [A]eq = 0.293 µM, or 
563.5 copies, reached after ∼1 s. Sim parameters: single-particle 
methods Δt = 10–7-10–6 s. FPR/NERDSS Ntraj = 18, SSA Ntraj = 10, 
and Smoldyn Ntraj = 1.

1b. 2D Reversible binding A+B ⇌ C. Model parameters: A = 1 
µm2, flat surface. [A]0 = [B]0 = 1000 µm–2, or 1000 copies, [C]0 = 0. kon 
= 3.07 µm2s–1, koff = 3.07 s–1. Microscopic rates, ka = 10 µm2s–1, kb = 
10 s–1. KD = 0.00166 µM. For FPR/NERDSS, σ = 1 nm. DA = DB = 1 
µm2/s, DC = 0.5 µm2/s. [A]eq = 31.1267 µm–2, reached after ∼0.1 s. 

Sim parameters: single-particle methods Δt = 10–7s. FPR/NERDSS 
Ntraj = 5, SSA Ntraj = 5, Smoldyn Ntraj = 2.

1c. 3D→2D Reversible binding A+B ⇌ C. Model parameters: V = 
1 µm3 cube, flat membrane surface of 2.2 µm × 2.2 µm. [A]0 = 1 µM, 
or 602 copies, [B]0 = 6045 µm–2, or 29,258 copies, [C]0 = 0. kon = 8.44 
× 107 M–1s–1, koff = 70.085 s–1. Microscopic rates, ka

3D = 500 nm3µs–1, 
kb = 250 s–1. KD = 0.83 µM. σ = 1 nm. DA = 30 µm2/s, DB = 1 µm2/s, 
DC = 0.97 µm2/s. [A]eq = 10.3 copies, or 0.017 µM, reached after 
∼0.02 s. Sim parameters: single-particle methods Δt = 10–7s. FPR/
NERDSS Ntraj = 10, SSA Ntraj = 5, and Smoldyn Ntraj = 3. Smoldyn Δt 
= 10–6 s, with the longer steps converging to the PDE solution.

1d. Crowding A+B→B+C. Model parameters: V = 12,500 nm3 
cube (side length of 23.21 nm), periodic boundary conditions en-
forced. [B] = 100 copies (13.3 mM). [A]0 = 100 copies. [C]0 varied 
across 6 systems: [0, 994, 2187, 3381, 4575, 5768], corresponding 
to total volume fractions occupied of [0.00838, 0.05, 0.1, 0.15, 0.2, 
0.25]. Reactions: 1. A+B→B+C ka = 85 nm3/µs, 2. A+A ka = 0, 3. A+C 
ka = 0, 4. B+B ka = 0, 5. B+C ka = 0, 6. C+C ka = 0. With no volume 
exclusion, Rxn 1 has kon = 63.5 nm3/µs = 3.82 × 107 M–1s–1. σ = 1 nm, 
and thus each particle is effectively modeled as a volume-excluding 
sphere of diameter = 1 nm. DA = DA = Dc = 10 µm2/s.

Sim parameters: for FPR/NERDSS(Varga et al., 2020), a maximal 
Δt for each system was limited by the density, values for each 
crowding fraction: [10–11 s, 10–11 s, 10–11 s, 5 × 10–12 s, 5 × 10–12 s, 
10–12 s]. Ntraj = 40–80 for each crowding fraction. Another Ntraj = 
40–80 were run at another time step (5 times faster) to verify quan-
titatively similar results. For eGFRD (Sokolowski et al., 2019), Ntraj = 
10 for each crowding fraction. Algorithmic adjustments to stan-
dard FPR: first, when an A+B→B+C reaction occurred, the prod-
ucts were kept at their same coordinates as the reactants. Second, 
at each time step, particle positions are updated, and they must 
avoid overlapping (r ≥ σ) all other particles, considering all particles 
within collision distance (r < Rmax) (Johnson and Hummer, 2014). 
Due to the high crowding, we used a more stringent criteria to 
update particle positions. We defined clusters that contained all 
the particles with a capacity to possibly overlap all their partners. 
The positions of all particles in this cluster were simultaneously up-
dated to avoid any overlap. For large clusters, to reduce the num-
ber of rejected updates, the time step was reduced by a factor of 
10 and then updated 10 times to the full Δt. Third, initial configura-
tions for high crowded simulations were generated on a grid. This 
crystalline configuration was then “melted” by simply setting the 
rate of reaction 1 to zero to prevent binding events. After 0.1 s, the 
now disordered but well-mixed configuration was used to start 
simulations.

2. Intermediate tests. 2a. Membrane localization model. Model 
parameters: V = 1.1045 µm3, A = 0.2209 µm2, rectangular cube, 
0.47 µm × 0.47 µm surface, height = 5 µm. [A]0 = [B]0 = 1 µM or 665 
copies, [M]0 = 5.6474 µM = 17,000/µm2, or 3755 copies. [AM]0 = 
[BM]0 = [AB]0 = [ABM]0 = . [MAB]0 = [MABM]0 = 0. Reactions: 1. 
A+B ⇌ AB kon = 0.05 µM–1s–1. 2. A+M ⇌ AM kon = 2 µM–1s–1. 
3. B+M ⇌ BM kon = 2 µM–1s–1. 4. A+BM ⇌ ABM kon = 0.05 µM–1s–1. 
5. B+MA ⇌ MAB kon = 0.05 µM–1s–1. 6. AB+M ⇌ ABM kon = 2 µM–

1s–1. 7. AB+M ⇌ MAB kon = 2 µM–1s–1. 8. MA+BM ⇌ MABM 0.0415 
µm2s–1. 9. MAB+M ⇌ MABM 1.6693 µm2s–1. 10. M+ABM ⇌ MABM 
1.6693 µm2s–1. For all reactions, koff = 1 s–1. At equilibrium, 90.3% of 
proteins were in complex with one another on the membrane 
(MABM), or 600 copies, and 1.16% were remaining in solution, or 
7.7 copies. σ = 1 nm for all rxns, DA = DB = 50 µm2/s. DAB = 25 µm2/s. 
DAM = DBM = 0.495 µm2/s. DABM = DMAB = 0.49 µm2/s. DMABM = 
0.248 µm2/s DM = 0.5 µm2/s. All membrane bound had Dz = 0.

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e20-08-0530
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Sim parameters: single-particle methods Δt = 10–7s. FPR/NERDSS 
Ntraj = 10. SSA Ntraj = 10 Smoldyn Ntraj = 10. We note that the model 
includes 10 coupled pairwise reactions (three are 3D, four are 
3D→2D, and three are 2D), although only 6 equilibrium constants 
are unique. This is because there are only 3 reactants and multiple 
thermodynamic cycles that can result in the final assemblies (see, 
e.g., MABM in Figure 5a). To preserve a thermodynamic equilibrium 
at steady state, not all rates can be defined independently.

2b. Autophosphorylation: model parameters A: V = 0.003 µm3. 
[A]0 = 103 copies, [Ap]0 = 5 copies, [P] 0 = 9 copies. [A_Ap]0 = 0, 
[Ap_P]0 = 0. 1. A→Ap at 21.2 s–1. 2. A+Ap→A_Ap at 107M–1s–1, ka = 
16.7 nm3µs–1, σ = 1 nm. 3.A_Ap→Ap+Ap at 200 s–1. 4. Ap+P→Ap_P 
at 8*108 M–1s–1, ka = 2820 nm3µs–1, σ = 1 nm and 5. Ap_P→A+P at 
539 s–1. DA = DP = 100 µm2/s. A second spatial stochastic simulation 
had DA = DP = 10 µm2/s, which required new bimolecular parame-
ters for rxn 2: ka = 17.8 nm3µs–1, σ = 1 nm, rxn 4: ka = 11191 nm3µs–1, 
σ = 6 nm. Note: the binding radius had to be increased to recover 
the large macroscopic binding rates for rxn 4. A third spatial sto-
chastic simulation had DA = DP = 20 µm2/s, which required new bi-
molecular parameters for rxn 2: ka = 17.2 nm3µs–1, σ = 1 nm, rxn 4: 
ka = 3919 nm3µs–1, σ = 4 nm.

Sim parameters: single particle methods: Δt = 2*10–8s, Ntraj = 2. 
For D = 10, Δt = 1*10–7s, Ntraj = 2. For D = 20, Δt = 1*10–7s, Ntraj = 2. 
All simulations were ≥200 s to obtain statistics on switching times.

B version of model with all rates reduced by 10: 1. 2.12 s–1. 
2. 106 M–1s–1, ka = 1.67 nm3µs–1, σ = 1 nm. 3. 20 s–1. 4. 8*107 M–1s–1, 
ka = 282.0 nm3µs–1, σ = 1 nm and 5. 53.9 s–1. DA = DP = 10 µm2/s. 
A second spatial stochastic simulation had DA = DP = 100 µm2/s, 
which required for rxn 4: ka = 140.31 nm3µs–1, σ = 1 nm. A 
third spatial stochastic simulation had DA = DP = 1 µm2/s, 
which required for rxn 2: ka = 1.78 nm3µs–1, σ = 1 nm. rxn 4: ka = 
1119.14 nm3µs–1, σ = 6 nm.

Sim parameters: Δt = 2*10–7s, Ntraj = 2. For D = 100, Δt = 2*10–8s, 
Ntraj = 2. For D = 1, Δt = 1*10–6 s, Ntraj = 2. All statistics were 
collected for at least 2000 s, except the fast diffusion constant. With 
only 100 s for D = 100, we observed transitions but insufficient sta-
tistics to determine trends relative to the other models.

3. Application tests. 3a. Circadian clock oscillator model. Model 
parameters A: 4.189 µm3, cube, or a sphere with R = 1 µm. [prmA]0 
= [prmR]0 = 1 copy, or 0.000397 µM. [A]0 = [R]0 = [C]0 = [mRNAA]0 = 
[mRNAR]0 = [prmA.A]0 = [prmR.A]0 = 0. Reactions: 1. A + R → C kon 
= 1204 µM–1s–1, ka = 356,263 nm3µs–1, s = 8 nm. 2. prmA → prmA + 
mRNAA k2 = 50 s–1. 3. prmA.A → prmA.A + mRNAA k3 = 500 s–1. 4. 
prmR → prmR + mRNAR k4 = 0.01 s–1. 5. prmR.A → prmR.A + 
mRNAR k5 = 50 s–1. 6. prmA + A ↔ prmA.A k6f = 602 µM–1s–1, k6b = 
50 s–1, ka = 4889 nm3µs–1, kb = 244.5 s–1 s = 5 nm. 7. prmR + A↔ 
prmR.A k7f = 602 µM–1s–1, k7b = 100 s–1, ka = 4889 nm3µs–1, kb = 489 
s–1 σ = 5 nm. 8. mRNAA → mRNAA + A k8 = 50 s–1. 9. mRNA_R → 
mRNA_R + R k9 = 5 s–1. 10. mRNA_A → NULL k10 = 10 s–1. 11. 
mRNA_R → NULL k11 = 0.5 s–1. 12. A → NULL k12 = 1 s–1. 13. R→ 
NULL k13 = 0.2 s–1. 14. C→ R k14 = 1 s–1. D = 10 µm2/s (for all 9 
species).

B version of the model was run with one modification from the 
original A model: 13. R→ NULL k13 = 0.05 s–1, eliminating oscilla-
tions in the deterministic model Supplemental Figure S3.

C version of this model was created with modifications from 
original A model: a) promoters were spatially localized to a sphere 
at the center of the volume of R = 0.1 µm. b) DprmA = DprmR = DprmA.A 
= DprmA.R = 0. c) [prmA]0 = [prmR]0 = 1 copy, or here 0.3964 µM. No 
barrier existed for proteins to access this ‘nucleus’ in the cell center. 
Full details are in the Supplemental Supporting Methods.

Sim parameters: NERDSS Δt = 0.5, 2, and 10 µs, and Smoldyn Δt 
= 100 µs. SSA Ntraj = 10. Smoldyn Ntraj = 2, NERDSS Ntraj = 2 (600 s 
each); see Supplemental Tables S6 and S7. Time steps were limited 
by the fast unbinding reaction of the single promoter, Rxn 7, rather 
than the particle density. With only a single event possible due to N 
= 1, a larger time step results in slightly fewer events occuring rela-
tive to the theoretical value.

3b. Model: MinCDE cell division model. Model parameters: cy-
lindrical volume, h = 4 µm, R = 0.5 µm. Five species: [MinD-ATP]0 = 
2.1143 µM, or 4000 copies. [MinE]0 = 0.74 µM, or 1400 copies. 
[MinD-ADP]0 = [MinD-ATP2D]0 = [MinD-ATP.MinE2D]0 = 0, where 
2D indicates membrane bound. Six irreversible reactions. 1. MinD-
ATP→MinD-ATP2D, k1 = 0.025 µm.s–1. 2. MinD-ATP + MinD-
ATP2D→2MinD-ATP2D, k2 = 0.903 s–1.µM–1. 3. MinD-ATP + MinD-
ATP.MinE2D→MinD-ATP2D + MinD-ATP.MinE2D, k3 = 0.903 s–1.µM–1. 
4. MinE+MinD-ATP2D→MinD-ATP.MinE2D, k4 = 56.0 s–1.µM–1. 
5. MinD-ATP.MinE2D→MinD-ADP + MinE, k5 = 0.7 s–1. 6. MinD-
ADP→MinD-ATP, k6 = 1 s–1. D = 2.5 µm2/s for MinD-ATP, MinD-ADP, 
and MinE. D = 0 µm2/s for MinD-ATP2D and MinD-ATP.MinE2D in 
the PDE. Initial species all well-mixed in PDE. In Smoldyn, MinD-ATP 
copies split between solution and membrane. Necessary modifica-
tion for Smoldyn to produce oscillations: D = 0.05 µm2/s for MinD-
ATP2D and MinD-ATP.MinE2D.

Sim parameters: Smoldyn: Ntraj = 4, Δt = 2 ms.

Analysis methods
Equilibria and error: for all stochastic methods, we calculated aver-
ages and variances of copy numbers in time over N trajectories. We 
used the standard error of the mean at time points: SEM(t) = 

A t A t NN N

2)( ) )( (− . For equilibrium values, we used differ-

ences from the mean to determine when equilibrium was reached. 
We note that for all models, we selected parameters such that the 
equilibrium was not too close to zero, which is important for assess-
ing clear deviations from the proper equilibrium values.

Clock oscillator timescales: the average time separation between 
A peaks, between R peaks, and the lag time between A and R peaks 
was calculated in two ways. First, by finding the peak maxima and 
simply calculating the separation between neighboring peaks, this 
was then averaged over all peaks. Second, to calculate time period 
of peaks, we used a discrete FFT that was zero-padded out to 5000 s 
to increase the resolution of the frequencies sampled. The frequency 
with the largest coefficient, fmax, was used to define the period of the 
oscillation (1/fmax). The cross-correlation between the A and R time-
series was used to identify the lag-time, again keeping the time with 
the largest correlation coefficient. Both methods produced similar 
results, and were performed using MATLAB functions. We report in 
the Supplemental tables the periods determined from the find peaks 
method, with SEMs reporting the calculated σ Npeak.

Fit to kinetics of crowding simulations: to define the kfit values for 
the crowding simulations as a function of packing fraction, we fit the 
copies of A versus time A(t) = A0 exp (–kfit Btott), where Btot is 
0.008/nm3, and we performed nonlinear fitting to the exponential 
rather than the logarithm of A(t). We fit each individual trajectory 

and report the mean of these values ∑ ( )〈 〉 =
=

k k nfit fitn

N

1
, where N is 

total trajectories. The SEM is calculated based on the variance 
around this mean value. Fits to the averaged trajectory gave similar 
values, and fits using the ln(A(t)) produced the same trends, but with 
slightly lower kfit values. The same approach was used for both FPR 
and GFRD trajectories.

MinCDE timescales: for the MinCDE models, we calculated the 
time-scales of oscillations by choosing fixed points in space at either 
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end of the cylinder (Supplemental Figure S7). Once the oscillations 
were pole-to-pole, we quantified the period of oscillations in time 
using the same approach as applied to the clock oscillator model 
above by finding the peak maxima and taking the average of time 
separations between adjacent peaks. This produced periods of 43.0 
± 0.7 s for Smoldyn and 41.3 ± 0.3 s for the PDE.

Autophosphorylation state assignments: to assign stochastic 
trajectories to states, 1 = low phosphorylation, 2 = high phosphor-
ylation, we report results based on thresholding the values of A(t) 
and Ap(t). We created a transition region, where points could be 
in either 1 or 2 depending on their previous state, to minimize 
rapid recrossings between states (see Supplemental Figure S1). If 
[A(t) > 62 + Ap(t)], assign to state 1, else if [A(t) < 35 + Ap(t)] assign 
state 2, else [if(State(t-1) = i, State(t) = i], where i = [1,2]. We then 
counted the number of times in each state, length of intervals 
spent in each state, and transitions between points separated by 

a time δt to construct ( )δ =












p t
p p

p p
trans

11 12

21 22 . We calculated 

( )= +p n n nstate i state i state state, , ,1 ,2 , and ∑τ τ ( )=
=N

n
1

i
n

N

i
1

, where N is 

the number of intervals spent in state i, each of duration τi. Distri-
butions of these residence times are shown in Supplemental 
Figure S1. To calculate errors on the probability of each state, 
each trajectory was split into 10 chunks (length at least the larger 
residence time), and these 10 state probabilities were used to cal-
culate a mean and SD/SEM.
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