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Abstract: With the prevalence of obesity and associated
comorbidities, studies aimed at revealingmechanisms that
regulate energy homeostasis have gained increasing
interest. In 1994, the cloning of leptin was a milestone
in metabolic research. As an adipocytokine, leptin governs
food intake and energy homeostasis through leptin
receptors (LepR) in the brain. The failure of increased leptin
levels to suppress feeding and elevate energy expenditure
is referred to as leptin resistance, which encompasses
complex pathophysiological processes. Within the brain,
LepR-expressing neurons are distributed in hypothalamus
and other brain areas, and each population of the LepR-
expressing neurons may mediate particular aspects of
leptin effects. In LepR-expressing neurons, the binding
of leptin to LepR initiates multiple signaling cascades
including janus kinase (JAK)–signal transducers and acti-
vators of transcription (STAT) phosphatidylinositol 3-ki-
nase (PI3K)-protein kinase B (AKT), extracellular regulated
protein kinase (ERK), and AMP-activated protein kinase
(AMPK) signaling, etc., mediating leptin actions. These
findings place leptin at the intersection of metabolic and
neuroendocrine regulations, and render leptin a key target
for treating obesity and associated comorbidities. This
review highlights the main discoveries that shaped the
field of leptin for better understanding of the mechanism
governing metabolic homeostasis, and guides the

development of safe and effective interventions to treat
obesity and associated diseases.

Keywords: leptin; leptin cellular pathways; leptin neural
pathways; leptin resistance.

Introduction

The World Health Organization (WHO) estimates that over
1.9 billion of adults were overweight or obese in 2016. Even
worse, over 340 million adolescents and children aged
5–19 years, and over 41 million children under 5 years of
age were overweight or obese in 2016. To date, obesity and
obesity-associated comorbidities have beenmajor burdens
to the health-care systems worldwide.

Obesity is caused by the imbalance between food intake
and energy expenditure. Leptin is a hormone produced
mainly by adipocytes, which involves in a wide variety
of physiological functions, especially in the regulation of
energy balance. In 1969, Dr. Coleman and his colleagues
performed a series of parabiosis studies on the naturally
obese ob/obanddb/dbmice, and foundanunknownblood-
borne circulating factor, which might be prominently
involved in the regulationof bodyweight [1]. The ob/obmice
were missing this circulating factor, while db/db mice were
unresponsive to it, resulting in their obesity [1]. In 1994,
Dr. Friedman and his colleagues in the Rockefeller Univer-
sity first identified this circulating factor, and named it as
leptin [2].

Leptin is a 167 amino acid protein with a molecular
weight of 16 kDa. Leptin, encoded by the ob gene, is pro-
duced by and released from adipose tissues [3]. The ob gene
is widely expressed inmammals, amphibians, reptiles, fish,
etc. The aminoacid sequenceof leptin is highly conservative
across species [4]. Six leptin receptor (LepR) isoforms
(LepRa-f) are generated via alternative splicing of the ob
gene, and are expressed in both central nervous system
(CNS) and peripheral organs [5, 6]. Among these receptors,
LepRb plays a critical role in mediating the effects of leptin
on energy homeostasis [7]. In the CNS, leptin mainly targets
on LepR-expressing neurons and transmits signals through
multiple neural and cellular circuits to maintain energy
balance andmetabolic homeostasis by suppressing appetite
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and enhancing energy expenditure [7, 8]. In addition, leptin
also participates in the regulation of cognition, neuroen-
docrine and immunity [8].

Leptin resistance is defined by a reduced sensitivity or
a failure in response to leptin, showing a decrease in the
ability of leptin to suppress appetite or enhance energy
expenditure, which ultimately leads to overweight and
obesity [9]. The impairment of leptin signaling is also
closely associated with obesity-related diseases, including
hyperlipidemia, diabetes mellitus, metabolic syndrome,
etc. [10, 11].

Nowadays, with the rapid upsurge of global obesity
epidemic, obesity is becoming a challenging public health
problem. Thus, further studies of leptin signaling and
leptin resistance is essential for understanding of the
pathogenesis of obesity.

Neural mechanism underlying
leptin function

In the brain, leptin transmits the peripheral lipid and
glucose metabolic information, activates leptin signaling
pathways and elicits a cascade of reactions, leading to
reduced feeding, decreased appetite, enhanced mito-
chondrial oxidation and elevated thermogenesis [12]. The
function of leptin depends on the interaction of leptin
with LepRb in specific neurons located in multiple neural
nuclei or brain regions [13]. To date, a series of LepR-
expressing nuclei have been unveiled, which play critical
roles inmetabolic regulation. In recent years,with theadvent
of cutting-edge biotechnology, new functions of leptin in
some nuclei have also been revealed, which are greatly
expanding the understanding of leptin physiology.

Classic brain nuclei related to leptin function

Arcuate nucleus (ARC)

The hypothalamic ARC lies in close proximity to the median
eminence with a permeable vasculature, which permits
rapidaccess ofARC to circulating factors. Generally, theARC
is responsible for transmitting leptin signals to the hypo-
thalamus and other brain regions for regulating the energy
balance and metabolic homeostasis [14]. There are multiple
cell types in the ARC, among which the agouti-related
peptide/neuropeptide Y (AgRP/NPY) neurons and the
proopiomelanocortin/cocaine-and amphetamine-regulated

transcript (POMC/CART) neurons mainly participate in the
reception and transmission of peripheral leptin signals [15].
These two types of neurons are named as their secretion of
the orexigenicAgRPandNPYor the anorexigenic POMCand
CART, respectively [15].

Under physiological conditions, leptin activates POMC/
CART neurons, whereas inhibits AgRP/NPY neurons [15].
The leptin signals from the POMC/CART neurons project to
the paraventricular hypothalamic nucleus (PVN), the
lateral hypothalamic area (LHA), and other brain regions
through the melanocortin system [16]. In general, POMC
neuron-derived peptides, such as α-MSH, can activate the
melanocortin-4 receptor (MC4R) in the PVN, which can be
inhibited by AgRP released from the AgRP/NPY neu-
rons [16, 17]. Notably, leptin control of the melanocortin
system can be indirectly mediated by GABA- or nitric oxide
synthase 1-expressing neurons [18, 19].

Intriguingly, the inhibition of AgRP neurons by leptin
mainly induces transient effects on feeding and energy
expenditure, whereas the activation of POMC neurons
usually causes long-term changes in energy homeosta-
sis [20]. The cooperation of leptin signaling in the POMC
and AgRP neurons leads to suppressed food intake,
increased energy expenditure, and inhibited liver glucose
production [21].

Dorsomedial hypothalamus (DMH) and preoptic area
(POA)

TheDMHand POA are a functional complex of nuclei in the
hypothalamus, which are involved in the regulation of
feeding, drinking, body-weight, and circadian rhythms.
The POA is also responsible for the central thermoregula-
tion. Physiologically, leptin activates neurons in the POA to
activate the downstream effector neurons in the nucleus
raphe pallidus (RPa) via a projection from POA to DMH,
enhancing the sympathetic activity of brownadipose tissue
(BAT) and thermogenesis [22–24]. This process is inde-
pendent of food intake [24]. In addition, DMH contains
neurons expressing NPY, which also play a role in
elevating energy expenditure through activating the sym-
pathetic nervous system [25, 26].

As reported recently, silencing the neurotransmission
in DMH LepR-expressing neurons reduces energy expen-
diture without affecting food intake, increases bodyweight
and adiposity; and phase-advances diurnal rhythms of
feeding and metabolism into the light cycle, and abolishes
the normal increase in dark-cycle locomotor activity [27].
Interestingly, chronic chemo-genetic stimulation of POA
LepR-expressing neurons decreases both food intake and
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energy expenditure, and results in body weight loss, indi-
cating that the reduced food intake surpasses the
decreased energy expenditure [28]. Taken together, the
DMH and POA leptin signaling contributes to body weight
homeostasis by modulating energy expenditure and/or
food intake in interaction with environmental information.

LHA

The LHA contains both glutamatergic and GABAergic
neurons, although these classical neurotransmitters do
not fully explain the roles of LHA in feeding andmetabolic
regulation [29]. The discovery of the sub-populations of
neurons expressing distinct neuropeptides within the
LHA considerably advances our understanding of the
roles of LHA. These sub-populations of LHA neurons
mainly include hypocretin/orexin-expressing neurons
and melanin concentrating hormone (MCH)-releasing
neurons [30].

Functionally, the orexin, also known as hypocretin, is
a neuropeptide that regulates arousal, sleep, appetite and
motivated behavior [31]. In addition, intracisternal injec-
tion of orexin antibody reduces food intake, suggesting
that orexin regulates feeding [32]. Leptin treatment inhibits
orexin expression and neuronal activity, while silencing of
leptin signals increases orexin expression and elevates
the excitatory synaptic inputs onto orexin neurons [33].
Leptin reduces orexin synthesis and secretion through
LepR in LHA neurons or through the dopaminergic
projection from the ventral tegmental area (VTA) to LHA to
suppress food intake [33, 34]. Surprisingly, orexin over-
expression prevents diet-induced obesity through improving
leptin sensitivity and enhancing energy expenditure [35].
Overall, leptin control of orexin neurons is complex but
required for appropriate energy balance.

MCH is characterized as an orexigenic neuropeptide.
Treatment with MCH increases food intake and body
weight. The mice over-expressing MCH are obese [36, 37].
Treatment with leptin induces the release of melanocortin
in ARC POMC neurons, which further inhibits the
expression of MCH in LHA neurons [38]. The inhibition of
MCH expression reduces neuronal firing in the nucleus
accumbens (NAc) [39]. MCH neurons send inhibitory
project to orexin neurons, resulting in reduced food
intake [40].

The LHA neurotensin (Nts) neurons co-express
LepRb [41]. These neurons project to the VTA and sub-
stantia nigra compacta to coordinate feeding and drink-
ing [41]. Specific modulation of these neurons might be
useful to specialize the treatment of polydipsia or
obesity.

PVN

The PVN is a major sympathetic output originating from
the hypothalamus. The PVN receives input from the hy-
pothalamic sites, such as ARC, DMH, ventromedial hy-
pothalamus (VMH), etc. [42]. The PVN also receives
innervation from forebrain regions, such as POA, and
brainstem sites, such as parabrachial nucleus (PBN),
contributing to the control of feeding, anxiety and stress
response [42]. AgRP neuron-stimulated feeding requires
inhibition of PVN neurons [43]. Activation of PVN neurons
acutely increases energy expenditure and decreases food
intake [44, 45]. The PVN responds to peripheral signals of
leptin, and is critical for leptin action and the overall
control of energy balance.

Generally, the PVN integrates the leptin signals from
the ARC and other brain regions, and subsequently acts in
the following ways. First, PVN projects to autonomic cen-
ters for regulating body temperature, cardiovascular ac-
tivity, locomotor activity, and stress response [46, 47].
Second, PVN innervates the pituitary (PIT) portal system to
achieve neuroendocrine regulatory effects [47, 48]. Third,
PVN projects to the nucleus tractus solitaries (NTS) in the
brainstem to induce satiety and reduce food intake [42, 49].
Fourth, MC4R neurons in the PVN project to the PBN to
modulate satiety [45, 50]. The nitric oxide synthase 1
(Nos1)-expressing neurons in the PVN control feeding and
energy expenditure via the PBN as well as the inter-
mediolateral nucleus (IML) [44].

Medial nucleus tractus solitaries (mNTS) and area
postrema (AP)

The NTS is a series of sensory nuclei in the mammalian
brainstem. NTS receives viscerosensory information carried
by vagal afferent fibers fromgastrointestinal, cardiovascular,
and respiratory systems [51]. Leptin receptors are expressed
in vagal afferent nerves and a population of NTS neurons,
and leptin signaling within the NTS contributes to the
reduction of food intake and body weight [52, 53]. Selective
ablation of LepR in the NTS neurons causes hyperphagia,
weight gain, and weakened responses to satiety signals,
such as cholecystokinin (CCK) [54]. The AP is a circum-
ventricular organ and plays important roles in central
autonomic regulation. The LepR-expressing neurons in the
AP modulate metabolic and energy status [55].

Leptin regulates gastrointestinal satiation signals, such
as gastric distension, CCKorglucagon-like-peptide-1 (GLP-1)
by acting on LepR in mNTS/AP neurons [56–59]. Knock-
down of LepR in the mNTS and AP neurons dampens
the leptin action on gastrointestinal satiation signaling,
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hyperphagia, thereby increasing body weight and
adiposity [56]. Thus, the leptin signals in mNTS and AP are
essential for energy balance control.

Ventral tegmental area (VTA)

The VTA is located close to the midline on the floor of
the midbrain, participating in the regulation of reward,
motivation, and learning [60]. The ARC within the fore-
brain, the VTAwithin themidbrain, and the NTSwithin the
hindbrain are threemain regions responsive to direct leptin
stimulation [51, 61].

Leptin directly inhibits the dopaminergic neurons in
the VTA, or indirectly inhibits these neurons by reducing
orexin levels in the LHA [62, 63]. The inhibition of the
dopaminergic neurons in the VTA further prevents sucrose-
induced dopamine release into the NAc, thereby down-
regulating feeding motivation, inhibiting food reward, and
suppressing appetite [64].

LepRb-specific anterograde tracing shows that LepR-
expressing neurons in the VTA mainly project to the
extended central nucleus of the amygdala (extCeA) [65].
These LepRb neurons in the VTA innervate the extCeA to
control the cocaine and amphetamine regulated transcript
(CART) neurons in the extCeA, contributing to the reward
functions [65].

Newly-discovered brain nuclei related to
leptin function

Recently, multiple studies identified a series of clusters of
neurons expressing LepR in certain nuclei as novel medi-
ators involved in metabolic regulation.

PBN

The PBN integrates visceral, oral, and other sensory in-
formation, and plays an integral role in the neural control
of feeding and body weight. There is a GABAergic inhibi-
tory projection from AgRP neurons to the PBN neurons,
which is critical for the leptin effects on food intake
reduction and energy expenditure enhancement [66, 67].

The PBN neurons also receive signals from the
NTS [68, 69]. These NTS neurons respond to visceral signals
from the vagus nerve, or anorexic serotonin signals from the
rapheobscurus (ROb) and raphemagnus (RMg) [70]. ThePBN
integrates glutamatergic information from the NTS to reduce
food intake through projecting into the central amygdala
nucleus (CeA) [68, 71]. CCK-expressing neurons in the NTS
activate calcitonin gene-related protein (CGRP)-expressing

neurons in the PBN to reduce food intake [69]. However,
several studies also point out that PBN LepR neurons are not
essential for the NTS→PBN→CeA anorexia circuit [72].

Hypoglycemia directly promotes CCK release in the
PBN neurons in the state of negative energy balance [73].
These activated PBN neurons project to VMH neurons and
cause counterregulatory response (CRR), thereby stimu-
lating glucose production and inhibiting glucose uptake to
restore normal blood glucose levels in the hypoglycemic
state [73, 74]. In this process, leptin inactivates PBN neu-
rons and inhibits CRR to down-regulate blood glucose
levels and maintain glucose metabolism balance [72].

Central nucleus of the amygdala (CeA)

The CeA is a major output nucleus of the amygdala, which
receives and processes the pain information. Physiologi-
cally and pharmacologically, the CeA plays a role in
mediating the leptin function to suppress appetite and food
intake. In these processes, leptin signaling from the hy-
pothalamus and other brain regions activates the PBN-CeA
circuit to suppress feeding [71]. This leptin signaling
pathway also affects the extCeA to suppress the CeA CART
expression, and thus reduces food intake [65].

Hippocampus

The hippocampus is a major component of the brain for
learning, memory and space exploring. The hippocampal-
dependent mnemonic function mediates the feeding
behavior [75]. Leptin interacts with LepR in the hippo-
campal neurons to inhibit food-relatedmemory processing
and thus reduce food intake [76].

Additionally, leptin facilitates the cellular actions
underlying hippocampal-dependent learning and mem-
ory, including glutamate receptor trafficking, neuronal
morphology and activity-dependent synaptic plas-
ticity [77, 78]. These effects of leptin may be beneficial for
preventing the neurodegenerative disorders such as
Alzheimer’s disease (AD) [77, 78].

Periaqueductal gray (PAG)

The PAG, an area of the gray matter in the midbrain, is
essential for regulating analgesia, defensive behavior and
reproductive behavior. In the brainstem, the PAG LepRb-
expressing neurons are the largest population of LepRb
neurons [79]. Noxious stimuli, such as pain, affect the PAG
LepRb neurons to activate the PBN→VMH circuit,
increasing sympathetic activity and blood glucose con-
centrations [72, 80]. Ablation of LepRb in PAG neurons
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augments the activation of PAG→PBN→VMN circuit and
the hyperglycemic response to noxious stimuli [80]. Thus,
the diminished PAG leptin signaling ensures adequate
sympathetic activation and glucose mobilization to meet
the metabolic needs associated with noxious stimuli or
negative energy balance.

Substantia nigra (SN)

TheSN, a basal ganglia structure in themidbrain, involves in
the regulation of reward and movement. LepR is expressed
in the SN neurons [79]. Intriguingly, the LepR neurons in the
SN and VTA exhibit diverse functions [81]. Activation of the
VTA LepR neurons mainly decreases motivation for feeding
and food reward,whereas activation of the SNLepRneurons
mainly reduces locomotor activity [81].

Other brain structures

There are some other brain structures expressing leptin
receptors, such as certain areas of the cerebral cortex,

etc. [79]. The potential roles of leptin in these brain regions
remain to be elucidated.

Neural pathways related to leptin function

The classical neural pathways underlying the leptin func-
tion include the ARC/VMH/DMH→PVN circuit, the
ARC→LHA circuit, and the ARC→PBN circuit. Recently,
several new neural circuits have been discovered, such as
the VTA→CeA circuit, the NTS→PBN→CeA circuit, and the
PAG-PBN circuit. The classical and novel neural pathways
underlying leptin function are summarized as Figure 1.

Cellular mechanism underlying
leptin function

Leptin acts in the brain to govern metabolic homeostasis.
Cellular leptin signaling pathways mediate these pro-
cesses. Once leptin binds to the LepR, a series of

Figure 1: Brain nucleus and neural pathways underlying leptin function. Orange background: regions of neurons responsive to direct leptin
stimulation; red color text: regions of neurons activated by leptin; green color text: regions of neurons inactivated by leptin. ARC, arcuate
nucleus; AgRP, agouti-related peptide; CCK, cholecystokinin; CeA, central nucleus of amygdala; DMH, dorsomedial hypothalamus; GLP-1,
glucagon-like peptide-1; LHA, lateral hypothalamic area; MCH, melanin concentrating hormone; NAc, nucleus accumbens; NTS, nucleus
tractus solitaries; POMC, proopiomelanocortin; PBN, parabrachial nucleus; POA, preoptic area; PVH, paraventricular nucleus; PAG, peri-
aqueductal grey matter; RPa, raphe pallidus; ROb, raphe obscurus; RMg, raphe magnus; VMH, ventromedial hypothalamic nucleus; VTA,
ventral tegmental area.
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intracellular reactions are triggered, leading to reduced
food intake and enhanced energy expenditure.

Classic leptin signaling pathways

LepRb-JAK2-STAT3/5

Numerous evidence demonstrates that the janus kinase
(JAK)–signal transducers and activators of transcription
(STAT) signaling is the major signaling pathway, through
which leptin controls energy homeostasis and neuroen-
docrine function [82]. This pathway is also linked to im-
munity, cell division, cell death, and tumor formation [83].
This pathway conveys the extracellular information to the
nucleus, resulting in transcription of certain genes.

LepRb belongs to the type I family of cytokine receptors
and lacks an intrinsic catalytic activity [84]. Instead, binding
of leptin to LepRb initiates a signaling cascade beginning
with activation of the tyrosine kinase of the Jak kinase family
(JAK2) [84, 85]. Thephosphorylated JAKs, especially JAK2, in
turn stimulates the phosphorylation of three residues on the
intracellular domain of LepRb (Tyr985, Tyr1077 and
Tyr1138), and recruits distinct downstream signaling mole-
cules to a leptin-specific signaling pathway to exhibit
diverse physiological functions [84, 86].

The STATs are cytoplasmic proteins activated by
various cytokines, growth factors and hormones, including
leptin. STAT3 is widely expressed in the CNS. The neuron-
specific deletion of STAT3 causes hyperphagia, obesity,
diabetes, and hyperleptinemia [87, 88]. In response to
leptin, JAK2 phosphorylates LepRb on Tyr1138 and this
phospho-Tyr1138 binds to the Src homology 2 (SH2) domain
of STAT3 to trigger STAT3 phosphorylation [89, 90].
Phosphorylation promotes STAT3 dimerization and its
translocation from the cytoplasm into the nucleus, where
STAT3 acts as a transcription factor to modulate the tran-
scription of target genes, such as neuropeptides POMC,
AgRP, and NPY [91–93]. In this process, the expression of
orexigenic POMC is upregulated, whereas the anorexigenic
AgRP and NPY are repressed, leading to reduced food
intake and increased energy expenditure [91–93]. The
phosphorylated STAT3 also enhances the transcription of
the suppressor of cytokine signaling 3 (SOCS3), which in
turn creates a negative feedback loop and counterbalances
the leptin signaling [94].

STAT5 involves in the leptin signaling pathways.
STAT5 deletion in the brain causes hyperphagia and
obesity [95]. In response to leptin, JAK2 activates LepRb on
Tyr1077 to phosphorylate STAT5 [96]. PhosphoTyr1138 also
is partially involved in STAT5 activation [97]. LepRb
Tyr1138 and STAT3 activation attenuate STAT5-dependent
transcription over the long term [97].

The leptin-induced tyrosine phosphorylation of JAK2
can be inhibited by SOCS3, which terminates the leptin
signaling cascade [98]. SOCS3 mRNA expression in the
hypothalamus is specifically induced by leptin. The
neuron-specific deletion of SOCS3 increases leptin sensi-
tivity through STAT3 activation, indicating that SOCS3 is an
important negative feedback regulator of leptin
signaling [99, 100]. Protein tyrosine phosphatase 1B
(PTP1B) is also a well-recognized negative regulator of the
leptin signaling, which attenuates the leptin-induced
JAK2/STAT3 signaling by dephosphorylating JAK2 [101].

LepRb-JAK2-IRS-PI3K-AKT-mTOR-S6K1

Leptin activates certain components of the insulin-
signaling cascade to achieve its functions, including
reducing food intake and increasing energy expendi-
ture [102]. Leptin enhances the insulin-receptor sub-
strates 1/2 (IRS1/2) phosphorylation via activation of the
JAK2 [103, 104]. Phosphorylation of both IRS1 and IRS2
activates the phosphatidylinositol 3-kinase (PI3K) [105].
SH2B adaptor protein 1 (SH2B1) recruits IRS to JAK2, and
IRS proteins are phosphorylated by JAK2 and activate the
PI3K pathway [106, 107]. PTP1B suppresses the IRS1/2 to
inhibit the IRS-PI3K axis [108, 109].

In leptin-sensitive neurons, PI3K catalyzes the phospha-
tidylinositol-4, 5-bisphosphate (PIP2) to phosphatidylinositol-
3, 4, 5-trisphosphate (PIP3). Increased PIP3 level leads to
activation of the phosphoinositide-dependent kinase 1 (PDK1),
and activates the v-akt murine thymoma viral oncogene ho-
molog 1 (AKT) through the PH domain of AKT [110, 111]. This
process enhances the downstream signaling that depends on
AKT, leading to a reduced body fat mass [110].

AKT, also known as protein kinase B (PKB), is a serine/
threonine-specific protein kinase that plays critical roles in
metabolism, apoptosis, cell proliferation, and cell migra-
tion [112]. AKT activates the mammalian target of rapa-
mycin (mTOR), and also activates the cAMP response
element-binding protein (CREB), and localizes the fork-
head box protein O1 (FoxO1) in the cytoplasm [113].

In the CNS, mTOR is a downstream target of AKT in
NPY/AgRP neurons and POMC neurons [114]. The activated
mTOR phosphorylates ribosomal protein S6 kinase beta-1
(S6K1) at Thr389 in these neurons to reduce food intake,
elevate the renal sympathetic nerve outflow, increase en-
ergy expenditure and protect against obesity [114, 115].

LepRb-IRS-PI3K-AKT-FoxO1

FoxO1 is a transcription factor involved in regulation
of gluconeogenesis, glycogenolysis as well as adipo-
genesis. FoxO1 is a phosphorylation target of the PI3K-
AKT axis, mediating the anorectic effects of leptin
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through transcriptional regulation of POMC and AgRP [116].
In the LepR neurons in the ARC, VMH and DMH, activated
FoxO1 translocates from the cytoplasm to thenucleus,where
it upregulates the orexigenic NPY/AgRP and downregulates
the anorexigenic POMC to promote feeding [117, 118]. Leptin
suppresses the FoxO1-mediated transcriptional regulation of
POMC, NPY and AgRP through the PI3K-AKT signaling
pathway to reduce food intake [119]. Conversely, excessive
activation of FoxO1 antagonizes the effects of STAT3,
dampens the leptin ability to stimulate POMC transcription,
and leads to a decreased leptin sensitivity [120]. FoxO1
inhibition in POMC neurons elevates expression of the
carboxypeptidase E (Cpe), decreasing food intake without
altering energy expenditure [121].

LepRb-IRS-PI3K-PDE3B-cAMP

Cyclic nucleotide phosphodiesterases (PDEs) are enzymes
that regulate the cellular levels of cAMP and cGMP by
controlling their degradation rates. PDE3B is a down-
stream regulator of PI3K in neurons in the hypothalamus
and other brain regions [122]. In the hypothalamic neu-
rons, the IRS-PI3K signaling activates PDE3B to decrease
cAMP levels and inhibit CREB activity, which suppresses
the expression of NPY to induce anorexic effects of
leptin [123, 124].

Leptin administration induces PDE3B activity and
reduces cAMP levels in the hypothalamus, while PDE3
inhibition by cilostamide weakens the anorectic and body-
weight-reducing effects of leptin [86, 125]. Cilostamide also
dampens the leptin-induced STAT3 activation in the hy-
pothalamus, suggesting a crosstalk between the PDE3B-
cAMP and JAK2-STAT3 pathways [86].

LepRb-AMPK-ACC

The AMP-activated protein kinase (AMPK) is an evolu-
tionarily conserved enzyme that senses the energy status of
the cell and regulates fuel availability [126, 127]. AMPK
consists of catalytic α subunit and regulatory β and γ
subunits; phosphorylation of Thr172 on the catalytic α
subunit of AMPK leads to ATP depletion [126, 127]. AMPK
is involved in the regulation of energy homeostasis by
integrating hormonal and nutritional signals in both the
periphery and the CNS [128].

Leptin has tissue-specific effects on AMPK. In the ARC
and PVN, leptin inhibits AMPK activity to reduce appetite
with consequent reduction of body weight [128, 129]. In the
skeletalmuscle, leptin stimulates AMPK activity, inactivates
the AMP downstream target Acetyl-CoA carboxylase (ACC),
and decreases the malonyl CoA levels, hence enhancing

the mitochondrial fatty acid oxidation [130, 131]. Leptin in-
duces anorexia, reduces hepatic glucose production, and
promotes sympathetic nerve outflows to kidney, brown ad-
ipose tissue (BAT) andwhite adipose tissue (WAT) [132, 133].
mTOR-S6K1 signaling serves as an upstream pathway of
AMPK in the hypothalamic leptin signaling cascades [134].
The activated S6K1 phosphorylates AMPK-α2 subunit at
Ser491, leading to a reduced α2-AMPK activity in the
hypothalamus [134].

LepRb-SHP2-MAPKs

The mitogen-activated protein kinases (MAPKs) are a se-
ries of protein kinases, and play important roles in
mediating cell proliferation, differentiation, survival and
apoptosis. MAPKs, particularly the extracellular regu-
lated protein kinase 1/2 (ERK1/2), are associated with the
leptin signaling [135, 136]. In response to leptin, JAK2
stimulates the phosphorylation of Tyr985 in the LepR
intracellular domain, which provides a docking site for
the SH2-containing protein tyrosine phosphatase 2
(SHP2) [137]. Subsequently, the phosphorylated SHP2
together with its adapter molecule growth factor receptor-
bound protein 2 (Grb2) activates the downstream ERK
signaling cascades, inducing thermogenesis by control-
ling sympathetic activity on BAT, and promoting the
anorectic effects of leptin [136, 137]. The SHP2-ERK1/2
pathway also exhibits a neurotrophic function during the
development of hypothalamic feeding circuits; disrupted
ERK signaling impairs development of these neuronal
circuits [138].

New regulators of leptin signaling pathways

Rho-kinase1 (ROCK1)

ROCK1 is a protein serine/threonine kinase, serving as a
key regulator of actin-myosin contraction and cell polarity.
ROCK1 is also a regulator of leptin action, it involves in the
leptin-induced activation of JAK2 [139]. JAK2 is an initial
trigger of leptin receptor signaling. Leptin promotes
the physical interaction of JAK2 and ROCK1 to enhance
the phosphorylation of JAK2 and the activation of the
downstream STAT3 [139]. Deletion of ROCK1 in either
POMCorAgRPneurons induces impaired leptin sensitivity,
increased food intake, decreased energy expenditure, and
severe obesity [139].

The activation of ROCK1 by leptin is dependent on the
JAK2 signaling. For example, leptin activates Ras homo-
log gene family member A (RhoA)/ROCK in colon cancer
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cell lines, which can be inhibited by the JAK2 inhibitor
AG490 [140]. Leptin activates ROCK to alter actin dy-
namics in cardiomyocytes in JAK2/PI3K axis dependent
way [141].

Transient receptor potential C (TRPC)

TRPC is a family of transient receptor potential cation
channels in the mammalian cells. Leptin activates TRPC
channels to depolarize steroidogenic factor 1 (SF1) neurons
in the VMH, and thus maintains energy balance and
glucose homeostasis [142]. Leptin activates TRPC chan-
nels to depolarize LepR-expressing neurons in the ventral
premammillary nucleus (PMV) and POMC neurons in the
ARC [143, 144]. Leptin participates in normal hippocam-
pal dendritic spine formation through activation of TRPC
channels in hippocampal neurons [145]. Notably, TRPC
channels exist in a macromolecular complex with T-type
channels, and these T-type channels are considered to be
essential for the leptin-induced activation of TRPC
channels [146].

Sirtuin 1 (SIRT1)

SIRT1 is an enzyme located primarily in the cell nucleus
that deacetylates transcription factors to regulate
cellular processes including longevity and stress
response. Under condition of insulin resistance, SIRT1
expression is downregulated; while elevation of SIRT1
expression enhances insulin sensitivity [147]. The
decreased SIRT1 expression is linked to leptin resistance
and adiposity [148–150].

Deletion of SIRT1 in the anorexigenic POMC neurons
attenuates leptin sensitivity and reduces energy expendi-
ture, whereas over-expression of SIRT1 in POMC neurons
sensitizes leptin signals and elevates energy expendi-
ture [151, 152]. Ablation of SIRT1 in the orexigenic AgRP
neurons reduces the firing rate of AgRP neurons, sup-
presses food intake, and decreases body weight [153].
Surprisingly, increased SIRT1 level in AgRP neurons sup-
presses food intake, and reduces body weight owing to the
improved nutrient/hormone sensing [154]. In VMH SF1
neurons, raised SIRT1 level elevates the leptin and orexin
sensitivity of these neurons, and thus prevents diet-
induced obesity [155]. Taken together, SIRT1 potentiates
leptin signaling in POMC neurons, AgRP neurons, and
SF1-positive neurons to reduce food intake, enhance en-
ergy expenditure, and maintain glucose homeostasis.

SIRT1 downregulates negative regulator of leptin
signaling, such as PTP1B, T cell protein-tyrosine phos-
phatase (TCPTP) and SOCS3, and thus improves the

hypothalamic leptin sensitivity [154]. SIRT1 downregulates
the nuclear factor kappa-B (NF-κB) signaling to improve
central leptin/insulin sensitivity [156]. SIRT1 regulates
autophagy, and attenuates endoplasmic reticulum (ER)
stress to prevent hypothalamic leptin resistance [157–159].

Heat shock protein 60 (HSP60)

HSP60 is responsible for themitochondrial protein import
and the macromolecular assembly. HSP60 is a mito-
chondrial chaperone induced by leptin [160], and leptin-
induced HSP60 improves hypothalamic mitochondrial
function and insulin sensitivity [160, 161]. In hypotha-
lamic neurons, the leptin-activated STAT3 interacts with
HSP60 gene promoter to enhance the HSP60 expression,
improving insulin sensitivity in these neurons [160].
Knockdown of HSP60 in hypothalamic neurons raises
ROS production, impairs mitochondrial function, and
results in diabetes and obesity [160].

Melanoma antigen-like gene 2 (MAGEL2)

Mutation of MAGEL2 leads to the development of Prader-
Willi Syndrome (PWS), a genetic disease that causes
obesity and mental retardation [162]. Knockout ofMAGEL2
reduces leptin sensitivity and inhibits POMC neurons ac-
tivity, causing disruption of hypothalamic feeding circuits,
hyperphagia and obesity [163].

Physiologically, MAGEL2 increases LepR abundance
in cell surface, while decreases LepR degradation [164].
Ablation of MAGEL2 reduces LepR distribution in the
hypothalamus [164]. In hypothalamic neurons, LepR is
internalized by endocytosis for transport to lysosomes or
cell membrane. The deubiquitinase USP8 stabilizes the E3
ligase RNF41, and RNF41 in turn ubiquitinates and de-
stabilizes USP8 to regulate LepR degradation [165].
MAGEL2 links LepR to the USP8-RNF41 ubiquitination
complex, while ablation of MAGEL2 suppresses RNF41
stabilization and prevents theMAGEL2-related increase of
cell surface LepR [164].

Steroidogenic factor 1 (SF1)

SF1, a member of the nuclear receptor family, plays
important roles in the sexual development. SF1 is a direct
transcriptional target of FoxO1 in the VMH, which regu-
lates leptin signaling to control glucose homeosta-
sis [118, 166]. In the VMH SF1 neurons, leptin upregulates
SF1 expression by inhibiting FoxO1 [166, 167]. These
leptin-activated SF1 neurons enhance insulin sensitivity
in peripheral tissues, and stimulate the whole-body
glucose utilization [166, 168].
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G protein-coupled receptor 17 (Gpr17)

Gpr17, a G protein coupled receptor, is linked to the Gi
alpha subunit or the Gq alpha subunit to achieve its
function. Gpr17 is an inhibitory factor of leptin
signaling [169–171]. In the ARC AgRP neurons, leptin in-
hibits FoxO1 through the LepRb/IRS/PI3K/AKT axis to
suppress Gpr17 activation, and thus decreases firing rate of
the AgRP neurons to reduce food intake and improve
glucose homeostasis [169, 170]. In the POMC neurons, Gpr17
deficiency contributes to maintenance of metabolic ho-
meostasis during dietary and aging challenges [171].

Protein tyrosine phosphatases (PTPs)

PTPs are a series of enzymes removing phosphate groups
fromphosphorylated tyrosine residues. A series of PTPs are
implicated in leptin signaling, including SHP2, PTP1B, PTP
epsilon (PTPε), TCPTP, phosphatase and tensin homolog
(PTEN), CD45, etc.

SHP2 in the hypothalamic neuron links LepR signal to
MAPK, inducing thermogenesis by controlling sympa-
thetic activity in BAT, and promoting the anorectic effects
of leptin [136, 137]. SHP2 dephosphorylates and in-
activates STAT3 by binding to the phosphorylation site of
STAT3 [172]. PTP1B and PTPε downregulate leptin/STAT3
signaling by inactivating JAK2 [173–175]. PTP1B sup-
presses IRS1/2 signaling to inhibit the IRS-PI3K axis [176].
TCPTP is an inhibitor of the JAK2/STAT3 axis, which can
block the Tyr705 phosphorylation site of STAT3, and thus
prevents STAT3 dimerization and translocation to the
nucleus [177]. PTEN is an inhibitory modulator of PI3K
signaling. PTEN downregulates PIP3 and upregulates
FoxO1 [178]. CD45, a transmembrane PTP, inhibits STAT3
activity through dephosphorylating JAKs [179].

Taken together, PTPs are activated for downregulation
of leptin signaling. Genetic knockout of PTPs in the brain
potentiates leptin signaling, and prevents diet-induced
obesity, type 2 diabetes and non-alcoholic fatty liver dis-
ease (NAFLD) [180].

Angiotensin AT1A receptors

Leptin contributes to the control of resting metabolic rate
(RMR) through targeting the ARC. AT1A receptors coloc-
alize with leptin receptors in the AgRP neurons [181].
Ablation of AT1A receptors specifically in the LepR-
expressing neurons diminishes the RMR in response to a
high-fat diet or deoxycorticosterone acetate-salt treat-
ments [181, 182]. Thus, angiotensin interacts with leptin in
the brain to regulate RMR.

Brain-derived neurotrophic factor (BDNF)

BDNF is a member of the neurotrophin family. In the brain,
BDNF is active in the cortex, hippocampus, and basal
forebrain, contributing to the growth and differentiation
of neurons [183]. Central BDNF involves in the neuro-
regulation of energy balance, which mediates appetite
suppression and food intake reduction [184, 185]. Leptin
stimulates translation of the long 3′ UTR (untranslated
regions) BDNF mRNA in dendrites of hypothalamic neu-
rons to regulate body weight [186]. Truncation of the long
3′ UTR of BDNF mRNA inhibits the ability of leptin
to reduce food intake and causes severe hyperphagic
obesity, which can be reversed by overexpression ofBDNF
mRNA [186].

Histone deacetylase 5 (HDAC5)

HDAC5 plays a critical role in the histone deacetylation to
alter chromosome structure and regulate expression of
transcription factors. HDAC5 is involved in mediating the
hypothalamic leptin signaling [187]. Ablation of HDAC5 in
the mediobasal hypothalamus leads to impaired leptin
sensitivity, increased food intake and severe obesity [187].
Overexpression of hypothalamic HDAC5 protects against
high-fat-diet induced leptin resistance and obesity [187]. In
these processes, HDAC5 deacetylates STAT3 at Lys685 and
phosphorylates STAT3 at Tyr705, and thus regulates STAT3
localization and transcriptional activity to accelerate the
leptin signaling [187].

Cilia

Neuronal primary cilia are associated with the hyperphagia-
induced obesity and the elevated serum leptin, insulin, and
glucose levels [188].Micewith short hypothalamic cilia exhibit
attenuated anorectic responses to leptin, insulin and glucose,
suggesting that the hypothalamic cilia are essential for the
satiety signal sensing [189]. Leptin increases the length of
neural cilia to improve neuronal leptin sensitivity [189]. This
process is mediated by the hypothalamic LepRb/JAK2/PI3K
axis and can be downregulated by the leptin signaling in-
hibitors such as PTEN and glycogen synthase kinase 3β
(GSK3β) [189]. Primary cilia regulate the developing hypo-
thalamus, and are critical in the early life programming of
adiposity [190]. Mutation of the cilia relevant protein retinitis
pigmentosaGTPase regulator-interacting protein-1 like protein
(RPGRIP1L) diminishes the cilia numbers in hypothalamic
neurons, and inactivates STAT3 to dampen leptin
sensitivity [191].
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Astrocytes

Astrocytes are glial cells involved in homeostatic control
and neuroprotection. LepR is expressed in hypothalamic
astrocytes [192, 193], and hypothalamic astrocytes partici-
pate in themediation of leptin signaling [194, 195]. Absence
of LepR in astrocytes weakens pSTAT3 signaling and
increases TCPTP level, leading to altered glial morphology,
reduced astrocytic coverage of melanocortin cells, and
augmented synaptic inputs onto hypothalamic neu-
rons [195, 196]. These alterations of astrocytes promote the
development of diet-induced obesity [194, 195].

We summarize the classic and novel cellular pathways
of leptin signaling in Figure 2.

Leptin resistance

Leptin resistance is defined by reduced sensitivity or fail-
ure in response to leptin [9]. Leptin resistance weakens the
leptin ability to suppress appetite or enhance energy
expenditure, and causes overweight and obesity [9]. Leptin
resistance is involved in the development of metabolic
diseases [11].

Several studies have reported the quantification of the
serum leptin levels in healthy and obese population. These
studies demonstrate that the serum leptin levels vary in
different sex, age and bodymass index (BMI) [197–202]. For
instance, a study on healthy children and adolescents
(6–18 years) conducted in Danish showed that girls had a

Figure 2: Cellular pathways underlying leptin function. : Activating; : Inhibiting; : Translocation. ACC,
acetyl-CoA carboxylase; AgRP, agouti-related peptide; AKT, protein kinase B; AMP, adenosine monophosphate; AMPK, adenosine mono-
phosphate activated protein kinase; ATP, adenosine-5′-triphosphate; CREB, cAMP response element-binding protein; FoxO1, forkhead box
protein O1; HDAC5, histone deacetylases 5; HSP60, heat shock protein: 60; IRS, insuline receptor substrate; JAK2, janus kinases 2; LCFA-CoA,
long chain fatty acid-coenzyme A; LepR, leptin receptor;MAGEL2, melanoma antigen-like gene 2; MAPKs, mitogen-activated protein kinases;
mTOR, mammalian target of rapamycin; NPY, neuropeptide Y; PDE3B, phosphodiesterase 3B; PI3K, phosphatidylinositol 3-OH kinase; PIP3,
phosphatidylinositol-3,4,5-trisphosphate; POMC, proopiomelanocortin; PTP1B, protein tyrosine phosphatase 1B; ROCK1, Rho-kinasel; S6K,
S6 kinase; SF1, steroidogenic factor 1; SH2B1, Src-homology-2 B adaptor protein-1; SHP2, SH2-containing protein tyrosine phosphatase 2;
SIRT1, NAD+-dependent deacetylase sirtuin 1; SOCS3, suppressor of cytokine signaling 3; STAT3, signal transducer and activator of tran-
scription 3; STAT5, signal transducer and activator of transcription 5; TCPTP, T cell protein tyrosine phosphatase.
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higher median value of serum leptin levels compared to
boys (9.554 vs. 3.255 ng/mL, P < 0.001) [197]. This study
also suggests that there may be an upward trend in the
serum leptin levels over time in girls [197]. A study on
underweight, normal weight, overweight and obese ado-
lescents from European cities shows that leptin exhibits a
significant progressive and linear increase according to
BMI [200]. These studies suggest that the reference levels of
serum leptin may contribute to the understanding of leptin
resistance, although it is still difficult to delineate the
definition of leptin resistance in a universal and quantifi-
able manner.

Main mechanisms underlying leptin
resistance

Leptin resistance can be induced by multiple conditions.
Largely, leptin resistance can be classified into HFD induced
leptin resistance, leptin induced leptin resistance, inflam-
mation induced leptin resistance, seasonal leptin resistance,
pregnancy/lactation induced leptin resistance, ER stress
induced leptin resistance, etc. In fact, it is difficult to define
leptin resistance in a universal and quantifiable manner,
but understanding of the mechanisms that attenuated leptin
action could provide new insights to decipher the myth of
leptin resistance and obesity. Until recently, the essential
mechanisms relative to the leptin resistance are as follows.

Disruption of the blood-brain barrier (BBB) transport

Leptin is secreted by adipose tissues, and transported across
the BBB to achieve its function. In this process, LepRa in the
BBB is required [203]. Pathologically, the excessively high
leptin level in the plasma causes a saturation of LepRa, and
thereby reduces the ratio of leptin transport across the BBB,
leading to leptin resistance [203, 204].

Recent studies point towards a direct involvement of
endothelial cells of the BBB as one of major mechanism
of leptin transport [205]. Specific deletion of LepR in endo-
thelial cells of the BBB impairs the transport of leptin into
cerebrospinal fluid (CSF) and LepR-positive brain regions,
leading to aggravated obesity [205]. The choroid plexus (CP)
plays a critical role in controlling the leptin transport into the
CSF and target areas such as the hypothalamus [206].

Competitive inhibition of leptin

Circulating leptin-binding proteins, such as the plasma sol-
uble LepR and C-reactive protein, competitively bind to

leptin and promote the development of leptin resis-
tance [207, 208]. The binding of leptin to circulating leptin-
binding proteins inhibits the leptin transport to the CNS,
suppresses the interactionbetween leptinandLepRneurons,
and induces leptin resistance-related phenotypes [209].

Destruction of LepR

Certain mutations of the ob gene shorten the length of the
intracellular signaling domain of LepRb, which impair the
ability of LepRb to mediate leptin signaling [210]. In these
states, binding of leptin to LepRb cannot achieve its func-
tion, leading to severe leptin resistance [210].

Impairment of the leptin cellular signaling

Mechanisms of the leptin resistance mainly include two
points with regard to the leptin cellular signaling. First,
neurons expressing LepR are not sensitive enough to mea-
sure the circulating leptin level, decreasing the efficacy of
leptin binding to LepR. Second, the LepR-expressing cells
have an impaired signaling ability.

A number of factors and certain mechanisms un-
derlying development of leptin resistance are linked to
the leptin cellular signaling. For example, increased IL-6
elevates the levels of the leptin signaling inhibitory regula-
tors SOCS3 and PTP1B to promote leptin resistance [211].
Myeloid differentiation factor 88 (MyD88) activates the in-
hibitor of NF-κB kinase to upregulate NF-κB and inactivate
STAT3, and thus reduces leptin sensitivity [212]. Exchange
factor directly activated by cAMP (Epac) upregulates
expression of the negative leptin signaling modulators
SOCS3 and PTP1B, whereas inhibits the positive modulators
STAT3 and S6K1, impairing the leptin signaling cascades in
hypothalamic neurons [213, 214]. Deletion of the methyl-
CpG-binding protein 2 (MeCP2) increases DNA methylation
of the POMC promoter and suppresses POMC expression in
POMC neurons, exacerbating the degree of leptin resis-
tance [215]. PTP receptor type J (PTPRJ) inhibits JAK2 acti-
vation through dephosphorylation of Tyr813 and Tyr868
in JAK2 autophosphorylation sites, and thus incurs an
increased food intake and body weight [216]. Specific dele-
tion of the activating transcription factor 4 (ATF4) in the
AgRP neurons or POMC neurons inhibits FoxO1 expression,
and thus elevates leptin sensitivity to reduce body
weight [217–219].

Peripheral leptin resistance

Leptin resistance develops not only in the brain, but also in
the peripheral tissues including skeletal muscle, adipose
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tissue and liver [220]. The loss of leptin’s physiological
actions that occurs in peripheral tissues is referred to as
peripheral leptin resistance. Recently, peripheral leptin
resistance especially leptin resistance in muscle, has
drawn more attention, which may provide new insights
into the treatment of obesity [220].

In the skeletal muscle, leptin increases muscle mass
and enhances fatty acid oxidation through activating
the JAK2-STAT3, AMPK and insulin-like growth factor
I (IGF-1) signaling [130, 221–223]. Leptin also enhances
both basal and insulin-stimulated glucose uptake in
the skeletal muscle by promoting the transport of the
intracellular glucose transporter 4 (GLUT4) [224, 225].
Obese humans and animals exhibit leptin resis-
tance in skeletal muscle, decreased muscle mass,
reduced fatty acid oxidation and diminished glucose
uptake [226–228]. These processes are thought to be
associated with the increased muscular SOCS3 and
PTP1B and the weakened JAK2-STAT3, AMPK, IGF-1 and
GLUT4 signaling [226, 229–232].

The relationship between insulin resistance and leptin
resistance

Under physiological conditions, insulin promotes the secre-
tion of leptin [233, 234]. Leptin inhibits the secretion of insu-
lin, increases insulin sensitivity, reduces the synthesis and
storage of fatty acids and triglycerides, and contributes to the
maintenance of energy homeostasis [235–237]. Under patho-
logical conditions, the disturbances in the balance of leptin
and insulin signaling may lead to metabolic disorders,
such as obesity, type 2 diabetes, and non-alcoholic fatty liver
disease, accompanied with insulin resistance and leptin
resistance [238–240]. Overall, leptin and insulin are impor-
tanthormones involving in the regulationof glucoseand lipid
metabolism, and leptin resistance and insulin resistancemay
underlie the pathogenesis of metabolic disorders.

Diseases related to leptin and leptin
resistance

Cardiovascular diseases (CVDs)

CVDs are a class of diseases that involve the heart or blood
vessels, including coronary artery diseases, stroke, heart
failure, hypertensive heart disease, etc. Most CVDs involve
atherosclerosis. LepR is detected in the atherosclerotic
lesions, and ob/ob mice are resistant to atherosclerosis,
suggesting leptin may act as a direct atherogenic

modulator [241, 242]. The reciprocal modulation of leptin
and inflammatory pathways is also closely associated with
the cardiovascular risk [243, 244].

Diabetes

Diabetes is characterized by the high blood glucose
levels over a prolonged period. Obesity and diabetes are
two important public health concerns throughout the
world. Obese individuals have an increased morbidity
of related disorders, including diabetes. Leptin is
known as a key adipokine, which regulates appetite,
energy expenditure, behavior, and glucose metabolism.
Leptin may normalize hyperglycemia and hyper-
insulinemia, and increase insulin sensitivity [235]. The
leptin deficient ob/ob mice exhibits phenotypes of dia-
betes [245], and these diabetic features are improved by
leptin administration [246]. Leptin treatment can relieve
insulin resistance in the MKR mice, a specific mouse
model of type 2 diabetes [247]. Physiologically, the
leptin and insulin signaling pathways are coordinately
involved in the regulation of energy balance and
glucose homeostasis [248, 249].

Insulin stimulates leptin production and secretion in
adipocytes [250]. In contrast, leptin suppresses insulin secre-
tion in insulin-producingbeta cells of thepancreas [236]. These
processes are relative to the IRS-PI3K-PDE3B-cAMP axis [251].
Leptin also directly mediates the glucose metabolism in the
CNS. For example, in POMC and AgRP neurons in ARC, leptin
activates the PI3K signaling to increase insulin sensi-
tivity [252, 253]. Leptin inactivates the hypothalamus-pituitary-
adrenal (HPA) axis to suppress glucocorticoid releasing,
attenuate ketogenesis, and relieve diabetic phenotypes [254].

Hypertension

Hypertension is a long-term medical condition in which
the blood pressure is persistently raised. Obesity is closely
associated with the hypertension development [255].
Leptin contributes to the regulation of increased blood
pressure (BP) in obese population [256, 257].

The development of hypertension is not seen in the
leptin- or LepR-deficiency animals [256, 258]. In
contrast, loss-of-function mutations of leptin or LepR
lead to low BP despite severe obesity [256, 258]. Thus, the
leptin signaling plays critical roles in stimulating hy-
pertension. In ARC POMC neurons, leptin activates
α-MSH to agonize MC4R and MC3R, increases sympa-
thetic nervous outflow to the kidney and the heart, and
exacerbates hypertension [259]. The NTS participates in
controlling hypertension in response to leptin, and
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leptin administration into the NTS increases the renal
sympathetic nervous activity [260]. The AgRP/NPY
neurons, DMH and VMH also involve in the leptin’s ef-
fects on BP [261, 262].

In contrast, a number of patients with lipodystrophy
show hypertension in the leptin-deficient state [263, 264].
There is no increase in either systolic or diastolic blood
pressure in these patients after leptin treatment [263, 264].
Thus, there may be mechanisms independent of leptin
signals for hypertension development.

Cancer

Epidemiological studies have demonstrated the associa-
tion between obesity and cancer [265, 266]. Leptin level is
linked to the development of cancer [267, 268]. In the state
of obesity, the increased size of adipocytes enhances leptin
secretion. The excessive leptin acts as a growth factor
through the JAK2-STAT3, PI3K-AKT and ERK signaling,
which stimulates the growth of cancer cells and promotes
cancer progression [269–271]. Leptin also induces
epithelial-mesenchymal transition (EMT) to accelerate
tumor invasion [272].

Immunological diseases

Leptin is a key regulator of the immune system in peripheral
tissues, serving as a link between metabolism and immu-
nological diseases, such as the rheumatoid arthritis,
the systemic lupus erythematosus and the multiple
sclerosis [273–276]. Leptin activates immune cells including
monocytes, granulocytes, natural killer (NK) cells and
T cells, and promotes the release of pro-inflammatory
cytokines. These processes stimulate the innate and adap-
tive immunity, and cause inflammation [277–279].

Neurodegenerative diseases

Leptin plays regulatory roles in the neuroendocrine sys-
tem [280]. Leptin alters hippocampal synaptic plasticity,
improves learningandmemory, andprotects against several
neurodegenerative diseases, including AD and Parkinson’s
disease (PD) [280].

AD is one of the most common chronic neurodegen-
erative diseases. Amyloid-β is the main component of
amyloid plaques, which is highly expressed in the brain
of AD patients [281]. Leptin treatment decreases the amy-
loid-β levels in brain and blood plasma, and alleviates
spatial memory impairment [282, 283]. In this process, the
phosphorylation of JAK2, STAT3, AKT and the activation of
AMPK signaling are involved [284].

PD, another common neurodegenerative disease, is
characterized by classical motor function deficits due to loss
of dopaminergic neurons in the substantia nigra [285]. Leptin
administration can reduce dopaminergic cell death and
rescue behavioral abnormalities in the 6-hydroxydopamine
(6-OHDA)-inducedPDmodels [286]. In this process, pERK1/2
and BDNF serve as key survival factors of dopaminergic
neurons [286].

Other diseases related to leptin

Abnormal leptin level is associated with the development
of several other diseases, such as the frontotemporal de-
mentia (FTD) [287, 288]. The role of leptin in these diseases
and the mechanism underlying these processes remain to
be further elucidated.

Leptin relative therapies for obesity

Leptin therapy has been found to relieve hyperglycemia and
to prevent mortality in several rodent models of type 1
diabetes [289–291]. Liraglutide and metformin, as anti-
obesity and diabetes agents, may enhance the leptin sensi-
tivity [292, 293]. Celastrol and Withaferin A, as naturally
occurring compounds, may act as leptin sensitizers to miti-
gate the leptin resistance and promote the weight
loss [294, 295]. The physical exercise can relieve central
and peripheral leptin resistance in humans and
animals [296–299]. Recently, the partial leptin reduction is
considered a therapeutic strategy for leptin sensitization and
weight loss [300]. In the context of obesity, partial reduction
in plasma leptin levels by means of cell-specific leptin
elimination or neutralization with anti-leptin antibodies can
restore hypothalamic leptin sensitivity, reduce weight gain,
and enhance insulin sensitivity [300].

Conclusions

Over the last 30 years, since Dr. Friedman discovered the
leptin, numerous studies have been focused on leptin
signaling and leptin resistance. These studies reveal that
leptin neural and cellular signaling are critical in the
regulation of metabolic homeostasis, and that leptin
resistance is a pathogenic factor causing obesity and
associated comorbidities. Novel therapies for obesity and
associated comorbidities are invented based on these
findings. Due to safety issues as well as leptin resistance,
the development of leptin-relative agents is disappointing.
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Further studies are essential to solve these problems,
which may lead to new strategies for obesity treatment.
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