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The distribution of whole war sizes and the distribution of event sizes within individual wars, can both be 
well approximated by power laws where size is measured by the number of fatalities. However the power-law 
exponent value for whole wars has a substantially smaller magnitude – and hence a flatter distribution – than for 
individual wars. We provide detailed numerical evidence that confirms that these numerically different power-

law exponent values are interrelated in a simple way by the effect of aggregating fatalities from individual 
events within wars to whole wars. We offer intuition for this finding and hence strengthen the case for a unified 
description and understanding of human conflict across scales.
1. Introduction

The distribution of whole war sizes is well approximated by a power-

law (Cederman, 2003; González-Val, 2016; Clauset, 2018; Braumoeller, 
2019), where size is measured as the total fatalities. This remarkable 
empirical finding is sometimes known as ‘Richardson’s Law’ in honor of 
its discovery more than half a century ago by one of the greatest sci-

entists of the 20th century: Lewis Fry Richardson (Richardson, 1948, 
1960; Gleditsch, 2020). Rather surprisingly, it turns out that approxi-

mate power laws also describe the distributions of event sizes within 
individual wars (Bohorquez et al., 2009; Johnson et al., 2013; Spagat 
et al., 2018) and terrorism (Clauset et al., 2007; Spagat et al., 2018) 
where size is now measured by fatalities per event. We stress that in 
both cases, the power laws are approximate not perfect, and we refer 
to Bohorquez et al. (2009) for a discussion of generative mechanisms 
that explain how these approximate power laws might arise and, im-

portantly, the mechanistic origins of deviations from these power law 
distributions.

Here we focus on the relationship between these power-law ex-

ponents. Specifically we provide intuition that explains, and detailed 
numerical results that confirm, that the exponent values for whole wars 
and within wars are consistent with each other: namely, a power-law 
exponent value between 1.5 and 1.7 emerges for whole wars as a result 
of aggregating fatalities from events within wars that have a power-law 
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exponent near 2.5. These results in Figs. 1–3, which go beyond Johnson 
Restrepo et al. (2020), involve simulating individual wars with ran-

domly selected power-law exponents distributed around 2.5, and with 
randomly selected event counts that are consistent with the distribution 
of event counts for empirical wars (see Fig. 3). These findings hence 
help solidify a unified understanding of human conflict across scales, 
from within individual wars to across wars. Interestingly, this emerging 
synthesis of micro and macro elements falls firmly within the spirit of 
Richardson’s life work, including his research on weather and fractals 
(Gleditsch, 2020).

2. Results

Cederman (2003), Clauset (2018) and most recently Braumoeller 
(2019), built on Richardson’s seminal work by showing that the distri-

bution of severities for entire wars is an approximate power-law with an 
estimated exponent range 𝛼 ∼ 1.5–1.7, with the precise value depending 
on the date range and war types included. The goodness-of-fit values 
from these studies are fairly high (𝑝 ∼ 0.5) which helps support the 
claim of an approximate power-law distribution. As noted above, we 
found earlier (Bohorquez et al. (2009)) that event sizes (i.e. fatalities) 
within each individual war 𝑖 show an approximate power-law distribu-

tion which is spread broadly around an exponent value of 𝛽𝑖 ∼ 2.5, again 
with reasonably high 𝑝 values. The statistical power-law testing proce-
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Fig. 1. (a) Schematic of the simulation procedure, shown in more detail in (b). To generate a number of wars consistent with our model, we generate events from 
power-law distributions with exponents distributed around 2.5 (see text). The aggregate size of each war is calculated, yielding {𝑊𝑖}. This set of {𝑊𝑖} values is then 
used to generate the distribution for whole wars. (c) and (d) show that the resulting power-law exponents for the aggregate size of whole wars, are in the range 
observed empirically and that this finding is robust. Three examples are shown in each case, corresponding to three different choices of the mean number of events 
per war. The distribution of 𝛼 values tends to be peaked in a range consistent with the empirical values for entire wars (i.e. 𝛼 ∼ 1.5–1.7) and with similarly high 
goodness-of-fit values 𝑝 (𝑝 ∼ 0.5).
dure is the same in both cases: in the latter case of an individual war 
𝑖, the process involves taking the histogram of the severity (i.e. fatali-

ties) of individual events within this war and performing the standard 
power-law test to get the best-fit power law exponent (which we will 
refer to as 𝛽𝑖). In the former case of entire wars, the process involves 
taking the histogram of the severity for each entire war 𝑊1, 𝑊2, ... etc. 
and then getting the best-fit power law exponent (which we will refer 
to as 𝛼).

To show the connection between the power-law exponents for 
events within wars and the power-law exponents for aggregated totals 
across whole wars, we start by simulating a set of events for an indi-

vidual war 𝑖 (see Fig. 1 1(b)). The number of events in each simulated 
war is drawn randomly from a lognormal distribution for one set of re-

sults, and from an exponential distribution for the other set of results. 
As shown in Fig. 3, the density for a lognormal distribution of the num-

ber of events per simulated war is indeed close to the empirical one, 
and far closer than for an exponential distribution. Specifically, we gen-

erate this number of events within a given war 𝑖 by randomly sampling 
from a power-law distribution with power-law exponent 𝛽𝑖, where the 
value of 𝛽𝑖 itself is picked randomly from a normal distribution of 𝛽𝑖
2

values whose mean value 𝛽 lies in the vicinity of 2.5 and whose distri-

bution has a spread (i.e. standard deviation) given by 𝛿. For the trivial 
example of a spread 𝛿 = 0 and mean 𝛽 = 2.5 the power-law exponent 
𝛽𝑖 = 2.5 for all 𝑖. We carry out this procedure repeatedly to generate a 
number of different simulated wars {𝑖}. The aggregated casualty total 
for each war 𝑖 is given by 𝑊𝑖 which is the sum of the individual events 
1, 2, .. etc. within that war, i.e. 𝑊𝑖 = 𝑠𝑖1 + 𝑠𝑖2 + .... This is shown schemati-

cally in Figs. 1(a) and (b). This entire process provides us with a set of 
values {𝑊𝑖} corresponding to the total fatalities in our simulated model 
wars 𝑖 = 1, 2, .. which represents our model’s predicted record for all hu-

man wars. We made sure to check that our conclusions are robust to 
the number of simulated wars. For the results shown, we simulated 100 
wars but our conclusions are not sensitive to the number of wars as long 
as this number isn’t too small (e.g. 10 or less). Whether we choose 100 
or 150 etc. does not change our conclusions.

Fig. 1 displays our main findings. Fig. 2 provides further detail and 
illustrates the robustness of the results as we range across different 
choices of the mean 𝛽 in the range 1.5 to 4.0 (horizontal axis), and for 
different choices of the standard deviation of the normal distribution of 
power-law exponents 𝛽𝑖 (i.e. their spread 𝛿 around the mean 𝛽), as well 
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Fig. 2. Robustness of our main result for best-fit power-law exponent values across whole wars (𝛼) from Fig. 1, and goodness-of-fit 𝑝, for different values of the mean 
individual war exponent (𝛽, horizontal axis) and six values of its spread (𝛿, shown as six different colors). (a) and (b) correspond to a lognormal distribution for the 
number of events per war 𝑛, which is justified empirically (see Fig. 3). (c) and (d) show comparative results for an exponential distribution for 𝑛. The error bar in 
each case indicates the standard deviation. The 𝑊min values tend to be of order of magnitude ∼ 103 , akin to empirical conflict findings.
Fig. 3. Density distribution for the log of the number of events per war, from 
the empirical data in the GED database used in Spagat et al. (2018). Also shown 
are the best-fit lognormal and exponential distributions. The lognormal is the 
better fit to the empirical data.

as for different choices of the distribution of the numbers of events 𝑛𝑖
for each simulated model war 𝑖 (mean 𝜇). Figs. 1(c)(d) and Fig. 2 show 
that the resulting power-law exponents across entire wars (i.e. 𝛼) are 
typically distributed with a peak in the same range 𝛼 ∼ 1.5–1.7 as the 
3

reported empirical values in the literature (e.g. see Clauset (2018)) as 
long as 𝛿 is not too small. This is particularly true for the lognormal dis-

tribution of the number of events per war (Fig. 3(a) and (b)), which is 
itself the closest to the empirical data for the number of events per war 
(Fig. 3). Fig. 2 also shows that the goodness-of-fit values are typically 
distributed around 𝑝 ∼ 0.5 as observed for the empirical data.

Importantly, Figs. 1(c)(d) and 2 confirm that the 𝛼 distributions are 
more in line with the empirical findings for whole wars (i.e. power-law 
exponents in the range 𝛼 ∼ 1.5–1.7 and 𝑝 ∼ 0.5) when event counts are 
drawn from lognormal distributions, as compared to when event counts 
are drawn from exponential distributions. This is exactly consistent with 
Fig. 3, which shows that the empirical event counts do indeed follow 
closely a lognormal distribution, and do so much better than an expo-

nential distribution. Hence our simulations are empirically grounded, 
which lends further weight to our conclusions.

We offer the following intuitive explanation for our main finding 
that aggregating data from approximate power-law distributions with 
exponents {𝛽𝑖} ∼ 2.5 (i.e. events within individual wars) yields an ap-

proximate power-law distribution with exponent 𝛼 ∼ 1.5–1.7 (totals for 
all wars). Some individual wars will by chance have 𝛽𝑖 values well be-

low 2.5, which means that they will each tend to have a relatively 
high ratio of very large events compared to small events. Moreover, 
the distribution of total event counts for individual conflicts is simi-

lar to a lognormal distribution (see Fig. 3) and hence has a somewhat 
extended upper tail. Putting these two facts together, there will be a 
non-negligible number of wars that will have both a large percentage of 
very large events because of their low 𝛽𝑖 ’s, and a large number of events 
overall. When these fatalities are aggregated across the war, this whole 
war will become very large – and these very large wars will together 
help fill the right hand tail of the distribution of whole war sizes. This 
stretches the distribution for whole wars to the right and hence gener-

ates a low estimated value of 𝛼, i.e. lower than the 𝛽𝑖’s. This explanation 
is strengthened by the following observation: the fact that the explana-
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tion relies on the existence of a wide enough spread of {𝛽𝑖} around 2.5, 
is consistent with the simulations in Fig. 2 showing that when the distri-

bution of the {𝛽𝑖} is highly concentrated near 2.5 then estimated values 
of 𝛼 tend to exceed 2.0 and hence the distribution of whole war sizes 
comes out too steep compared to empirical reality (i.e. 𝛼 too large).

This finding unifies the empirical power-law results for event sizes 
within individual wars with the empirical power-law result over whole 
wars, capturing how the scaling coefficient changes as we move from 
the intra-conflict level to the inter-conflict level. This means that look-

ing at individual violent events within a single war is not the same as 
looking at individual wars within a collection of many wars, despite the 
fact that both phenomena can be captured reasonably well by power 
laws. The verbal message from this observation may seem straightfor-

ward to a historian but it is interesting to see it emerge from realistically 
simulated data while giving us additional insights into how this differ-

ence can be quantified. In particular, we see how compiling aggregate 
data across wars has the impact of lowering the value of the best-fit 
exponent. As a by-product of our study, we also showed that in the 
hypothetical case that all wars follow power laws with exponents {𝛽𝑖}
equal to 2.5, then the power law for whole wars would also probably be 
somewhere near 2.5.

3. Discussion

We have provided detailed numerical evidence that the approxi-

mate power law obtained for whole war sizes (i.e. exponent 𝛼 ∼ 1.5–1.7) 
arises naturally from the aggregation of casualties from individual wars 
in which the events have an approximate power law with exponents 
{𝛽𝑖} ∼ 2.5. This arises from the fact that each new war has a reasonable 
chance to be characterized by both a relatively high ratio of large events 
to small events and also by a large total number of events. This gives 
rise to enough very large wars in terms of total casualties (i.e. large 𝑊 ) 
that their effect is to flatten out the power-law and hence reduce the 
exponent well below 2.5. Our findings strengthen the case for a uni-

fied understanding of human conflict from microscopic to macroscopic 
scales.
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