
ORIGINAL RESEARCH
published: 20 August 2018

doi: 10.3389/fphys.2018.01128

Frontiers in Physiology | www.frontiersin.org 1 August 2018 | Volume 9 | Article 1128

Edited by:

Rajat Mittal,

Johns Hopkins University,

United States

Reviewed by:

Jacopo Biasetti,

CorWave SA, France

Lucy T. Zhang,

Rensselaer Polytechnic Institute,

United States

*Correspondence:

Bastien Chopard

Bastien.Chopard@unige.ch

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 29 September 2017

Accepted: 27 July 2018

Published: 20 August 2018

Citation:

Dutta R, Chopard B, Lätt J, Dubois F,

Zouaoui Boudjeltia K and Mira A

(2018) Parameter Estimation of

Platelets Deposition: Approximate

Bayesian Computation With High

Performance Computing.

Front. Physiol. 9:1128.

doi: 10.3389/fphys.2018.01128

Parameter Estimation of Platelets
Deposition: Approximate Bayesian
Computation With High Performance
Computing

Ritabrata Dutta 1, Bastien Chopard 2*, Jonas Lätt 2, Frank Dubois 3,

Karim Zouaoui Boudjeltia 4 and Antonietta Mira 1,5

1 Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland, 2Computer Science Department,

University of Geneva, Geneva, Switzerland, 3Microgravity Research Centre, Université libre de Bruxelles (ULB), Brussels,

Belgium, 4 Laboratory of Experimental Medicine (ULB 222 Unit), Université Libre de Bruxelles and CHU de Charleroi,

Brussels, Belgium, 5Department of Science and High Technology, Università degli Studi dell’Insubria, Varese, Italy

Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in

our societies. Recent studies show the existing clinical tests to detect CVD are ineffectual

as they do not consider different stages of platelet activation or the molecular dynamics

involved in platelet interactions. Further they are also incapable to consider inter-individual

variability. A physical description of platelets deposition was introduced recently in

Chopard et al. (2017), by integrating fundamental understandings of how platelets

interact in a numerical model, parameterized by five parameters. These parameters

specify the deposition process and are relevant for a biomedical understanding of

the phenomena. One of the main intuition is that these parameters are precisely the

information needed for a pathological test identifying CVD captured and that they capture

the inter-individual variability. Following this intuition, here we devise a Bayesian inferential

scheme for estimation of these parameters, using experimental observations, at different

time intervals, on the average size of the aggregation clusters, their number per mm2,

the number of platelets, and the ones activated per µℓ still in suspension. As the

likelihood function of the numerical model is intractable due to the complex stochastic

nature of the model, we use a likelihood-free inference scheme approximate Bayesian

computation (ABC) to calibrate the parameters in a data-driven manner. As ABC requires

the generation of many pseudo-data by expensive simulation runs, we use a high

performance computing (HPC) framework for ABC to make the inference possible for

this model. We consider a collective dataset of seven volunteers and use this inference

scheme to get an approximate posterior distribution and the Bayes estimate of these five

parameters. The mean posterior prediction of platelet deposition pattern matches the

experimental dataset closely with a tight posterior prediction error margin, justifying our

main intuition and providing a methodology to infer these parameters given patient data.

The present approach can be used to build a new generation of personalized platelet

functionality tests for CVD detection, using numerical modeling of platelet deposition,

Bayesian uncertainty quantification, and High performance computing.
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1. INTRODUCTION

Blood platelets play a major role in the complex process
of blood coagulation, involving adhesion, aggregation, and
spreading on the vascular wall to stop a hemorrhage while
avoiding the vessel occlusion. Platelets also play a key role
in the occurrence of cardio/cerebro-vascular accidents that
constitute a major health issue in our societies. In 2015,
Cardiovascular diseases (CVD), including disorders of the heart
and blood vessels, were the first cause of mortality worldwide,
causing 31% of deaths (Organization, 2015). Antiplatelet therapy
generally reduces complications in patients undergoing arterial
intervention (Mehta et al., 2001; Steinhubl et al., 2002). However,
the individual response to dual antiplatelet therapy is not uniform
and consistent studies reported that even under platelets therapy
there were recurrences of atherothrombotic events (Matetzky
et al., 2004; Gurbel et al., 2005; Geisler et al., 2006; Hochholzer
et al., 2006; Marcucci et al., 2009; Price et al., 2008; Sibbing
et al., 2009). In most cases, a standard posology is prescribed to
patients, which does not take into account the inter-individual

variability linked to the absorption or the effectiveness of these
molecules. This was supported by a recent study (Koltai et al.,
2017), reporting the high patient-dependency of the response
of the antithrombotic drugs. We should also note that the
evaluation of the response to a treatment by the existing tests is
test-dependent.

Nowadays, platelet function testing is performed either
as an attempt to monitor the efficacy of anti-platelet drugs
or to determine the cause of abnormal bleeding or pro-
thrombotic status. The most common method consists of using

an optical aggregometer that measures the transmittance of
light passing through plasma rich in platelets (PRP) or whole
blood (Born and Cross, 1963; Harrison, 2009), to evaluate how
platelets tend to aggregate. Other aggregometers determine the
amount of aggregated platelets by electric impedance (Velik-
Salchner et al., 2008) or luminescence. In specific contexts,
flow cytometry (Michelson et al., 2002) is also used to assess
platelet reactivity (VASP test; Bonello et al., 2009). Determination
of platelet functions using these different existing techniques
in patients undergoing coronary stent implantation have been
evaluated in Breet et al. (2010), which shows the correlation

between the clinical biological measures and the occurrence of
a cardiovascular event was null for half of the techniques and
rather modest for others. This may be due to the fact that no
current test allows the analysis of the different stages of platelet
activation or the prediction of the in vivo behavior of those
platelets (Picker, 2011; Koltai et al., 2017). It is well-known that
the phenomenon of platelet margination (the process of bringing
platelets to the vascular wall) is dependent on the number and
shape of red blood cells and their flow (Piagnerelli et al., 2007),
creating different pathologies for different diseases (e.g., diabetes,
End Renal Kidney Disease, hypertension, sepsis). Further, platelet
margination is also known to be influenced by the aspect ratio
of surrogate platelet particles (Reasor et al., 2013). Although
there is a lot of data reported by recent research works (Maxwell
et al., 2007) on the molecules involved in platelet interactions,
these studies indicate that there is a lack of knowledge on

some fundamental mechanisms that should be revealed by new
experiments.

Hence, the challenge is to find parameters connecting the
dynamic processes of adhesion and aggregation of platelets
to the data collected from the individual patients. Recently,
by combining digital holography microscopy (DHM) and
mathematical modeling, (Chopard et al., 2015; Boudejltia et al.,
2015; Chopard et al., 2017) provided a physical description
of the adhesion and aggregation of platelets in the Impact-
R device. A numerical model is developed that quantitatively
describes how platelets in a shear flow adhere and aggregate on
a deposition surface. This is the first innovation in understanding
the molecular dynamics involved in platelet interactions. Five
parameters specify the deposition process and are relevant for
a biomedical understanding of the phenomena. One of the
main intuition is that the values of these parameters (e.g.,
adhesion and aggregation rates) are precisely the information
needed to assess various possible pathological situations and
quantify their severity regarding CVD. Further, it was shown
in Chopard et al. (2017) that, by hand-tuning the parameters
of the mathematical model, the deposition patterns observed
for a set of healthy volunteers in the Impact-R can be
reproduced.

Assuming that these parameters can determine the severity
of CVD, how do we estimate the adhesion and aggregation
rates of given patients by a clinical test? The determination of
these adhesion and aggregation rates by hand-tuning is clearly
not a solution as we need to search the high-dimensional
parameter space of the mathematical model, which becomes
extremely expensive and time consuming. We further notice,
this has to be repeated for each patient and thus requires a
powerful numerical approach. In this work, we resolve the
question of estimating the parameters using Bayesian uncertainty
quantification. Due to a complex stochastic nature, the numerical
model for platelet deposition does not have a tractable likelihood
function. We use Approximate Bayesian Computation (ABC),
a likelihood-free inference scheme, with an optimal application
of HPC (Dutta et al., 2017a) to provide a Bayesian way to
estimate adhesion and aggregation rates given the deposition
patterns observed in the Impact-R of platelets collected from
a patient. Obviously, the clinical applicability of the proposed
technique to provide a new platelet function test remains
to be explored, but the numerical model (Chopard et al.,
2017) and the proposed inference scheme here, bring the
technical elements together to build a new class of medical
tests.

In section 2 we introduce the necessary background
knowledge about the platelet depositionmodel, whereas section 3
recalls the concept of Bayesian inference and introduces the HPC
framework of ABC used in this study. Then we illustrate the
results of the parameter determination for platelet deposition
model using ABC methodology, collectively for seven patients
in section 4. Clearly, the same methodology can be used to
determine the parameter values for each individual patients in
a similar manner for a CVD clinical test. Finally, in section 5
we conclude the paper and discuss its impact from a biomedical
perspective.
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2. BACKGROUND AND SCIENTIFIC
RELEVANCE

The Impact-R (Shenkman et al., 2008) is a well-known platelet
function analyzer. It is a cylindrical device filled in with whole
blood from a donor. Its lower end is a fixed disk, serving as
a deposition surface, on which platelets adhere and aggregate.
The upper end of the Impact-R cylinder is a rotating cone,
creating an adjustable shear rate in the blood. Due to this shear
rate, platelets move toward the deposition surface, where they
adhere or aggregate. Platelets aggregate next to already deposited
platelets, or on top of them, thus forming clusters whose size
increase with time. This deposition process has been successfully
described with a mathematical model in Chopard et al. (2015);
Chopard et al. (2017).

The numerical model (coined M in what follows) requires
five parameters that specify the deposition process and are
relevant for a bio-medical understanding of the phenomena.
In short, the blood sample in the Impact-R device contains
an initial number Nplatelet(0) of non-activated platelets per µℓ

and a number Nact−platelet(0) of pre-activated platelets per µℓ.
Initially both type of platelets are supposed to be uniformly
distributed within the blood. Due to the process known as shear-
induced diffusion, platelets hit the deposition surface. Upon such
an event, an activated platelets will adhere with a probability
that depends on its adhesion rate, pAd, that we would like to
determine. Platelets that have adhered on the surface are the
seed of a cluster that can grow due to the aggregation of the
other platelets reaching the deposition surface. We denote with
pAg the rate at which new platelets will deposit next to an
existing cluster. We also introduce pT the rate at which platelets
deposit on top of an existing cluster. An important observation
made in Chopard et al. (2015); Chopard et al. (2017) is that
albumin, which is abundant in blood, compete with platelet for
deposition. This observation is compatible with results reported
in different experimental settings (Sharma et al., 1981; Remuzzi
and Boccardo, 1993; Fontaine et al., 2009). As a consequence, the
number of aggregation clusters and their size tends to saturate
as time goes on, even though there are still a large number of
platelets in suspension in the blood.

To describe this process in the model, two extra parameters,
pF , the deposition rate of albumin, and aT , a factor that accounts
for the decrease of platelets adhesion and aggregation on
locations where albumin has already deposited, were introduced.
The numerical model is described in full detail in Chopard et al.
(2015); Chopard et al. (2017). Here we simply repeat the main
elements. Due to the mixing in the horizontal direction, it was
assumed that the activated platelets (AP), non-activated platelets
(NAP) and albumin (Al) in the bulk can be described by a 1D
diffusion equation along the vertical axis z

∂tρ = D∂2z ρ J = −Dgradρ (1)

where ρ is the density of either AP, NAP or Al, J and D are
correspondingly the flux of particles and the shear induced
diffusion. Upon reaching a boundary layer above the deposition

substrate, adhesion and aggregation will take place according to

Ṅ = −J(0, t)1S− pdN(t) (2)

where N is the number of particles in the boundary layer,
1S a surface element on the deposition surface, and pd is the
deposition rate, which evolves during time and varies across the
substrate, according to the deposition history. For the deposition
process, particles are considered as discrete entities that can
attach to any position of the grid representing the deposition
surface, as sketched in Figure 1. In this figure, the gray levels
illustrate the density of albumin already deposited in each cell.
The picture also illustrates the adhesion, aggregation, and vertical
deposition along the z-axis. On the left panel, activated platelets
(gray side disks) deposit first. Then in the second panel, non-
activated platelets (white side disks) aggregate next to an already
formed cluster. Both pre-activated and non-activated platelets
can deposit on top of an existing cluster.

The deposition rules are the following. An albumin that
reaches the substrate at time t deposits with a probability P(t)
which depends on the local density ρal(t) of already deposited Al.
We assume that P is proportional to the remaining free space in
the cell,

P(t) = pF(ρmax − ρal(t)), (3)

where pF is a parameter and ρmax is determined by the constraint
that at most 100,000 albumin particles can fit in a deposition
cell of area 1S = 5 (µm)2, corresponding to the size of a
deposited platelet (obtained as the smallest variation of cluster
area observed with the microscope).

An activated platelet that hits a platelet-free cell deposits with
a probability Q, where Q decreases as the local concentration ρal
of albumin increases. We assumed that

Q = pAd exp(−aTρal), (4)

where pAd and aT are parameters. This expression can be justified
by the fact that a platelet needs more free space than an albumin
to attach to the substrate, due to their size difference. In other
words, the probability of having enough space for a platelet,
decreases roughly exponentially with the density of albumin in
the substrate. This can be validated with a simple deposition
model on a grid, where small and large objects compete for
deposition.

Once an activated platelet has deposited, it is the seed of a
new cluster that grows further due to the aggregation of further
platelets. In our model, AP and NAP can deposit next to already
deposited platelets. From the above discussion, the aggregation
probability R is assumed to be

R = pAg exp(−aTρal), (5)

with pAg another parameter.
The above deposition probabilities can also be expressed as

deposition rate over the given simulation time step 1t = 0.01 s
(see Chopard et al., 2017 for details), hence giving a way to couple
the diffusion Equation (1) with the 2D discrete deposition process
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FIGURE 1 | Sketch of the deposition substrate, discretized in cells of area equal to the surface of a platelet.

FIGURE 2 | The deposition surface of the Impact-R device after 300 s (Left) and the corresponding results of the deposition in the mathematical model (Right).

Black dots represent the deposited platelets that are grouped in clusters.

sketched in Figure 1. Particles that did not deposit at time t are
re-injected in the bulk and contribute to boundary condition of
Equation (1) at z = 0.

To the best of our knowledge, except for Chopard et al. (2015);
Chopard et al. (2017) there is no model in the literature that
describes quantitatively the proposed in-vitro experiment. The
closest approach is that of Affeld et al. (2013) but albumin is not
included, and the role of pre-activated and non-activated platelets
is not differentiated. Also, we are not aware of any other study
than ours that reports both the amount of platelets in suspension
as a function of time and those on the deposition surface.

The validity of the proposed numerical model has been
explored in detail in Chopard et al. (2017). This validation is
based on the fact that the model, using hand-tuned parameters
can reproduce the time-dependent experimental observations
very well. We refer the readers to Chopard et al. (2017) for a
complete discussion. Here we briefly recall the main elements
that demonstrate the excellent agreement of the model and the
simulations. We reproduce Figure 2 from Chopard et al. (2017),
showing the visual similarity between the actual and simulated
deposition pattern. In the validation study, the evolution of the
number of clusters, their average size and the numbers of pre-
activated and non-activated platelets still in suspension matched
quantitatively with the experimental measurements at times 20,
60, 120, and 300 s. In addition, a very good agreement between
the simulated deposition pattern and the experiment was also

found by comparing the distributions of the areas and volumes
of the aggregates.

To be noticed, the validation reported in Chopard et al. (2017)
was done using manually estimated parameters. As the main
goal of this research is to propose an inference scheme to learn
the parameters in a data-driven manner, a validation for the
model and the inference scheme is reported in Figure 6 below,
using the inferred posterior distribution which also includes a
quantification of prediction error.

For the purpose of the present study, the model M is
parametrized in terms of the five quantities introduced above,
namely the adhesion rate pAd, the aggregation rates pAg and pT ,
the deposition rate of albumin pF , and the attenuation factor aT .
Some additional parameters of the model, specifically, the shear-
induced diffusion coefficient and the thickness of the boundary
layer (Chopard et al., 2017), are assumed here to be known.
Collectively, we define

θθθ = (pAg , pAd, pT , pF , aT).

If the initial values for Nplatelet(0) and Nact−platelet(0), as well as

the concentration of albumin are known from the experiment, we
can forward simulate the deposition of platelets over time using
modelM for the given values of these parameters θθθ = θθθ∗:

M[θθθ = θθθ∗] →
{(

Sagg−clust(t),Nagg−clust(t),Nplatelet(t),Nact−platelet(t)
)

,

t = 0, . . . ,T} . (6)
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where Sagg−clust(t),Nagg−clust(t),Nplatelet(t) , and Nact−platelet(t)
are correspondingly average size of the aggregation clusters, their
number per mm2, the number of non-activated and pre-activated
platelets per µℓ still in suspension at time t.

The Impact-R experiments have been repeated with the whole
blood obtained from seven donors and the observations were
made at time, 0 , 20 , 60 , 120, and 300 s. At these five time
points,

[

Sagg−clust(t),Nagg−clust(t),Nplatelet(t),Nact−platelet(t)
]

are
measured. Let us call the observed dataset collected through
experiment as,

x0x0x0 ≡ {(S0
agg−clust(t),N

0
agg−clust(t),N

0
platelet(t),N

0
act−platelet(t)) :

t = 0 s., . . . , 300 s.}. (7)

By comparing the number and size of the deposition aggregates
obtained from the in-vitro experiments with the computational
results obtained by forward simulation from the numerical model
(see Figure 2 for an illustration), the model parameters were
manually calibrated by a trial and error procedure in Chopard
et al. (2017). Due to the complex nature of the model and high-
dimensional parameter space, this manual determination of the
parameter values are subjective and time consuming.

However, if the parameters of the model could be learned
more rigorously with an automated data-drivenmethodology, we
could immensely improve the performance of these models and
bring this scheme as a new clinical test for platelet functions. To
this aim, here we propose to use ABC for Bayesian inference of
the parameters. As a result of Bayesian inference to this context,
not only we can automatically and efficiently estimate the model
parameters, but we can also perform parameter uncertainty
quantification in a statistically sound manner, and determine if
the provided solution is unique.

3. BAYESIAN INFERENCE

We can quantify the uncertainty of the unknown parameter θθθ by
a posterior distribution p(θθθ |xxx) given the observed dataset xxx = x0x0x0.
A posterior distribution is obtained, by Bayes’ Theorem as,

p(θθθ |xxx) =
π(θθθ)p(xxx|θθθ)

m(xxx)
, (8)

where π(θθθ), p(xxx|θθθ) and m(xxx) =
∫

π(θθθ)p(xxx|θθθ)dθθθ are
correspondingly the prior distribution on the parameter θθθ , the
likelihood function, and the marginal likelihood. The prior
distribution π(θθθ) ensures a way to leverage the learning of
parameters with prior knowledge, which is commonly known
due to the availability of medical knowledge regarding cardio-
vascular diseases. If the likelihood function can be evaluated, at
least up to a normalizing constant, then the posterior distribution
can be approximated by drawing a sample of parameter values
from the posterior distribution using (Markov chain) Monte
Carlo sampling schemes (Robert and Casella, 2005). For the
simulator-based models considered in section 2, the likelihood
function is difficult to compute as it requires solving a very high
dimensional integral. In next subsection 3.1, we illustrate ABC to
perform Bayesian Inference for models where the analytical form

of the likelihood function is not available in closed form or not
feasible to compute.

3.1. Approximate Bayesian Computation
ABC allows us to draw samples from the approximate posterior
distribution of parameters of the simulator-based models in
absence of likelihood function, hence to perform approximate
statistical inference (e.g., point estimation, hypothesis testing,
model selection etc.) in a data-driven manner. In a fundamental
Rejection ABC scheme, we simulate from the model M(θθθ) a

synthetic dataset xsimxsimxsim for a parameter value θθθ and measure the

closeness between xsimxsimxsim and x0x0x0 using a pre-defined discrepancy

function d(xsimxsimxsim,x0x0x0). Based on this discrepancy measure, ABC

accepts the parameter value θθθ when d(xsimxsimxsim,x0x0x0) is less than a
pre-specified threshold value ǫ.

As the Rejection ABC scheme is computationally inefficient,
to explore the parameter space in an efficient manner, there exists
a large group of ABC algorithms (Marin et al., 2012). As pointed
in (Dutta et al., 2017a), these ABC algorithms, consist of four
fundamental steps:

1. (Re-)sample a set of parameters θθθ either from the prior
distribution or from an already existing set of parameter
samples;

2. For each of the sample from the whole set or a subset, perturb
it using the perturbation kernel, accept the perturbed sample
based on a decision rule governed by a threshold or repeat the
whole second step;

3. For each parameter sample calculate its weight;
4. Normalize the weights, calculate a co-variance matrix and

adaptively re-compute the threshold for the decision rule.

These four steps are repeated until the weighted set of parameters,
interpreted as the approximate posterior distribution, is
“sufficiently close” to the true posterior distribution. The steps
(1) and (4) are usually quite fast, compared to steps (2) and (3),
which are the computationally expensive parts.

These ABC algorithms can be generally classified into
two groups based on the decision rule in step (2). In the

first group, we simulate xsimxsimxsim using the perturbed parameter

and accept it if d(xsimxsimxsim,x0x0x0) < ǫ, an adaptively chosen
threshold. Otherwise we continue until we get an accepted
perturbed parameter. For the second group of algorithms,
we do not have this “explicit acceptance” step but rather a
probabilistic one. Here we accept the perturbed parameter with
a probability that depends on ǫ; if it is not accepted, we keep
the present value of the parameter. The algorithms belonging
to the “explicit acceptance” group are RejectionABC (Tavaré
et al., 1997) and PMCABC (Beaumont, 2010), whereas
the algorithms in the “probabilistic acceptance” group are
SMCABC (Del Moral et al., 2012), RSMCABC (Drovandi and
Pettitt, 2011), APMCABCLenormand et al. (2013), SABC (Albert
et al., 2015), and ABCsubsim Chiachio et al. (2014). For an
“explicit acceptance” to occur, it may take different amounts of
time for different perturbed parameters (more repeated steps
are needed if the proposed parameter value is distant from
the true parameter value). Hence the first group of algorithms
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are inherently imbalanced. We notice that an ABC algorithm
with “probabilistic acceptance” do not have the similar issue of
imbalance as a probabilistic acceptance step takes approximately
the same amount of time for each parameter.

The generation of xsimxsimxsim from the model, for a given parameter
value, usually takes up huge amounts of computational resources
(e.g., 10 min for the platelets deposition model in this paper).
Hence, we want to choose an algorithm with faster convergence
to the posterior distribution with minimal number of required
forward simulations. For this work we choose Simulated
Annealing ABC (SABC) which uses a probabilistic decision rule
in Step (2) and needs minimal number of forward simulation
than other algorithms as shown in Albert et al. (2015). As all tasks
of SABC in Step (2) can be run independently, in our recent work
Dutta et al., 2017a, we have adapted SABC for HPC environment.
Our implementation is available in Python package ABCpy and
shows a linear scalability.

We further note that the parallelization schemes in ABCpy
were primarily meant for inferring parameters from models, for
which forward simulation takes almost equal time for any values
of θθθ . Due to the complex stochastic nature of the numerical
model, forward simulation time for different values of θθθ , can be
quite variable. To solve this imbalance in the forward simulation,
additionally to the imbalance reported for ABC algorithms, we
use a new dynamic allocation scheme forMPI developed in Dutta
et al. (2017b).

3.2. Dynamic Allocation for MPI
Here we briefly discuss how a dynamic allocation strategy
for map-reduce provides better balancing of ABC algorithms
compared to a straightforward allocation approach.

In the straightforward approach, the allocation scheme
initially distributesm tasks to n executors, sends themap function
to each executor, which in turn applies the map function, one
after the other, to its m/n map tasks. This approach is visualized
in Figure 3, where a chunk represents the set of m/n map
tasks. For example, if we want to draw 10, 000 samples from the
posterior distribution and we have n = 100 cores available, at
each step of SABC we create groups of 100 parameters and each
group is assigned to one individual core.

On the other hand, the dynamic allocation scheme initially
distributes k < m tasks to the k executors, sends the map
function to each executor, which in turn applies it to the single
task available. In contrast to the straightforward allocation, the
executor requests a new map task as soon as the old one is
terminated. This clearly results in a better balance of the work.
The dynamic allocation strategy is an implementation of the
famous greedy algorithm for job-shop scheduling, which can be
shown to have an overall processing time (makespan) up to twice
as better than the best makespan (Graham, 1966).

This approach is illustrated in Figure 3, reproduced from
Dutta et al. (2017b). The unbalanced behavior is apparent if
we visualize the run time of the individual map tasks on each
executor. In Figure 4, the individual map tasks processing time is
shown for an ABC algorithm performing inference on a weather
prediction model, reported in Dutta et al. (2017b). Each row
corresponds to an executor (or rank) and each bar corresponds

to the total time spent on all tasks assigned to the respective
rank (row) for one map call. For the straightforward allocation
strategy, one can easily verify that most of the ranks finish their
map tasks in half the time of the slowest rank. This clearly leads
to large inefficiencies. Conversely, using the dynamic allocation
strategy, the work is more evenly distributed across the ranks.
The unbalancedness is not a problem that can be overcome
easily by adding resources, rather speed-up and efficiency can
drop drastically compared to the dynamic allocation strategy with
increasing number of executors. For a detailed description and
comparison, we direct readers to Dutta et al. (2017b).

3.3. Posterior Inference
Using SABC within HPC framework implemented in ABCpy
(Dutta et al., 2017a), we draw Z = 5000 samples approximating
the posterior distribution p(θθθ |x0x0x0), while keeping all the tuning
parameters for the SABC fixed at the default values suggested in
ABCpy package, except the number of steps and the acceptance
rate cutoff, which was chosen respectively as 30 and 1e−4. The
parallelized SABC algorithm, using HPC makes it possible to
perform the computation in 5 h [using 140 nodes with 36-
core of Piz Daint Cray architecture (Intel Broadwell + NVidia
TESLA P100)], which would have been impossible by a sequential
algorithm. To perform SABC for the platelets deposition model,
the summary statistics extracted from the dataset, discrepancy
measure between the summary statistics, prior distribution of
parameters, and perturbation Kernel to explore the parameter
space for inference are described next.

Summary Statistics
Given a dataset, xxx ≡ {(Sagg−clust(t),Nagg−clust(t),Nplatelet(t),
Nact−platelet(t)) : t = 0 s., . . . , 300 s.}, we compute an array of
summary statistics.

F : xxx → (µµµ,σσσ ,acacac, ccc, cccccc)

defined as following,

- µµµ = (µ1,µ2,µ3,µ4), mean over time.
- σσσ = (σ1, σ2, σ3, σ4), variance over time.
- acacac = (ac1, ac2, ac3, ac4), auto-correlation with lag 1.
- ccc = (c1, c2, c3, c4, c5, c6), correlation between different pairs of

variables over time.
- cccccc = (cc1, cc2, cc3, cc4, cc5, cc6), cross-correlation with lag 1

between different pairs of variables over time.

The summary statistics, described above, are chosen to capture
the mean values, variances, and the intra- and inter- dependence
of different variables of the time-series over time.

Discrepancy Measure
Assuming the above summary statistics contain the most
essential information about the likelihood function of the
simulator-based model, we compute Bhattacharya-coefficient
(Bhattachayya, 1943) for each of the variables present in the time-
series using their mean and variance and Euclidean distances
between different inter- and intra- correlations computed over
time. Finally we take a mean of these discrepancies, such that,
in the final discrepancy measure discrepancy between each of
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FIGURE 3 | Comparison of work-flow between MPI (Left) and dynamic-MPI backend (Right).

FIGURE 4 | Imbalance of ABC algorithms using MPI(straight-forward) (Left) and MPI(dynamic-allocation) backend (Right).

the summaries are equally weighted. The discrepancy measure
between two datasets, xxx1 and xxx2 can be specified as,

d(xxx1,xxx2) ≡ d(F(xxx1),F(xxx2))

=
1

8

4
∑

i=1

(1− exp(−ρ(µ1
i ,µ

2
i , σ

1
i , σ

2
i )))

+
1

2

√

√

√

√

1

16

(

4
∑

i=1

(ac1i − ac2i )
2 +

6
∑
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(c1i − c2i )
2 +

6
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2

)

,

where ρ(µ1,µ2, σ 1, σ 2) = 1
4 log

(

1
4

(

σ 1

σ 2 +
σ 2

σ 1 + 2
))

+

1
4

(

(µ1−µ2)2

σ 1+σ 2

)

is the Bhattacharya-coefficient (Bhattachayya,

1943) and 0 ≤ exp(−ρ(•)) ≤ 1. Further, we notice the value of
the discrepancy measure is always bounded in the closed interval
[0, 1].

Prior
We consider independent Uniform distributions for the
parameters with a pre-specified range for each of them, pAg ∼

U(5, 20), pAd ∼ U(50, 150), pT ∼ U(0.5e − 3, 3e − 3), pF ∼

U(.1, 1.5), and aT ∼ U(0, 10).

Perturbation Kernel
To explore the parameter space of θθθ = (pAg , pAd, pT , pF , aT) ∈

[5, 20]×[50, 150]×[0.5e−3, 3e−3]×[.1, 1.5]×[0, 10], we consider
a five-dimensional truncated multivariate Gaussian distribution
as the perturbation kernel. SABC inference scheme centers the
perturbation kernel at the sample it is perturbing and updates the
variance-covariance matrix of the perturbation kernel based on
the samples learned from the previous step.

3.4. Parameter Estimation
Given experimentally collected platelet deposition dataset x0x0x0,
our main interest is to estimate a value for θθθ . In decision
theory, Bayes estimator minimizes posterior expected loss,
Ep(θθθ |x0x0x0)(L(θθθ , •)|x

0x0x0) for an already chosen loss-function L. If we

have Z samples (θθθ i)
Z
i=1 from the posterior distribution p(θθθ |x0x0x0),

the Bayes estimator can be approximated as,

θ̂θθ = argmin
θθθ

1

M

M
∑

i=1

L(θθθ i,θθθ). (9)

As we consider the Euclidean loss-function L(θθθ , θ̂θθ) = (θθθ − θ̂θθ)2 as
the loss-function, the approximate Bayes-estimator can be shown

to be θ̂θθ = Ep(θθθ |x0x0x0)(θθθ) ≈
1
Z

∑Z
i=1 θθθ i.
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FIGURE 5 | Marginal posterior distribution (black-dashed) and Bayes Estimate (back-solid) of
(

pAd ,pAg,pT ,pF , aT
)

for collective dataset generated from of seven

patients. The smoothed marginal distribution is created by a Gaussian-kernel density estimator on 5000 i.i.d. samples drawn from the posterior distribution using

SABC. The (gray-solid) line indicates the manually estimated values of the parameters in Chopard et al. (2017).

4. INFERENCE ON EXPERIMENTAL
DATASET

The performance of the inference scheme described in section 3
is reported here, for a collective dataset created from the
experimental study of platelets deposition of seven blood-donors.
The collective dataset was created by a simple average of
(

Sagg−clust(t),Nagg−clust(t),Nplatelet(t),Nact−platelet(t)
)

over seven
donors at each time-point t. In Figure 5, we show the Bayes
estimate (black-solid) and the marginal posterior distribution
(black-dashed) of each of the five parameters computed using
5000 samples drawn from the posterior distribution p(θθθ |x0x0x0) using
SABC. For comparison, we also plot the manually estimated
values of the parameters (gray-solid) in Chopard et al. (2017).
We notice that the Bayes estimates are in a close proximity of
the manually estimated values of the parameters and also the
manually estimated values observe a significantly high posterior
probability. This shows that, through the means of ABC we
can get an estimate or quantify uncertainty of the parameters
in platelets deposition model which is as good as the manually
estimated ones, if not better.

Next we do a Posterior predictive check to validate our
model and inference scheme. The main goal here is to analyze
the degree to which the experimental data deviate from the
data generated from the inferred posterior distribution of the
parameters. Hence we want to generate data from the model
using parameters drawn from the posterior distribution. To
do so, we first draw 100 parameter samples from the inferred
approximate posterior distribution and simulate 100 data sets,
each using a different parameter sample. We call this simulated
dataset as the predicted dataset from our inferred posterior
distribution and present the mean predicted dataset (blue-solid)
compared with experimental dataset (black-solid) in Figure 6.
Note that since we are dealing with the posterior distribution,
we can also quantify uncertainty in our predictions. We plot
the 1/4-th quantile, 3/4-th quantile (red-dashed), minimum
and maximum (gray-dashed) of the predicted dataset at each
timepoints to get a sense of uncertainty in the prediction. Here
we see a very good agreement between the mean predicted
dataset and the experimentally observed one, while the 1/4-
and 3/4-th quantile of the prediction being very tight. This
shows a very good prediction performance of the numerical
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FIGURE 6 | Posterior Prediction Check: To validate the numerical model of the platelet deposition and the inference scheme we perform a posterior prediction check

by simulating 100 datasets, each using a different parameter sample drawn from the posterior distribution. Here, we plot the experimental dataset (black-solid) used

for inference, mean predicted dataset (blue-solid), 1/4-th and 3/4-th quantile (red-dashed), minimum and maximum (gray-dashed) of the predicted datasets at each

timepoints.

model of platelet deposition and the proposed inference
scheme.

Additionally, to point the strength of having a posterior
distribution for the parameters we compute and show the
posterior correlation matrix between the five parameters in
Figure 7, highlighting a strong negative correlation between
(pF , aT), strong positive correlations between (pF , pAg)
and (pF , pT). A detailed investigation of these correlation
structure would be needed to understand them better, but
generally they may point toward: (a) the stochastic nature
of the considered model for platelet deposition and (b)
the fact that the deposition process is an antagonistic or
synergetic combination of the mechanisms proposed in the
model.

Note finally that the posterior distribution being the joint
probability distribution of the five parameters, we can also
compute any higher-order moments, skewness etc. of the
parameters for a detailed statistical investigation of the natural
phenomenon.

5. CONCLUSIONS

Here, we have demonstrated that approximate Bayesian
computation (ABC) can be used to automatically explore

FIGURE 7 | Posterior correlation matrix of
(

pAd ,pAg,pT ,pF , aT
)

computed

from the 5000 i.i.d. samples drawn from the posterior distribution using SABC.

the parameter space of the numerical model simulating the
deposition of platelets subject to a shear flow as proposed in
Chopard et al. (2015); Chopard et al. (2017). We also notice
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the good agreement between the manually tuned parameters
and the Bayes estimates, while saving us from subjectivity
and a tedious manual tuning. This approach can be applied
patient per patient, in a systematic way, without the bias of a
human operator. In addition, the approach is computationally
fast enough to provide results in an acceptable time for
contributing to a new medical diagnosis, by giving clinical
information that no other known method can provide. The
clinical relevance of this approach is still to be explored and
our next step will be to apply our approach at a personalized
level, with a cohort of patients with known pathologies.
The possibility of designing new platelet functionality
test as proposed here is the result of combining different
techniques: advanced microscopic observation techniques,
bottom-up numerical modeling and simulations, recent
data-science development and high performance computing
(HPC).

Additionally, the ABC inference scheme provides us with
a posterior distribution of the parameters given observed
dataset, which is much more informative about the underlying
process. The posterior correlations structure shown in
Figure 7 may not have a direct biophysical interpretation,
though it illustrates some sort of underlying and unexplored
stochastic mechanism for further investigation. Finally we
note that, although the manual estimates achieve a very
high posterior probability, they are different from the
Bayes estimates learned using ABC. The departure reflects
a different estimation of the quality of the match between
experimental observation and simulation results. As the ABC
algorithms are dependent on the choice of the summary
statistics and the discrepancy measures, the parameter
uncertainty quantified by SABC in section 4 or the Bayes
estimates computed are dependent on the assumptions in
section 3.3 regarding their choice. Fortunately there are
recent works on automatic choice of summary statistics and
discrepancy measures in ABC setup (Gutmann et al., 2017),
and incorporating some of these approaches in our inference
scheme is a promising direction for future research in this
area.
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