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Deep learning‑based 
computer‑aided diagnosis 
in screening breast ultrasound 
to reduce false‑positive diagnoses
Soo ‑Yeon Kim1, Yunhee Choi2, Eun ‑Kyung Kim3, Boo‑Kyung Han4, Jung Hyun Yoon3, 
Ji Soo Choi4 & Jung Min Chang1*

A major limitation of screening breast ultrasound (US) is a substantial number of false-positive 
biopsy. This study aimed to develop a deep learning-based computer-aided diagnosis (DL-CAD)-based 
diagnostic model to improve the differential diagnosis of screening US-detected breast masses and 
reduce false-positive diagnoses. In this multicenter retrospective study, a diagnostic model was 
developed based on US images combined with information obtained from the DL-CAD software for 
patients with breast masses detected using screening US; the data were obtained from two hospitals 
(development set: 299 imaging studies in 2015). Quantitative morphologic features were obtained 
from the DL-CAD software, and the clinical findings were collected. Multivariable logistic regression 
analysis was performed to establish a DL-CAD-based nomogram, and the model was externally 
validated using data collected from 164 imaging studies conducted between 2018 and 2019 at 
another hospital. Among the quantitative morphologic features extracted from DL-CAD, a higher 
irregular shape score (P = .018) and lower parallel orientation score (P = .007) were associated with 
malignancy. The nomogram incorporating the DL-CAD-based quantitative features, radiologists’ 
Breast Imaging Reporting and Data Systems (BI-RADS) final assessment (P = .014), and patient age 
(P < .001) exhibited good discrimination in both the development and validation cohorts (area under 
the receiver operating characteristic curve, 0.89 and 0.87). Compared with the radiologists’ BI-RADS 
final assessment, the DL-CAD-based nomogram lowered the false-positive rate (68% vs. 31%, P < .001 
in the development cohort; 97% vs. 45% P < .001 in the validation cohort) without affecting the 
sensitivity (98% vs. 93%, P = .317 in the development cohort; each 100% in the validation cohort). In 
conclusion, the proposed model showed good performance for differentiating screening US-detected 
breast masses, thus demonstrating a potential to reduce unnecessary biopsies.

Mammography is an established modality for the early detection of breast cancer and reduction of breast cancer-
related mortality and morbidity1. However, as mammography alone shows a low sensitivity in women with dense 
breasts, various supplementary imaging modalities have been investigated for screening breast cancer2. Supple-
mental screening breast ultrasound (US) is a widely used adjunctive tool that allows the detection of additional 
breast cancers in women with negative mammography2. Although the number of cancers detected varies with 
the prevalence of cancer, it is generally modest, with an average of 3–4 cancers per 1000 US examinations3–7. As 
most cancers detected using screening US are small, invasive and node-negative, early-stage cancer detection 
and management may confer a mortality benefit3–7.

Despite the well-known benefits of screening breast US, a major limitation is presented by a substantial 
increase in false-positive findings with low specificities and low positive predictive values8. The Breast Imaging 
Reporting and Data System (BI-RADS) lexicon for breast US has contributed to the standardization of lesion 
characterization, description, and reporting; moreover, it has proven effective in differentiating benign and 
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malignant breast lesions9–12. However, efforts to detect more cancers using screening US have led to excessive 
recalls and false positive biopsies. In addition, cancers detected using screening US tend to be small in size, with-
out calcifications, and lack typical malignant features compared with palpable breast cancers or breast cancers 
detected using screening mammography13,14. Hence, the task of classifying breast masses detected using screen-
ing US as benign or malignant is challenging. Moreover, the assessment of masses detected using screening US 
entails concerns regarding operator dependency.

Artificial intelligence, particularly involving deep learning algorithms, is gaining extensive attention owing 
to its excellent performance in image recognition tasks15. A deep learning based computer-aided diagnosis (DL-
CAD) software has been recently developed and employed for breast mass differentiation in clinical practice16–21. 
Reports on the use of the dichotomized final assessments (“possibly benign” or “possibly malignant”) rendered by 
the current commercial DL-CAD software in patients with variable conditions showed the potential of DL-CAD 
with regard to improving the diagnostic accuracy and specificity16–21. However, to the best of our knowledge, 
no studies have focused explicitly on DL-CAD performance considering selected patients with breast masses 
detected using screening US. Considering the small size and less obvious morphologic characteristics of breast 
masses detected using screening US, the quantitative information derived from the DL-CAD software could 
provide additional details missed by the expert radiologists; furthermore, such information could prove to be 
substantially useful for the differentiation of breast masses while facilitating patient management in the clinical 
setting.

Therefore, the purpose of this study was to develop a diagnostic model that incorporates the quantitative 
morphologic features extracted from DL-CAD to improve the differential diagnosis of breast masses detected 
using screening US and reduce false-positive diagnoses.

Results
Characteristics of the development and validation cohorts.  The quantitative morphologic scores 
were obtained using the DL-CAD software for the development and validation sets (463 patients, mean age, 
45 years; range, 19–81). Surgery was performed on all lesions with malignant biopsy results (n = 52) and some of 
the lesions with benign biopsy results (n = 81). Clinical and imaging follow-up was performed using US (mean 
follow-up time, 12 months; range, 6–23 months) for the non-excised lesions proven to be benign through biopsy 
(n = 330), and lesion stability was confirmed in all the cases. The characteristics of the development and valida-
tion cohorts are summarized in Table 1. The age of the patients and size of the breast masses in the US were 
comparable between the two cohorts (P = 0.937 and 0.444, respectively). The proportion of BI-RADS category 3 
lesions was significantly higher in the development cohort than in the validation cohort (28.1% [84 of 299] vs. 
2.4% [4 of 164], P < 0.001). In the development cohort, there were 256 (85.6%) benign and 43 (14.4%) malignant 
(33 invasive ductal carcinomas, 7 ductal carcinomas in situ, 1 invasive lobular carcinoma, 1 mucinous carcinoma, 
and 1 adenoid cystic carcinoma) masses. In the validation cohort, there were 155 (94.5%) benign and 9 (5.5%) 
malignant (7 invasive ductal carcinomas and 2 ductal carcinomas in situ) masses. The proportion of malignancy 
was significantly higher in the development cohort than in the validation cohort (14.4% vs. 5.5%, P = 0.004). 
Among the quantitative morphologic scores extracted from the DL-CAD software (Supplementary Table S1), 
the round shape score and all descriptor scores of the echo pattern, margin, and posterior features were signifi-
cantly different between the two cohorts (all P < 0.001). However, the oval shape score, irregular shape score, 
and parallel and non-parallel orientation scores were all comparable between the two cohorts (P = 0.545–0.859).

Characteristics associated with malignant masses in the development cohort.  The character-
istics of benign (n = 256) and malignant (n = 43) breast lesions in the development cohort were compared using 
univariable logistic regression analysis, as presented in Table 2. Women with malignant breast lesions were older 
than those with benign lesions (mean age, 54 vs. 44 years, P < 0.001). All malignant breast lesions except one 

Table 1.   Characteristics of the development and validation cohorts. BI-RADS, Breast Imaging Reporting and 
Data System. Data for the age and size are expressed in terms of the mean ± standard deviation (ranges). Data 
for the BI-RADS final assessment and pathology are presented as numbers (percentages).

Characteristic Development cohort (n = 299) Validation cohort (n = 164) P value

Age (y) 45 ± 12
(19–81)

45 ± 10
(23–74) .937

Size on US (cm)  1.1 ± 0.6
(0.4–3.2)

1.1 ± 0.5
(0.3–3.4) .444

Radiologist’s BI-RADS assessment

3 84 (28.1) 4 (2.4)

 < .001

4A 174 (58.2) 146 (89.0)

4B 20 (6.7) 11 (6.7)

4C 14 (4.7) 3 (1.8)

5 7 (2.3) 0 (0)

Pathology

Benign 256 (85.6) 155 (94.5)
.004

Malignant 43 (14.4) 9 (5.5)
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(97.7%, 42 of 43) had a final assessment of BI-RADS 4A or higher. In contrast, 67.6% (173 of 256) of the benign 
breast lesions had a final assessment of BI-RADS 4A or higher (P = 0.003). With regard to the differences in the 
quantitative morphologic scores obtained from the DL-CAD software between the benign and malignant breast 
lesions, the malignant breast lesions had a lower oval shape score (median, 0.15 vs. 0.77, P < 0.001), higher irreg-
ular shape score (0.82 vs. 0.12, P < 0.001), lower parallel orientation score (0.72 vs. 0.99, P < 0.001), higher non-
parallel orientation score (0.28 vs. 0.01, P < 0.001), lower circumscribed margin score (0.11 vs. 0.98, P < 0.001), 
higher spiculated margin score (0 [interquartile ranges, 0–0.01] vs. 0 [0–0], P = 0.037), higher microlobulated 
margin score (0.16 vs. 0.01, P < 0.001), lower posterior enhancement score (0.14 vs. 0.38, P < 0.001), and higher 
posterior shadowing score (0.01 vs. 0, P = 0.011), compared with the benign breast lesions. In the multivari-
able analysis, four variables were independently associated with malignancy (Table 3): BI-RADS 4A or higher 
(odds ratio [OR], 14.7 [95% confidence interval (CI) 1.7, 125.6], P = 0.014), older age (OR, 1.1 [95% CI 1.0, 1.1], 
P < 0.001), higher irregular shape score (OR, 5.1 [95% CI 1.3, 19.4], P = 0.018), and lower parallel orientation 
score (OR, 0.1 [95% CI 0, 0.6], P = 0.007) obtained from the DL-CAD software.

Development and validation of a nomogram.  A diagnostic model incorporating the four aforemen-
tioned variables was developed and presented as a nomogram (Fig. 1a). In the development cohort, the AUC 
of the radiologists’ BI-RADS final assessment was 0.65 (95% CI 0.61, 0.69), whereas the AUC in the case of the 
diagnostic model was 0.89 (95% CI 0.84, 0.93) (Fig. 1b). The bootstrap-corrected AUC of the diagnostic model 

Table 2.   Characteristics of the benign and malignant breast lesions in the development cohort. BI-RADS, 
Breast Imaging Reporting and Data System, CI, confidence interval, DL-CAD, deep learning-based computer-
aided diagnosis. Data for the age and size are expressed in terms of the mean ± standard deviation (ranges). 
Data for the BI-RADS final assessment are presented as numbers (percentages). Data for quantitative 
morphologic scores from the DL-CAD software are presented as median (25th percentile, 75th percentile).

Characteristic
Benign
(n = 256)

Malignant
(n = 43) Univariable odds ratio (95% CI) Univariable P value

Age (y) 44 ± 11 (19–78) 54 ± 13 (22–81) 1.1 (1.0, 1.1)  < .001

Size on US (cm) 1.1 ± 0.5 (0.4–3.2) 1.3 ± 0.9 (0.4–3.2) 1.5 (0.9, 2.4) .124

Radiologist’s BI-RADS assessment

3 83 (32.4) 1 (2.3) Reference

 ≥ 4A 173 (67.6) 42 (97.7) 20.2 (2.7, 148.9) .003

Quantitative morphology scores from the DL-CAD software

Characteristic

Descriptor

Shape

Round 0.01 (0, 0.05) 0.01 (0, 0.08) 0.6 (0, 11.3) .734

Oval 0.77 (0.36, 0.93) 0.15 (0.05, 0.51) 0.04 (0.01, 0.14)  < .001

Irregular 0.12 (0.03, 0.49) 0.82 (0.44, 0.92) 18.6 (6.3, 54.8)  < .001

Orientation

Parallel 0.99 (0.95, 0.99) 0.72 (0.24, 0.96) 0.03 (0.01, 0.1)  < .001

Not parallel 0.01 (0, 0.05) 0.28 (0.05, 0.76) 30.9 (9.4, 101.0)  < .001

Margin

Circumscribed 0.98 (0.41, 0.99) 0.11 (0, 0.84) 0.2 (0.1, 0.4)  < .001

Indistinct 0 (0, 0.05) 0.02 (0, 0.46) 2.3 (0.8, 6.6) .107

Spiculated 0 (0, 0) 0 (0, 0.01) 9.6 (1.2, 80.9) .037

Angular 0 (0, 0) 0 (0, 0) 1.2 (0.04, 38.9) .902

Microlobulated 0.01 (0, 0.07) 0.16 (0.01, 0.72) 6.5 (2.4, 17.5)  < .001

Posterior features

No 0.44 (0.18, 0.71) 0.58 (0.20, 0.78) 2.1 (0.7, 6.3) .195

Enhancement 0.38 (0.12, 0.72) 0.14 (0.01, 0.30) 0.1 (0.03, 0.4)  < .001

Shadowing 0 (0, 0.01) 0.01 (0, 0.32) 4.1 (1.4, 12.3) .011

Combined 0 (0, 0) 0 (0, 0.02) 2.0 (0.3, 13.4) .465

Echo pattern

Anechoic 0 (0, 0) 0 (0, 0) 1.1 (0.9, 1.2) .281

Hyperechoic 0 (0, 0) 0 (0, 0) 3.9 (0, 836.3) .618

Complex 0 (0, 0) 0 (0, 0) 0.4 (0, 37.2) .671

Hypoechoic 0.84 (0.19, 0.98) 0.91 (0.28, 0.99) 1.7 (0.7, 4.2) .292

Isoechoic 0.05 (0, 0.46) 0.01 (0, 0.29) 0.6 (0.2, 1.7) .312

Heterogeneous 0 (0, 0) 0 (0, 0.03) 2.7 (0.6, 12.9) .213
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was 0.87. In the validation cohort, the diagnostic model yielded a higher AUC than the radiologists’ BI-RADS 
assessment (0.87 [95% CI 0.79, 0.95] vs. 0.51 [95% CI 0.50, 0.53], P < 0.001) (Fig. 1c). In the development cohort, 
the calibration plot showed good agreement between the predicted and observed probabilities (Fig. 1d); the 
calibration slope and intercept were close to 1 (95% CI 0.7, 1.3) and 0 (95% CI − 0.5, 0.5), respectively. The 
bootstrap-corrected estimates for the calibration were 0.84 and − 0.75 for the slope and intercept, respectively. 
However, in the validation cohort, the observed probability was lower than the predicted probability (Fig. 1e) 
with a calibration slope of 1 (95% CI 0.4, 1.6) and calibration intercept of − 1.4 (95% CI − 2.2, − 0.5).

Application of the nomogram to reduce unnecessary biopsies.  After obtaining the risk scores from 
the diagnostic model, the optimal cut-off of the nomogram was determined to be 114 points to maximally 
improve the specificity with maintaining the sensitivity to 95% or higher. A comparison of the false positive 
rates, biopsy rates, and sensitivities between the BI-RADS final assessment and the diagnostic model using the 
nomogram with the determined cut-off is presented in Table 4. On application of the diagnostic model, the false 
positive rate significantly decreased in both the development cohort (68% [95% CI 62, 73; 173 of 256] vs. 31% 
[95% CI 26, 37; 80 of 256], P < 0.001) and validation cohort (97% [95% CI 95, 99; 151 of 155] vs. 45% [95% CI 37, 
52; 69 of 155], P < 0.001). Moreover, the biopsy rate significantly decreased in both the development cohort (72% 
[95% CI 67, 77; 215 of 299] vs. 41% [95% CI 35, 46; 121 of 299], P < 0.001) and validation cohort (98% [95% CI 
96, 100; 160 of 164] vs. 48% [95% CI 40, 55; 78 of 164], P < 0.001). The sensitivity did not significantly decrease 
in both the development cohort 98% [95% CI 88, 100; 42 of 43] vs. (95% [95% CI 84, 99; 41 of 43], P = 0.317) and 
validation cohort (100% [95% CI 66%, 100%; 9 of 9] vs. 100% [95% CI 66%, 100%; 9 of 9], P = not applicable). 
When the nomogram threshold was applied to breast masses with BI-RADS 4A, 88 (50%) of the 174 masses in 
the development cohort and 78 (53%) of the 146 masses in the validation cohort were correctly reclassified as 
benign without missing any cancers (Figs. 2 and 3).

Discussion
In this study, the DL-CAD based nomogram for the differential diagnosis of breast masses detected by screening 
US was developed and validated using the multicenter cohorts. Among the quantitative morphologic features 
obtained from the DL-CAD software, ‘shape’ and ‘orientation’ information were the most beneficial features in 
predicting malignancy. In comparison with the radiologists’ BI-RADS final assessment alone, our nomogram 
incorporating the DL-CAD based quantitative information, patient age, and the BI-RADS assessments, improved 
AUCs and lowered the false-positive rates without decreasing the sensitivities in the differential diagnosis of 
breast masses detected by screening US.

To date, various studies have attempted to overcome the limitations of screening breast US, including a low 
positive predictive value and increase in false-positive biopsies22. The use of elastography or color Doppler US, in 
addition to grayscale US images, has been suggested and used in clinical practice23. However, in these techniques, 
the additional time required for image acquisition and operator dependency with regard to both image acquisi-
tion and interpretation remain as limitations24. In this respect, the use of DL-CAD with grayscale US images 
could provide objective, quantitative information, enabling the proposed method to serve as a second reader 
assisting radiologists to effectively reduce unnecessary biopsies and increase cost-effectiveness. The detection 
of subtle differences in the mass features among grayscale US images is promising, as this can also be applied to 
an automated breast US system.

With regard to creating the diagnostic model, the development and validation cohorts did not share common 
mass features and ratios of malignancy; however, good discrimination performance was noted, implying high 
compatibility with a slightly different cohort. The use of the developed nomogram lead to improved AUC values 
and lower false positive rates without reducing the sensitivity, in contrast with using only BI-RADS; thus, this 
is an effective method for reducing the false-positive biopsies associated with supplemental US exams. These 
results are concordant with those of previous studies that consistently reported the utility of DL-CAD software 
for improving the diagnostic specificity of both experienced and less-experienced radiologists16–21. However, in 
previous studies, their performances were evaluated on a single study population with a given dichotomized 
output from the DL-CAD software. In this study, the individual quantitative data of the DL-CAD software were 
explored for the first time.

Among the morphologic features of the grayscale US images assessed with the DL-CAD software, the shape 
and orientation were the most reliable US features for characterizing the screening US-detected breast masses. 
In contrast, the echogenicity and posterior features were the least reliable. The results of this study are consist-
ent with those of prior studies by Hong et al.25 and Elverici et al.26, which investigated the US features useful in 
diagnosing non-palpable breast lesions. An irregular shape, spiculated margin, and non-parallel orientation are 

Table 3.   Multivariable logistic regression analysis for predicting malignancy. BI-RADS, Breast Imaging 
Reporting and Data System; CI, confidence interval.

Odds ratio (95% CI) P value

Age 1.1 (1.0, 1.1)  < .001

Radiologist’s
BI-RADS assessment ≥ 4A 14.7 (1.7, 125.6) .014

Irregular shape score 5.1 (1.3, 19.4) .018

Parallel orientation score 0.1 (0, 0.6) .007
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Figure 1.   Nomogram to predict the malignancy in screening US-detected breast masses with receiver operating characteristic (ROC) 
curves and calibration plots. (a) Nomogram incorporating quantitative morphologic scores of shape and orientation from the deep 
learning based computer-aided diagnosis, age, and Breast Imaging Reporting and Data System (BI-RADS) final assessment category 
as variables was developed. Each point that corresponds to each variable is on the uppermost point scale. The sum of each point is 
the total point. The total points projected at the bottom scale indicate the probability of breast cancer. The ROC curves are compared 
between the nomogram and the radiologist’s BI-RADS final assessment in the (b) development cohort and (c) validation cohort. 
Numbers in the curves are area under the ROC curve (AUC) with 95% confidence intervals in the parentheses. The calibration plots of 
the nomogram are presented in the (d) development cohort and (e) validation cohort. Numbers in the parentheses are 95% confidence 
intervals.
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well-known features highly predictive of malignancy25,26. An irregular shape might reflect the inconsistent growth 
and advancement of the lesion edge, whereas the non-parallel orientation feature might suggest the spread of the 
lesion through the tissue-plane boundaries, both of which are substantially indicative of a malignant process25. 
Margin assessment is somewhat challenging for small-sized lesions despite the use of high-spatial-resolution 
US equipment9. In concordance with the study conducted by Elverici et al.26, the margin was not independently 
associated with malignancy in the screening-US-detected masses evaluated in this study. In the study performed 
by Chen et al.27, the reliable US features differed according to the size of the breast masses; furthermore, for breast 
masses ≤ 1 cm in diameter, an irregular shape and not smooth margin were associated with malignancy. The reli-
able US features predictive of malignancy might differ depending on the size and palpability of the breast masses.

This study has several limitations. First, this was a retrospective study, and the results were dependent on 
the composition of the data, whose size was limited. Owing to the small number of malignant lesions and the 
low proportion of BI-RADS category 3 masses in the validation cohort, a tendency to overestimate was noted28. 
Further improvements must be achieved via larger and prospective studies before actual clinical use. Second, 
although BI-RADS 3 masses that were biopsied on the request of a clinician or patient were included in this study, 
the inclusion of BI-RADS 3 masses may not reflect the usual population requiring biopsies. Third, we only applied 

Table 4.   Comparison of the false positive rate, biopsy rate, and sensitivity between the radiologist’s BI-RADS 
assessment and the proposed nomogram. Data in parentheses are the 95% confidence intervals, and the data in 
brackets are the numerators/denominators. BI-RADS, Breast Imaging Reporting and Data System.

False positive rate Biopsy rate Sensitivity

Development 
cohort Validation cohort

Development 
cohort Validation cohort

Development 
cohort Validation cohort

Radiologist’s
BI-RADS ≥ 4A

68
(62, 73)
[173/256]

97
(95, 99)
[151/155]

72
(67, 77)
[215/299]

98
(96, 100)
[160/164]

98
(88, 100)
[42/43]

100
(66, 100)
[9/9]

Nomogram ≥ 114
31
(26, 37)
[80/256]

45
(37, 52)
[69/155]

41
(35, 46)
[121/299]

48
(40, 55)
[78/164]

95
(84, 99)
[41/43]

100
(66, 100)
[9/9]

P value  < .001  < .001  < .001  < .001 .317 NA

Figure 2.   Benign breast mass correctly classified by the nomogram. (a) A 40-year-old woman in the validation 
cohort had a 1.0-cm breast mass detected by screening US. This mass assessed as Breast Imaging Reporting and 
Data System (BI-RADS) 4A by a radiologist was subject to US-guided 14-gauge core needle biopsy. The biopsy 
result was fibrocystic change and the mass was stable on 12 months follow-up US. (b) The deep learning based 
computer-aided diagnosis software assigned an irregular shape score of 0.25 and parallel orientation score of 
0.98. (c) This mass has 105 points on the nomogram, which was lower than the cut-off of 114. A false-positive 
biopsy could be omitted safely if the nomogram was applied.
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our DL-CAD system for women who were scheduled for biopsy. In our study, we do not have data on entire 
screening cohort, and the patients who were not performing biopsy for their mass were not included. Fourth, 
only one representative US image was used for each case; thus, variability could still exist in lesion assessments 
performed by the DL-CAD software and radiologists. In addition, we used the quantitative scores extracted from 
the DL-CAD software, which is not displayed automatically in current clinical version. In the future, providing 
the quantitative information as an output should be considered based on our results. The modified software would 
improve the diagnostic accuracy even in challenging situations, such as in the case of breast cancers detected 
using screening US. Lastly, the risk status of the patients, such as a family history of breast cancer and BRCA 
mutation information, were not considered.

In conclusion, the proposed DL-CAD-based diagnostic model showed good performance with regard to the 
lesion differentiation of breast masses detected using screening US. The quantitative DL-CAD information can 
provide a more accurate diagnosis and potentially lead to a decrease in false positive biopsies without overlook-
ing cancers.

Methods
Samsung Medison Co. (Seongnam, Korea) provided technical support with regard to analyzing the US images 
using the DL-CAD software (S-Detect; Samsung Medison Co., Seongnam, Korea) and obtaining outputs from 
the software. However, Samsung Medison Co. was not involved in the study design, data collection, statistical 
analysis, data interpretation, or manuscript preparation. The institutional review boards of Seoul National Uni-
versity Hospital (No. 1901-110-1005), Severance Hospital (4-2019-0112), and Samsung Medical Center (2019-
02-051-001) approved this multicenter retrospective study, and the requirement for written informed consent 
was waived for re-analyzing data from prospective cohort study. All research was performed in accordance with 
relevant guidelines and regulations.

Patients.  With regard to the development cohort, the US images were collected from the prospective cohort 
studies performed at Severance Hospital and Samsung Medical Center, Seoul, Korea from January to December 
2015. From this database, we identified patients according to the following inclusion and exclusion criteria. The 
inclusion criteria were asymptomatic women with breast masses detected using screening US, were scheduled 
for US-guided core needle biopsy, and the DL-CAD software was applied to the breast masses before perform-
ing US-guided core needle biopsy in all of the included cases. The exclusion criteria were women with breast 
symptoms, including lump or nipple discharge, with positive findings (BI-RADS final assessment category 0, 3, 

Figure 3.   Malignant breast mass correctly classified by the nomogram. (a) A 51-year-old woman in the 
validation cohort had a screening US-detected 0.9-cm breast mass assigned as Breast Imaging Reporting and 
Data System (BI-RADS) 4A. The mass was confirmed as grade 1 invasive ductal carcinoma (pT1N0M0, estrogen 
receptor positive, progesterone receptor negative, human epidermal growth factor receptor type 2 negative) by 
US-guided 14-gauge core needle biopsy and subsequent surgery. (b) The deep learning based computer-aided 
diagnosis (DL-CAD) software assigned irregular shape score of 0.90 and parallel orientation score of 0.12. (c) 
This mass has 185 points on the nomogram, which was higher than the cut-off of 114, requiring biopsy. The 
nomogram incorporating quantitative morphologic scores from DL-CAD software correctly identified the true 
cancer.
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4, or 5) obtained via mammography; the exclusion criteria also included a personal history of breast cancer, with 
recently diagnosed, known cancer. In total, 299 women who fulfilled the aforementioned inclusion criteria com-
prised the development set (mean age, 45 years; range, 19–81 years). To form an independent external validation 
cohort, we recruited patients using the same inclusion and exclusion criteria as those for the development cohort 
in Seoul National University Hospital, Seoul, Korea between February 2018 and June 2019. A total of 164 women 
(mean age, 45 years; range, 23–74 years) comprised the validation cohort (Fig. 4).

DL‑CAD application.  All masses included in this study were scheduled to undergo US-guided biopsy 
according to the predetermined BI-RADS category. The BI-RADS category was determined solely based on 
grayscale US images without DL-CAD information. As per the institutional rules for biopsy, all BI-RADS cat-
egory 4 or 5 masses undergo biopsy, and upon the request of a clinician or patient, BI-RADS category 3 masses 
can be scheduled for biopsy. On the day of the scheduled biopsy, the DL-CAD software was applied using 
5–12 MHz linear probes and a real-time US system (RS 80A with Prestige and RS85A Prestige; Samsung Medi-
son Co., Seongnam, Korea) before biopsy was performed by six dedicated breast radiologists (J.H.Y. and E.-K.K. 
in Severance Hospital, J.S.C. and B.-K.H. in Samsung Medical Center, and S.-Y.K. and J.M.C. in Seoul National 
University Hospital) with 6–23 years of experience. During the DL-CAD software operation, the radiologists 
first selected a single representative image for each mass. The representative image included the area with the 
most suspicious US features. The radiologists indicated the center of the mass on the selected image, and then a 
region of interest (ROI) was automatically drawn along the border of the mass. Manual corrections were made 
by the radiologists if the mass boundary was inadequately drawn by the DL-CAD software. The ROI-based US 
features were automatically analyzed according to the 5th edition of the BI-RADS lexicon11: shape (round, oval, 
and irregular), orientation (parallel and not parallel), margin (circumscribed, indistinct, spiculated, angular, 
and microlobulated), posterior feature (no posterior feature, posterior enhancement, posterior shadowing, and 
combined), echo pattern (anechoic, hyperechoic, complex, hypoechoic, isoechoic, and heterogeneous). The final 
assessments were provided in the dichotomized form as “possibly benign” and “possibly malignant.” The deci-
sions regarding performing US-guided biopsy and the predetermined BI-RADS category were not altered based 
on the DL-CAD software results. Immediately after acquiring the DL-CAD images, the scheduled biopsy was 
performed.

Figure 4.   Flowchart of patient selection. DL-CAD = deep learning based computer-aided diagnosis.



9

Vol.:(0123456789)

Scientific Reports |          (2021) 11:395  | https://doi.org/10.1038/s41598-020-79880-0

www.nature.com/scientificreports/

Extraction of quantitative morphologic scores from the DL‑CAD software.  In this study, the 
quantitative morphologic scores obtained from the DL-CAD software, consisting of values between 0 and 1 for 
each BI-RADS lexicon descriptor, were used to develop a diagnostic model (Fig. 5) for the differential diagnosis 
of breast masses detected using screening US; this was because our unpublished preliminary test performed 
using the commercial DL-CAD software for the masses detected using screening US showed unsatisfactory 
diagnostic performance. The current commercial version of the DL-CAD software does not present these quan-
titative morphologic scores but displays one descriptor with a maximum value for the shape, orientation, mar-
gin, posterior echogenic features, and echo pattern. We believe that the current version involving the selection 
of one descriptor with a maximum value and dichotomized final assessment category might provide the omitted 
information with regard to our selected population with breast masses detected using screening US.

During the generation of the quantitative morphologic scores, deep learning technology was applied to build 
the classifier for the BI-RADS lexicon. A deep learning network consists of a series of multiple layers of simple 
components, many of which compute their own non-linear mappings between the input and output. Unlike 
conventional machine learning techniques, which use different algorithms and trained to learn about relation-
ship between hand-crafted image features (i.e., edges, corners, or textures) and clinical outcomes, deep learning 
obtains the complex data structures in large high-dimensional datasets to determine the manner in which the 
internal parameters, called weights, of a deep neural network should be adjusted to learn the representations of 
data with multiple levels of abstraction. The weights are used to compute the representation of data in each layer 
based on the output of the previous layer, and complex functions with enough components of multiple levels 
of representation can be learned. For classification tasks, higher layers amplify the aspects of the input that are 
important for discrimination and suppress irrelevant variations15. All the weights of each layer are not generated 
by human experts but learned from a large amount of data via learning procedures. In the final layer, the inputs 
from the previous layer are transformed to probabilities that sum to one, representing the probability distribu-
tions of the final outputs. The final decision was made by combining the output of the US lexicon features with 
that of the other network for classifying the ROI images29,30.

Data and statistical analysis.  Along with the quantitative morphologic scores obtained from the DL-
CAD software, the age of the patients, mass size based on the US, final BI-RADS assessment of the radiology 
report, and final pathological results were collected.

A comparison of the characteristics of the development and validation cohorts and those of the benign and 
malignant breast lesions in the development cohort was performed using the Chi-squared test for the categorical 
variables, the Wilcoxon rank sum test for the continuous variables except for age and size, and the independent 
t-test for age and size. Uni- and multivariable logistic regression analyses were used to identify the factors asso-
ciated with malignancy in the development cohort. Variables with a P value < 0.1 under the univariable analysis 

Figure 5.   Application of deep learning based computer-aided diagnosis (DL-CAD) software in screening 
US-detected masses in (a) current commercialized mode and (b) our revised mode to build the diagnostic 
nomogram. A region of interest (ROI) (green line) was automatically drawn along the border of the screening 
US-detected mass in a 44-year-old woman, and the ROI based US features were analyzed by the DL-CAD 
software. Table in the left side shows quantitative scores obtained from DL-CAD software of the mass. The 
current commercial version of the DL-CAD software displays one descriptor with a maximum value for shape, 
orientation, margin, posterior echogenic features, and echo pattern: in this case, irregular shape, not parallel 
orientation, microlobulated margin, posterior shadowing, and hypoechoic echo pattern. Thus, these features and 
the final assessment of ‘possibly malignant’ were displayed on the monitor as an output (a). On the other hand, 
this study used the most significant quantitative morphologic scores extracted from the DL-CAD software and 
clinical information to build the diagnostic nomogram (b).
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were entered into the multivariable analysis with backward elimination. A nomogram was developed based on the 
multivariable logistic regression analysis. The diagnostic performance of the nomogram was evaluated in terms 
of discrimination and calibration. The discrimination was quantified using the area under the receiver operating 
characteristic (ROC) curve (AUC). The calibration was quantified using the calibration slope and intercept and 
visualized in the calibration curve. The internal validity of the nomogram was estimated via bootstrapping using 
1000 bootstrap samples, whereas its external validity was estimated using the validation cohort. The hypothetical 
application of the nomogram was compared with the radiologists’ BI-RADS final assessment using the McNemar 
test in terms of the false positive rate, biopsy rate, and sensitivity. The cut-off of the nomogram was determined 
by maximizing the specificity without reducing the sensitivity to < 95% on the ROC curve. The cut-off of the 
radiologists’ BI-RADS final assessment was determined at category 4A. The false positive rate was defined as 
the number of benign breast lesions above the cut-off indicating suspicious for malignancy divided by the total 
number of benign lesions. The biopsy rate was defined as the number of breast lesions above the cut-off divided 
by the total number of breast lesions. The sensitivity was defined as the number of malignant lesions above the 
cut-off divided by the total number of malignant lesions. The SAS software (version 9.2; SAS Institute, Cary, 
NC) was used for the statistical analysis, and the R package (version 3.6.1) was used to build the nomogram.
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