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Anomalous electrical magnetochiral effect by chiral
spin-cluster scattering
Hiroaki Ishizuka1✉ & Naoto Nagaosa1,2

The non-collinear spin configurations give rise to many nontrivial phenomena related to the

Berry phase. They are often related to the vector and scalar spin chiralities. The scalar spin

chirality leads to the topological Hall effect in metals, while the vector spin chirality to the

ferroelectricity of spin origin, i.e., multiferroics in insulators. However, the role of the vector

spin chirality in conducting systems has not yet been elucidated. Here we show theoretically

that the spin correlation with vector spin chirality in chiral magnets scatters electrons

asymmetrically, resulting in nonreciprocal transport phenomena, i.e., electrical magnetochiral

effect (eMCE). This asymmetric scattering appears in the leading-order scattering term,

implying a large nonreciprocity in the charge and spin currents. We find that the temperature

and magnetic field dependence of the eMCE reproduces that observed in MnSi. Our results

reveal the microscopic mechanism of eMCE and its potential in producing a large non-

reciprocal response.
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Non-coplanar magnetic configurations bring about rich
electronic and magnetic properties of materials such as
anomalous Hall effect1–4, orbital magnetization5, and

electric polarization in insulators6,7. These studies revealed that
the vector χij= Si × Sj and scalar χijk= (Si × Sj) ⋅ Sk spin chiralities
are central concepts in the physics of non-collinear spin struc-
tures. Since the spin operator is odd in T , χij is even while χijk is
odd. Therefore, χijk is related to the magneto-transport; topolo-
gical Hall effect associated with χijk, both intrinsic1,2 and extrin-
sic8–10 mechanisms, are studied11. On the other hand, the
inversion symmetry operation P about the center of the bond
connecting i and j reverses the sign of χij. The symmetry property
implies χij is related to the electric polarization of spin origin in
insulators6,12. In conducting systems, on the other hand, the
broken P is subtle since the electric field in the metal is pro-
hibited. However, there are several interesting nonreciprocal
transport phenomena in noncentrosymmetric crystals13–15.

Nonreciprocal transport phenomena is a asymmetric dc elec-
tron transport, i.e., the current induced by a positive voltage is
different from that by corresponding negative voltage. The reci-
procal theorem by Onsager provides a basis to discuss the non-
reciprocal linear responses16,17. This theorem originates from the
time-reversal symmetry T of the microscopic dynamics, which is
different from the macroscopic irreversibility. In transport theory,
the Hermite symmetry also gives the reciprocal relation18, in
addition to the space group symmetry of the crystal. Therefore,
the breaking of P alone does not necessarily lead to nonreciprocal
responses. The nonreciprocity becomes even more subtle and rich
for the nonlinear responses13,14. The nonreciprocal dc transport
in solids manifests in the I2 term of the I–V curve, where I is the
injected electric current and V is the voltage drop13,14. For
example, the I–V curve of eMCE follows13

V ¼ R0ð1þ γðBÞIBÞI; ð1Þ
which means that the external magnetic field is needed to break T
for this effect. Recent experiments found the nonreciprocal
response in various nonmagnetic materials such as Bi helix13,
semiconductors subject to gate potential14, molecular con-
ductors19, polar semiconductor20, and superconductor21. The
nonreciprocal response also appears in magnetic materials, such
as eMCE in metal/ferromagnet bilayer22, magnetic topological
insulator23, and chiral magnets24,25. In the magnetic systems, the
magnetic ordering and fluctuation seem to play a crucial role in
sharp contrast to the band structure effects dominating in the
nonmagnetic systems. Among them, a recent paper reported a
detailed experiment on the temperature and magnetic field
dependence of eMCE in MnSi24, providing a useful set of infor-
mation for theoretical studies. MnSi is a chiral magnet with a
helical magnetic order in the zero field26,27. This material and its
sister compounds are known for the magnetic-skyrmion crystal
phase28–30. A recent experiment finds that MnSi also shows
nonreciprocal response similar to the eMCE but with a non-
monotonic magnetic field dependence24; similar behavior also
appears in CrNb3S625. These papers report a non-monotonic
temperature dependence of the eMCE, which shows a maximum
at around the magnetic transition temperature. The result implies
the importance of magnetic fluctuation. However, the micro-
scopic mechanism on how the magnetic fluctuation produces
nonreciprocity remains elusive.

In this work, we theoretically study the nonreciprocal transport
phenomena of electrons focusing on an asymmetric scattering by
local magnetic correlation. We find the magnetic correlation in
chiral magnets causes asymmetric scattering in the leading order
of the scattering. The asymmetry produces a nonreciprocal
response of electric current in nonmagnetic systems31. In contrast
to Isobe et al.31, the magnetic scattering produces a larger

nonreciprocal current because the asymmetric scattering appears
in the leading order. Using the semiclassical Boltzmann theory,
we show the magnitude of the nonreciprocal current is consistent
with that in the experiment. Moreover, the temperature and
magnetic field dependences reproduce the experiment. The con-
sistency between the experiment and our theoretical results
provides strong evidence of the extrinsic mechanism for non-
reciprocal electric current.

Results
Asymmetric scattering rate. To study how the electron scattering
produce nonreciprocal response, we here consider a model with
itinerant electrons and localized spins coupled by exchange
interaction. The Hamiltonian is

H ¼
X
kσ

εkσc
y
kσckσ þ

J
N

X
i;k;α;β

γikSi � c
y
kασαβckβ; ð2Þ

where ckσ (cykσ) are respectively the annihilation (creation)
operator of itinerant and localized electrons, σ≡ (σx, σy, σz) is the
vector of Pauli matrices σa (a= x, y, z), εkσ= k2/(2m) − σM − μ
is the eigenenergy of itinerant electrons with momentum k and
spin σ= ±1 (+1 for up spin and −1 for down spin), k ≡ ∣k∣,
γik � eik�ri , J is the Kondo coupling between the localized spins
and the itinerant electrons, and Si is the localized moment at ri.
Here, we assumed the magnetization is along the z axis. This
model is a classical- spin Kondo lattice model if the localized
spins exists on every site, and is a Kondo impurity model if the
spins exist only on a few sites Ns≪N.

We calculate the scattering rate of electrons by the localized
spins using Born approximation. In the first Born approximation,
the scattering rate Wkσ;k0σ 0 of electrons from the kσ state to the
k0σ 0 state reads:

Wkσ;k0σ 0 ¼
2πJ2

N2

X
i;j;a;b

Sai S
b
j σ

a
σσ 0σ

b
σ 0σe

iðk0�kÞ�ðri�rjÞδðεkσ � εk0σ 0 Þ: ð3Þ

Here we assume that the spins are classical and static, which is
justified when the temperature is much higher than the typical
energy of exchange interaction. The experimental situation in
MnSi discussed below satisfies this condition. A recent work point
outs that the asymmetry in the scattering rate Wk;k0 ≠W�k;�k0

produces the nonreciprocity in the electron transport31 (Isobe
et al.31 considered spinless fermions.). Therefore, we focus on a
similar asymmetry in Wkσ;k0σ 0 . The asymmetric part of the
scattering rate (W�

kσ;k0σ 0 �¼ ðWkσ;k0σ �W�kσ;�k0σÞ=2) reads

W�
kσ;k0σ 0 ¼

2πJ2

N2 σδσ;�σ 0
XNs

i;j

sinððk � k0Þ � rijÞðSi ´ SjÞzδðεkσ � εk0σ 0 Þ: ð4Þ

Here, rij= ri − rj and �σ ¼ �σ; we assumed εkσ= ε−kσ. This
asymmetric scattering vanishes when Ns= 1; the sine function is
always zero because S1 × S1= 0. Therefore, multiple spin
scattering is necessary for the non-zero asymmetric scattering.

In the two spin case, the scattering rate reads

W�
kσ;k0σ 0 ¼

4πJ2

N2 σδσ;�σ 0 sin ðk � k0Þ � r12ð Þ S1 ´ S2ð Þzδðεkσ � εk0σ0 Þ:

ð5Þ
Hence, the asymmetry appears when a non-zero vector spin
chirality exists, i.e., when the two spins are non-collinear. A
previous work on multiferroics in insulators point outs the
relation of the local spin current ∝ Si × Sj and electric
polarization6. From a similar viewpoint, our result shows the
local spin current scatters electrons asymmetrically depending on
the spins (Fig. 1c). In addition, the result implies a finite
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magnetization is necessary for the nonreciprocity because the
asymmetric scattering rate in Eq. (5) has the opposite signs for
W�

k";k0# and W�
k#;k0". Therefore, the asymmetry cancels when the

itinerant electrons are paramagnetic (M= 0). In short, the above
result implies nonreciprocity in the conductivity appears in a
magnet when both the vector spin chirality and magetization are
nonzero.

We note that W�
kσ;k0σ 0 appears in the first Born approximation.

This feature is in contrast to Isobe et al.31 where W�
kσ;k0σ 0 appears

from the second Born terms, i.e., higher-order in the perturba-
tion. For the non-magnetic scatterers in time-reversal symmetric
system, W�

kσ;k0σ 0 is related to the skew scattering Ws
k;k0 ¼

ðWk;k0 �Wk0;kÞ=2 by T 31. The skew scattering is prohibited in
the first Born approximation because of the Hermiticity of the
impurity potential. Therefore, the second-order term is the
leading order. In contrast, the magnetic scattering considered
here breaks T . This difference of the symmetry allows non-zero
W�

kσ;k0σ 0 in the leading-order Born approximation. This result also
implies that the magnetic scattering produces a larger non-
reciprocal response.

In MnSi, the spin–orbit interaction modifies the electronic
bands, for instance, by a term such as HSOI= λk ⋅ σ. These terms,
however, merely modifies our result by adding correction to the
results above (see Supplementary Note 2). Therefore, we neglect
the spin-orbit interaction on the itinerant electrons.

Boltzmann theory for nonreciprocal currents. To study how
W�

kσ;k0σ 0 contributes to the eMCE, we calculate the conductivity
using the semiclassical Boltzmann theory. Using the relaxation
time approximation, the Boltzmann equation reads

eE � ∇kf kσ ¼ � f kσ � f 0kσ
τ

þ
X
k0;σ 0

W�
kσ;k0σ 0 ðf k0σ 0 � f kσÞ: ð6Þ

Here, e < 0 is the elementary charge, E= (Ex, Ey, Ez) is the applied
electric field, and fkσ is the electron density for the electrons with
momentum k and spin σ. The relaxation time includes the con-
tribution from non-magnetic scattering process as well as the
symmetric scattering Wþ

kσ;k0σ 0 � ðWkσ;k0σ 0 þW�kσ;�k0σ 0 Þ=2 by the
magnetic moments. For simplicity, we focus on the case E =

(0, 0, E). In addition, we assume

W�
kσ;k0σ 0 ¼

0 ðif σ ¼ σ 0Þ
2πσcðkz � k0zÞδðεkσ � εk0σ 0 Þ ðif σ ≠ σ 0Þ

�
; ð7Þ

where c ¼ J2

N χv is a real constant and χv � hðSi ´ SjÞzi is the
thermal average of the z component of the vector spin chirality
between the nearest-neighbor spins along the z axis. This asym-
metric scattering term corresponds to the thermal average of the
k≪ 1 case of the two-spin impurity cluster in Eq. (5).

We solve the Boltzmann equation in Eq. (6) with the scattering
rate in Eq. (7) by expanding fkσ up to the second order in E and
linear order in c31. Within this approximation, the nonreciprocal
current reads

Jð2Þz ¼ � 144π
5

τm
eμ2

cMσ20E
2; ð8Þ

where 2σ0 ¼
4e2τμ
3mn is the linear conductivity of electrons at M= 0

and c= 0. Here, n is the density of state at the Fermi level and we
assumed μ≫M. Hence, the scattering by the two spins produce
non-reciprocal current proportional to c and magnetic polariza-
tion of the itinerant electrons M.

We also note that the two spin scattering produces the spin
current. Using the same formalism, we find the spin current for Sz

reads

Jzz ¼ � 54π_
5

τm
e2μ

c σ20E
2: ð9Þ

Unlike the charge current, the spin current appears without the
spin polarization. Therefore, a paramagnet with the chiral spin
correlation produces a finite spin current by simply flowing
electric current. This spin current is qualitatively different from
the spin current induced by the interfacial effect32, where the sign
and magnitude of the spin current depends on the interface
between the helical order and the leads. In contrast, the spin
current in Eq. (9) is a phenomenon occuring in the bulk material.

Nonreciprocal charge current in chiral magnets. In the above
mechanism, the nonreciprocal current depends on temperature
and magnetic field via that of the magnetization and vector
spin chirality. To investigate the dependence of nonlinear
conductance, we here consider a classical ferromagnetic Hei-
senberg model on a cubic lattice with Dzyaloshinskii–Moriya
interaction27,30,33,

Hcm ¼ �J
X
hi;ji

Si � Sj �
D
2

X
hi;ji

rji � Si ´ Sj � h
X
i

Szi : ð10Þ

Here, the sum is over the nearest-neighbor bonds. Figure 2
shows the magnetic and transport properties of the above
model; all results are obtained using Onsager’s reaction field
theory (See Methods section). Figure 2a is the plot of the
magnetization to the magnetic field. The result shows a ferro-
magnetic magnetization curve below T ≲ 2J, which decreases
monotonically with increasing temperature. In contrast, the
vector spin chirality χz shows a non-monotonic temperature
dependence. Figure 2b shows the magnetic field dependence of
∣χz∣ for different T. When T/J ≲ 1, the field-induced magneti-
zation suppresses ∣χz∣→ 0 as T→ 0. With increasing tem-
perature, the thermal fluctuation increase ∣χz∣ by suppressing
the magnetization. The maximum is around T/J ~ 2−3
depending on h; the maximum tends to move to a higher T as h
increases. Further increase of the temperature reduces the spin
chirality because the thermal fluctuation dominates over the
exchange interactions between the spins.

J

J

a

b

c

Js

J+ J–

Fig. 1 Nonreciprocal transport by magnetic scattering. a, b Schematic
figure of magnetic scattering by a two-spin cluster with finite vector spin
chirality. The backward scattering by the two-spin spin cluster scatters
incoming electron with up spin (the electron at the light bottom of the
figure) depends on the vector spin chirality; less electrons are scattered
backward in a compared to b. The weaker backward scattering in a results
in a larger current compared to b. c Nonreciprocal spin current for Sz in the
paramagnetic case. The spin current of electrons Js flow along the direction
of the supercurrent of magnetic moments because of the difference
between the current for up-spin electrons and down-spin ones.
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Equation (8) shows the nonreciprocal conductivity σ(2) is
proportional to ~σð2Þ � Mχz . Figure 2c shows the contour plot of
~σð2Þ in the T − h plane. In the low temperature region, the result
shows a small ~σð2Þ owing to the suppression of the vector
chirality. With increasing the temperature, ~σð2Þ increases due to
the increase of χz with a maximum around T/J ~ 1.5−2; ~σð2Þ then
decreases because both M and χz is suppressed by the thermal
fluctuation when T/J≫ 1. Figure 2c also shows the increase of the
maximum with increasing the magnetic field. This is related to
the increase of the maximum of χz discussed above. We find these
behaviors remain robust even when we take into account the
temperature dependence of the relaxation time τ (see Supple-
mentary Note 1). They are also consistent with the experiment in
MnSi as shown in Fig. 2d24.

Discussion
To summarize, we studied the nonreciprocity of electric current
produced by spin-cluster scattering. We find that the scattering
process involving two spins cause an asymmetric scattering,
which is proportional to the vector spin chirality. This effect
appears at the leading order in the impurity scattering, i.e., within
the first Born approximation. Therefore, we expect a large
asymmetry in the scattering rate. Using the semiclassical Boltz-
mann theory, we find that this asymmetry produces non-
reciprocal transport of electrons; σ(2) is proportional to the vector
spin chirality and spin polarization of itinerant electrons. We also
find the chiral-spin scattering produces nonreciprocal spin cur-
rent, in contrast to recently-reported boundary effect32. As a
consequence, σ(2) shows a non-monotonic temperature with a
maximum around T/J ~ 1. This trend is consistent with the recent

experiments in MnSi24 and CrNb3S625. In particular, the overall
behavior of σ(2) well accounts for the eMCE in MnSi24.

The magnitude of the eMCE by the magnetic scattering is also
consistent with the experiment in MnSi24. A recent experiment of
MnSi finds the ratio of linear and nonreciprocal resistivities γ(B)
IB ~ 10−4− 10−5 with I= 109 Am−2. When γ(B)IB≪ 1, the ratio
reads γIB ~−σ(2)I/σ2. We estimate σ(2) using Eq. (8) assuming
J= 10 meV, D= 1 meV, a0= 4Å, m= 9.109 × 10−31 kg, ρ ¼
1=ð2μFa30Þ � 1039 J−1 cm−3, and τ= 10−13 s. We use μF= 0.5 eV
and M(=gμBH)= 100 meV because the bandwidth is ~1 eV34

and the spin polarization is in the order of 10%35. Using these
values, we find σ(2)I/σ2 ~ 2 × 10−5. Therefore, the result is roughly
comparable with that observed in MnSi.

The quantum effects of the spin such as Kondo effect on the
spin cluster scattering are an interesting problem. Within the
second Born approximation, the log singularity due to the
second-Born approximation is absorbed in the renormalized
exchange coupling J. Therefore, both the usual symmetric scat-
tering and anti-symmetric scattering are enhanced (reduced)
towards the Kondo temperature TK for the antiferromagnetic
(ferromagnetic) J. As the temperature is further lowered, the
physics of multi-spin Kondo effect will show up and the non-
reciprocal nature there is an important and interesting problem
left for future studies.

Methods
Boltzmann theory. We used the semiclassical Boltzmann theory to calculate the
nonreciprocal current. Assuming the steady state, the semiclassical Boltzmann
equation reads

eE � ∇k f kσ ¼
X
k0 ;σ 0

Wkσ;k0σ 0 f k0σ 0 �Wk0σ 0 ;kσ f kσ

� �
: ð11Þ
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Fig. 2 Magnetic and transport properties of a three-dimensional chiral magnet. The magnetic-field dependence of a magnetization M and b vector spin
chirality χz for different temperature T. c is the contour plot of ~σ ¼ Mχz. The results are for D/J= 0.2. The red line is the phase boundary between the
ordered and paramagnetic (PM/FM) phases, which is determined by λ+D2/(4J) >−10−4. See Method section for details. d The contour plot of second
harmonic resistivity ρ2f( ∝ σ(2)). Reproduced from ref. 24.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16751-2

4 NATURE COMMUNICATIONS |         (2020) 11:2986 | https://doi.org/10.1038/s41467-020-16751-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Here, e < 0 is the elementary charge, E= (Ex, Ey, Ez) is the applied electric field, and
fkσ is the electron density for the electrons with momentum k and spin σ. For
simplicity, we focus on the case E= (0, 0, E). The first (second) term in the right-
hand side of the equation represents the scattering of electrons from k0σ 0 (kσ) to kσ
(k0σ 0). We approximate the symmetric part of the scattering rate by a relaxation
time τ. A similar approximation were used elsewhere to study transport phe-
nomena related to a specific scattering term10,31,36,37. Within this approximation,
the Boltzmann equation reads

eE � ∇k f kσ ¼ � f kσ � f 0kσ
τ

þ
X
k0 ;σ0

W�
kσ;k0σ 0 ðf k0σ 0 � f kσÞ: ð12Þ

Here, we assume the form of asymmetric scattering rate to be

W�
kσ;k0σ 0 ¼

0 ðif σ ¼ σ 0Þ
2πσcðkz � k0zÞδðεkσ � εk0σ 0 Þ ðif σ ≠ σ 0Þ

�
ð13Þ

where c ¼ J2

N χv is a real constant and χv � hðSi ´ SjÞzi is the thermal average of the
z component of the vector spin chirality between the nearest-neighbor spins along
the z axis.

This asymmetric scattering term corresponds to the k≪ 1 case of the two-spin
impurity cluster in Eq. (3). It also applies to the paramagnetic phase of the Kondo
lattice models where the correlation length between the localized moments are
short. In this case, the magnetic moments in Eq. (3) should be replaced by the
thermal average,

W�
kσ;k0�σ ¼ 2πJ2σ

N2

X
i;j

ðk � k0Þ � rijhðSi ´ SjÞziδðεkσ � εk0σ 0 Þ: ð14Þ

Here, the sum is over all localized moments in the system. This sum is reduced to
the sum over nearest-neighbor bonds when the correlation length is similar or less
than the lattice spacing, i.e., hðSi ´ SjÞzi � 0 for further-neighbor bonds. Assuming
hðSi ´ SjÞzi ¼ χz≠ 0 only for the nearest-neighbor bonds along the z axis, the
constant c reads c= J2χz (we chose the unit of length as ∣rij∣= 1 for the nearest-
neighbor bonds).

We solve the Boltzmann equation in Eq. (6) with the scattering rate in Eq. (7)

by expanding fkσ up to the second order in E and linear order in c31; f kσ ¼
f 0kσ þ

P
i¼1;2;j¼0;1g

ði;jÞ
kσ where f 0kσ ¼ 1=ð1þ eβεkσ Þ is the Fermi distribution function

and gði;jÞkσ is the deviation from the equilibrium distribution in the ith-order in E and
jth order in c. We find

gð1;0Þkσ ¼ �τeE � ∇kf
0
kσ ¼ τeE � vkσδðεkσÞ; ð15Þ

gð1;1Þkσ ¼ τ

Z
dk0

ð2πÞ3
W�

kσ;k0σ 0 gð1;0Þ
k0σ 0

� gð1;0Þkσ

� �
; ð16Þ

gð2;0Þkσ ¼ �τeE � ∇kg
ð1;0Þ
kσ ; ð17Þ

gð2;1Þkσ ¼ �τeE � ∇kg
ð1;1Þ
kσ þ τ

Z
dk0

ð2πÞ3
W�

kσ;k0σ 0 gð2;0Þ
k0σ 0

� gð2;0Þkσ

� �
: ð18Þ

In the Boltzmann theory, the current along the z axis reads

Jz ¼ e
X
σ

Z
dk

ð2πÞ3
vzkσ f kσ ¼ e

X
σ

X
i;j

Z
dk

ð2πÞ3
vzkσg

ði;jÞ
kσ : ð19Þ

Here, ρσ �
R

dk
ð2πÞ3 δðεkσÞ is the density of states for the electrons with spin σ.

Therefore, the nonreciprocal current in OðE2Þ reads

Jð2Þz ¼ e
X
σ

Z
dk

ð2πÞ3
vzkσ gð2;1Þkσ þ gð2;2Þkσ

h i
: ð20Þ

The gð2;1Þkσ term contributes to the nonreciprocal current when the electronic
band is asymmetric due to the absence of both time and spatial inversion
symmetries20; this term vanishes in our case. Therefore, we here focus on the

second term related to gð2;2Þkσ . The nonreciprocal current reads

Jð2Þz ¼ � 16π
5

mτeρþρ�cM
4μ2 � 3M2

μ2 �M2

τeE
m

� �2

; ð21Þ

� � 144π
5

τm
eμ2

cMσ20E
2: ð22Þ

Here, ρσ ¼ m
2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðμþ σMÞ

p
is the density of states for the electrons with spin σ.

In the second line, we assumed μ≫M and expanded up to the leading order in M;

2σ0 ¼
4e2τμ
3m is the linear conductivity of electrons at M= 0 and c= 0. Hence, the

nonreciprocal current is proportional to the vector spin chirality c= J2χz and
magnetic polarization of the itinerant electrons M.

Similarly, the spin current reads

Jð2Þz ¼ _

2

X
σ

Z
dk

ð2πÞ3
σvzkσ gð2;1Þkσ þ gð2;2Þkσ

h i
; ð23Þ

¼ � 4π_τ3e2

m
cρþρ�μ 1þ 1

5
μ2 þ 3M2

μ2 �M2

� �� �
; ð24Þ

� � 54π_
5

τm
e2μ

c σ20E
2: ð25Þ

The last equation is the result for μ≫M. The last equation implies the chiral
correlation produces spin current in a paramagnetic phase without magnetization.
A study on electric polarization by spin canting finds the polarization is parallel to
rij × js where js∝ Si × Sj is the supercurrent of spin current6. In contrast, our result
finds the component of js parallel to rij is proportional to the spin current of
electrons (Fig. 1a).

Magnetic phase diagram. Onsager’s reaction field theory is used to calculate the
magnetization and the vector spin chirality under external magnetic field38–40. This
method incorporates the ∑i∣Si∣2=Ns constraint by introducing a Lagrange’s mul-
tiplier λ. The effective Hamiltonian reads

Heff ¼ ~Hcm þ λ
X
i

jSij
2: ð26Þ

Using this method, we find the magnetization and vector spin chirality are given by

mz ¼ � h
2λ

; ð27Þ

and

χz ¼
2DT
3π2

Z Λ

0

dq q4

ðJq2 � λÞ2 � D2q2
: ð28Þ

Here, q= (qx, qy, qz) is the wavenumber of the classical spin wave modes, q= ∣q∣, λ is
determined by

1� h2

4λ2
¼
Z

dq

ð2πÞ3
T Tr

1
λ� Jq

 !
; ð29Þ

and

Jq ¼
Jq2 iDqz �iDqy

�iDqz Jq2 iDqx
iDqy �iDqx Jq2

0
B@

1
CA: ð30Þ

This model does not show a phase transition for arbitrary choices of h and T
when D ≠ 0. This is an artifact of the approximation used in Jq, where the model
has a SO(3) rotational symmetry in the momentum space. In the lattice model,
however, the small anisotropy due to discrete rotational symmetry breaks the SO(3)
symmetry. To give an idea on the ordering by the anisotropy, we defined the
system is magnetically ordered if λ(T, h)+D2/(4J) <−10−4. Here, −D2/(4J) is the
ground state energy. In Fig. 2c, we plot the phase boundary by the red solid line.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper.
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