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Abstract: Biomass thermochemical liquefaction is a chemical process with multifunctional bio-oil
as its main product. Under this process, the complex structure of lignocellulosic components can
be hydrolysed into smaller molecules at atmospheric pressure. This work demonstrates that the
liquefaction of burned pinewood from forest fires delivers similar conversion rates into bio-oil as
non-burned wood does. The bio-oils from four burned biomass fractions (heartwood, sapwood,
branches, and bark) showed lower moisture content and higher HHV (ranging between 32.96 and
35.85 MJ/kg) than the initial biomasses. The increased HHV resulted from the loss of oxygen,
whereas the carbon and hydrogen mass fractions increased. The highest conversion of bark and
heartwood was achieved after 60 min of liquefaction. Sapwood, pinewood, and branches reached a
slightly higher conversion, with yields about 8% greater, but with longer liquefaction time resulting
in higher energy consumption. Additionally, the van Krevelen diagram indicated that the produced
bio-oils were closer and chemically more compatible (in terms of hydrogen and oxygen content)
to the hydrocarbon fuels than the initial biomass counterparts. In addition, bio-oil from burned
pinewood was shown to be a viable alternative biofuel for heavy industrial applications. Overall,
biomass from forest fires can be used for the liquefaction process without compromising its efficiency
and performance. By doing so, it recovers part of the lost value caused by wildfires, mitigating their
negative effects.

Keywords: pinewood; forest wildfire; liquefaction; bio-oil

1. Introduction

The extended use of petroleum as a source of energy and raw materials led to its
depletion, high pollution levels, and a severe ecological footprint. Therefore, finding
sustainable alternatives is critical. Lignocellulosic biomass arises as a possible option,
as it is affordable and broadly available, however, it should not be a driver for further
deforestation [1,2].

Several processes convert biomass into bio-oil, such as indirect liquefaction, e.g., fast
pyrolysis, or direct liquefaction, e.g., thermochemical liquefaction and hydrothermal lique-
faction. The latter is referred to as the hydrous depolymerisation process in an enclosed
reactor that converts biomass into biocrude oil and chemicals at moderate temperature
(200–400 ◦C) and high pressure (10–25 MPa) [3]. On the other hand, biomass thermo-
chemical liquefaction is a chemical process that delivers a multifunctional liquid without
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costly pre-treatments [4]. This process enables the hydrolysis of the complex structure
of lignocellulosic components into smaller molecules. This is achieved at atmospheric
pressure, in the presence of an acid catalyst at temperatures ranging between 140 and
250 ◦C [5,6]. The advantage of both direct liquefaction processes is that they do not require
drying of the biomass (pre-treatment step), which is essential to the fast pyrolysis pro-
cess [7]. The bio-oil yield of the hydrothermal liquefaction is considerably lower compared
to thermochemical liquefaction and fast pyrolysis [8,9]. Direct liquefaction results in higher
quality bio-oil (high heating value, low moisture content), while pyrolysis leads to lower
quality products [8,10,11].

Thermochemical liquefactions have been applied to a large number of feedstocks such
as forest, agricultural, food, and industrial residues, e.g., eucalyptus [5,12,13], spruce [14],
pinewood [9,15], poplar [16], cork powder [17,18], spent coffee beans [19], paper pulp
sludge [11], swine manure [11], potato peels [20,21], wheat straw [14,22,23], and others.

Bio-oils from biomass thermochemical liquefaction can be converted into useful and
valuable chemicals or used as a biofuel [16]. For instance, bio-oils can be used as adhesive
components [24] or foams [25–28]. On the other hand, bio-oil application as a liquid biofuel
with a high heating value has also been studied [10,11,16,29,30].

Thermochemical liquefaction has been studied, comprising a wide variety of solvents
and catalysts. A Brønsted–Lowry acid catalyst is usually preferred, such as sulphuric
acid [6]. However, some Lewis acids [31], zeolites [32], alkaline catalysts [32], and car-
bonates [33] are described as well. The use of p-toluenesulfonic acid is reported as de-
livering the highest conversion, i.e., bio-oil yield [31], without favouring the secondary
condensation and repolymerisation reactions. Regarding solvents, glycerol, ethylene glycol,
diethylene glycol, 2-ethylhexanol, polyethylene glycol, and some organic carbonates are
among those widely used [6]. The thermochemical liquefaction is usually conducted using
low biomass to solvent ratios from 1:3 to 1:5.

The production of lignocellulosic biomass in maritime pine stands must be carried
out accordingly with a sustainable protocol of forest management with soil preparation,
with thinnings, prunings, and wood harvesting for maximisation of wood productivity,
carbon sequestration, and biodiversity [34,35]. In Portugal, as in other countries in the
Mediterranean Basin, summer wildfires are a major problem which in 2017 claimed in
total for the whole country about 537 kha [36] of burned areas. As such, the county of
Pedrogão Grande was subjected in that year to fires with maximum energy release as
high as 137 GW [37]. Additionally, the Leiria National Forest (LNF), a Portuguese public
maritime pine forest with historical and economic relevance, extending over a sandy plane
area of around 11,000 ha [36], was subjected to an intense passive crown fire in 2017 that
burned approximately 86% [38] of the total area. The fire in LNF extended mainly to crown
foliage with a likelihood pattern wherein the flame ascends to the tree crowns and further
propagates between them [39]. Overall, this firing pattern preserves the wood structure,
with hemicelluloses being the first component to react to flames, followed by cellulose,
whilst lignin is the more difficult component to degrade [40].

The harvesting of dead trees leads to a glut of wood that may lower its prices [41]. The
fire-affected wood can later suffer from bark beetles and fungi, with possible decreases in
wood mechanical strength and financial value as well [42]. Burnt wood should be harvested
immediately to retain most of its potential value and stored in controlled environments,
aiming to lower the degree of decay and degradation [41].

The transformation of the burnt wood into wood fuel may increase its value and fuel
efficiency [43] whilst possibly reducing the required storage space [44]. In this study, we
evaluate the potential use of burned pinewood as feedstock for the liquefaction process.
The results are compared with those from the liquefaction of unburnt pinewood shavings.
The biomass and bio-oils are characterised by infrared spectroscopy, ultimate analysis,
thermogravimetric analysis, and estimation of high heating value. The bio-oil’s energy
densification ratio is also discussed.
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2. Materials and Methods

Several biomaterials were used as feedstock for the liquefaction process. Pinewood
shavings (hereafter referred to as pinewood) were used as reference biomass. The Leiria
National Park kindly supplied samples of slices of burned pinewood obtained from the
fires of 2017. For liquefaction, five fractions were considered: bark, sapwood, heartwood,
branches (Figure 1), and commercial pinewood shavings. The pine branches were collected
from the forest ground.
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Figure 1. (a) Cubed samples and branches; (b) burnt bark; (c) slice of the burnt pinewood.

Firstly, the biomass samples were cut into small cubes (Figure 1c) and dried in an oven
at 110 ± 3 ◦C for 24 h. The drying process was conducted to facilitate the characterisation
since it has no impact on the liquefaction process. Afterwards, the cubes were shredded in
a Retsch© SM 2000 mill equipped with a 4 mm sieve to increase the contact surface area
between the solvent and the feedstock. The reagents were: 2-ethylhexanol, purity ≥ 99%,
p-toluenesulfonic acid (PTSA), purity ≥ 99%, from Sigma-Aldrich, and acetone, technical
grade, acquired from a local gross supplier.

2.1. Liquefaction Procedure

The procedure consisted of a moderate acid-catalysed liquefaction process, in which
the reaction occurs through a solvolysis reaction. The temperature was set based on previ-
ous studies [9]. Higher temperatures may increase unsoluble materials [15,41], humins, and
solvent loss by evaporation [5]. The process occurred at 160 ◦C during the predetermined
reaction time. A glass reactor was fed with the biomass samples and solvent, delivering a
solution with a solvent:biomass ratio of 5:1. The solvent used was 2-ethylhexanol (2-EH),
and the weight of biomass was based on its dry base. The mass of catalyst, PTSA, was 3%
(w/w) of the mass of solvent and feedstock.

Figure 2 depicts the overall procedure flowchart. After the set time, the reactor was
cooled down to room temperature to be further subjected to vacuum-assisted filtration.
The solid residues were washed with acetone to remove any bio-oil residue still present in
the solids. The solid residues were dried in the oven at 110 ± 3 ◦C for 24 h.
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Since the fraction of gaseous products appears in reduced amounts, it was neglected [15].
The solid residues encompass unreacted biomass and insoluble products that resulted
from secondary condensation and repolymerisation reactions. Thus, the bio-oil yield, i.e.,
biomass conversion, was calculated based on the solid residue according to Equation (1).

Biomass yield (%) = (1 − ms0/msi) × 100 (1)

where msi is the mass of dry biomass fed to the reactor, in grams, and ms0 is the mass of
solid residues obtained at the end of the process, in grams.

The solvent of the bio-oil samples was removed using a BUCHI R-215 rotary evapora-
tor, with a BUCHI B-491 heating bath, under a vacuum achieved by a BUCHI V-700 pump,
with monitorisation with a BUCHI V-850 vacuum controller. The heating bath temperature
was set at 100–120 ◦C, the rotation was at 80 rpm. The lowest recorded pressure during the
process was 2.6 kPa. The solvent removal lasted for about 120 min.

2.2. Fourier Transformed Infrared (FTIR-ATR) Analysis of Biomass and Bio-Oil

The FTIR-ATR analysis was performed on a Perkin Elmer Spectrum Two spectrometer
(Waltham, MA, USA) using a diamond ATR crystal. The spectra were captured from 4000
to 600 cm−1 and treated in Perkin Elmer Spectrum IR software.

2.3. Elemental Analysis and Higher Heating Value (HHV)

The chemical composition of the biomass and feedstock regarding carbon, hydrogen,
and nitrogen (dry ash-free basis) was investigated by a LECO TruSpec CHN analyser, whilst
a LECO CNS2000 analyser determined sulphur. Biomass and its derivatives contain mostly
C, H, O elements, which summed up to approximately 97–99%. Additional elements,
like sulphur and nitrogen, were present in negligible amounts, below the detection limit,
and thus were difficult to measure or quantify [9,45]. The oxygen content was assessed
according to Equation (2):

O (%) = 100 − C (%) − H (%) (2)
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The higher heat values (HHVs) were estimated using correlations disclosed in the liter-
ature. Regarding the HHV of biomass, Equation (3) was used as disclosed by Yin et al. [46].
The HHV of bio-oils was assessed via Equation (4) by Mateus et al. [47]. The authors
disclosed that the model was specifically developed for estimating the HHV of bio-oils
obtained via thermochemical liquefaction. Both models presented a very low mean
absolute error.

HHV (MJ/kg) = 0.2949C + 0.8250H (3)

HHV (MJ/kg) = 0.363302C + 1.087033H − 0.1009920 (4)

The energy densification ratio (EDR), a dimensionless indicator, was calculated ac-
cording to Equation (5):

EDR = HHVbio-oil/HHVbiomass (5)

where HHVbio-oil and HHVbiomass are the higher heating values of bio-oil and biomass
samples, respectively.

2.4. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was employed to study the samples’ behaviour at temper-
atures of interest. Bio-oils and solid residues of thermochemical liquefaction of each type of
biomass were examined using Hitachi-STA7200 equipment. The analysis was performed at
25–600 ◦C in a N2 atmosphere, with a 100 mL/min flow and a heating rate of 5 ◦C/min.

3. Results and Discussion
3.1. Chemical Characterisation of Biomass Feedstock

The biomass was characterised before the liquefaction process. Table 1 presents the
biomass’s chemical composition, moisture, and heating value. Even though biomass drying
is usually non-essential in the liquefaction process, we did employ this pre-treatment step
due to water usage during the firefight and the variability among the samples’ moisture
contents. As shown in Table 1, the average moisture content after drying ranged between
2.97% for the bark and 25.18% for the branches. The elementary chemical composition was
similar for all biomasses. The carbon, hydrogen, and oxygen contents ranged within the
intervals 45.83–46.90%, 5.80–6.10%, and 47.30–48.90%, respectively (Table 1). The content of
nitrogen and sulphur in the biomass was below the detection limit, confirming that these
components can be neglected, as previously reported [9,45]. As the chemical composition
of the different types of biomasses was similar, so were the HHV values, ranging between
18.25 and 18.77 MJ/kg.

Table 1. Elemental analysis of pinewood biomass samples collected in Leiria National Forest.

Sample Moisture * (%)
Elemental Analysis (%)

HHV (MJ/kg) O/C 10H/C
S C H N O

B
io

m
as

s

Bark 2.97 <0.5 46.60 6.10 <2.0 47.30 18.77 1.015 1.309

Sapwood 5.20 <0.5 45.10 6.00 <2.0 48.90 18.25 1.084 1.330

Heartwood 14.70 <0.5 46.90 5.80 <2.0 47.30 18.62 1.009 1.237

Branches 25.18 <0.5 46.30 5.90 <2.0 47.80 18.52 1.032 1.274

Pinewood 12.00 <0.5 45.83 6.05 <2.0 48.12 18.51 1.050 1.320

* After drying.

3.2. Biomass Liquefaction

The purpose of this work was to evaluate the possibility of liquefying burnt pinewood
biomass sourced from maritime pine trees after being caught in a wildfire in the Leiria
National Forest in 2017. The flames influenced the bark (the trees’ outer layer) most
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significantly, hence the burned wood’s commercial value would tendentially decrease after
the wildfire.

To evaluate the influence of the fire on the yield of liquefaction, we studied five
biomass samples with reaction periods ranging from 0 to 300 min. Pinewood served as a
reference, following previous work from Amado et al. [9].

The zero time (t = 0) was considered when the mixture reached the predetermined
temperature of 160 ◦C. During the process, there was minimal gaseous fraction formed,
thus we neglected its quantification. After the set time, the reactor was cooled down. No
significant difference in the cooling times, for the different batches, was observed. The
obtained results for the different biomasses are summarised in Figure 3. Biomass conversion
of up to 84% was achieved. The conversion rates are greater than those obtained for fast
pyrolysis (FP) [48–51] and hydrothermal liquefaction (HTL) [52,53].
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Overall, the process resulted in the production of bio-oil from all tested types of
feedstocks. Heartwood led to the highest conversion followed by sapwood, pinewood,
branches, and bark (see Figure 3). The conversions at the zero time resulted from the
liquefaction that occurred during the heating time.

The conversions of pinewood biomass reach a local maximum yield at 60 min. As
previously reported [54–57], the branches present an exception, as their maximum yield
is achieved after 120 min. After reaching the maximum conversion, a solid residue is
formed, leading to the increase in the insoluble solid fraction. These solids (referred to as
tar type and humin content) are commonly associated with recondensation reactions of
decomposition products. This phenomenon leads to a decrease in the liquid fraction yields.
In the case of prolonged reactions, the remaining biomass continues to liquefy, increasing
the conversion. Regarding the bark, it must be pointed out that its lower conversion may
be due mainly to the recalcitrance that is usually associated with bark, which hampers the
hydrolysis of woody fibres [58,59]. The better behaviour in the process of the heartwood
over sapwood may be explained by heartwood presenting better hydrothermal softening
characteristics than sapwood [60].

Overall, the results are in accordance with other works using PTSA as a catalyst. This
catalyst leads to good conversion, while sulphuric acid tends to increase solid residues
with extended process time [31]. Regarding the decomposition mechanism that occurs, it is
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believed that in holocellulose, the oxygen atoms in the glycosidic bonds are protonated by
the acidic catalyst, followed by the hydrolysis of the glycosidic bond and the consequent
formation of carbonium ions [61], which react further, leading to smaller moieties. On the
other hand, lignin follows a similar mechanism to that occurring during the cleavage of
ether and ester bonds [62].

Even though, in some cases, the results demonstrate that the increased processing
time provides a modest improvement in the final conversions, shorter reaction periods
lead to the best (or at least very good) conversion rates and additionally save on energy
consumption during the reaction. These assays have demonstrated that wildfire-affected
pinewood can produce bio-oil with the same conversion rates as non-affected biomasses
described in other works [13,15,19,20,23,31]. Considering the achieved conversions, we
can conclude that liquefaction is a possible option to recover and prevent part of the loss of
value during forest fires.

3.3. FTIR-ATR Analysis for the Biomass and Bio-Oils

The FTIR spectra of the biomass samples and the bio-oils obtained from liquefaction
are shown in Figure 4, with the most prominent peaks highlighted.
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The functional groups of the lignocellulosic biomasses’ spectra are described in Table 2.
Note that the presence of moisture in the biomass is verified in the spectra, with bands
from 3600–3200 cm−1 attributed to O−H stretching bonds that may, to some extent, result
from the water and/or hydroxyl groups. Moreover, the peak at 1633 cm−1, attributed to
the OH bending of water, also reveals the presence of moisture. Those bands are especially
noticeable in the spectra from branch biomass samples, which were the wettest, whilst drier
samples (bark and heartwood) have much less evident bands. In contrast, in the spectra of
the bio-oil (Figure 4b), the 1633 cm−1 peak is absent and the band in the 3600–3200 cm−1

region is less prominent, leading to the conclusion that water is not present in the bio-oil.
Characteristic bands in biomass spectra (Figure 4a) were located in the 2950 cm−1 region,
corresponding to the C−H stretching of CH2 and CH3. At 1731 cm−1, a weak peak corre-
sponding to the C=O stretching is visible, which is associated with hemicellulose and lignin
in raw biomass [6]. The C=C stretching peak is seen at 1599 cm−1, revealing the presence
of aromatics moieties. At 1461 cm−1, the vibrational signal is mainly related to the C–H
asymmetric deformation in –OCH3 and CH2 groups. Other peaks showing the evidence
of aromatic derivatives are present at 1369 and 1264 cm−1, corresponding to aromatic
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C−H deformation and aromatic ring vibration, respectively. The former corresponds to the
syringyl rings in lignin structure, while the latter is related to guaycyl rings. Conversely,
peaks resulting from the carbohydrate components were identified at 896 cm−1, assigned
to C−H out of plane vibration. A peak identified at 1027 cm−1 is related both to lignin
and hemicellulose. The peaks resulting from biomass depolymerisation in the bio-oil
spectra (Figure 4b) confirm the effectiveness of the liquefaction process. The carbonyl peak
(1725 cm−1) of aldehydes or ketones relates to the conversion of cellulose/hemicellulose
into levulinic acid and furfural [63]. Regarding the presence of aromatic derivatives, some
signals are present at 1599, 1378, and 1034 cm−1. At the same time, carbohydrate-derived
compounds are identified at 1461, 1176, 1034, and 814 cm−1. Lastly, the peaks in the
region 2850–2960 cm−1 are possibly related to the presence of solvent residues or their
reaction with the biomass. Overall, the bio-oil spectra reflected the expected chemical
transformations of burned fractions of pinewood biomass during liquefaction, with the
formation of chemical derivatives.

Table 2. ATR-FTIR band assignment (characteristic bands) for the bio-oils and biomass spectra.

Wavenumber (cm−1)
Band Assignment Compound/Group Ref.

Biomass Bio-Oil

3338 3400 OH stretching hydroxyl groups [64]

2981
2925
2889

2957
2957
2860

CH2−, CH3− stretching methylene and methyl groups from holocellulose
and lignin [9]

1731 1725 C=O stretching ketones and esters [54]

1633 – OH bending water [65,66]

1599 1599 C=C stretching aromatic ring [64]

1461 1461 OCH3–, –CH2–, C−H carbohydrates [67]

1369 1378 aromatic C–H deformation syringyl rings (from lignin) [54]

1264 – guaycyl rings [68]

– 1176 aromatic ring vibration cellulose [69]

1027 1034 C−O−C asymmetric stretching cellulose, hemicellulose, lignin [68]

896 – C−O, C=C, and C−C−O hemicellulose [68]

– 814 stretching carbohydrates [30]

3.4. Elemental Analysis and HHV Calculation of the Bio-Oils

The elemental analysis, estimated HHV, ultimate analysis of the bio-oils, and other
fuels used for comparison purposes can be found in Table 3. The heating value of bio-oils
exceeds or is very similar to the HHVs of coals while being lower by about 10 MJ/kg than
the hydrocarbons. These tendencies are reflected in the O/C ratios, which are higher for
bio-oils than for hydrocarbons, anthracite, or bituminous coal. As expected, the liquefaction
process decreased the O/C ratios of bio-oil products, averaging ~0.28, by comparison with
the equivalent ratios in biomass feedstock, averaging ~1 (Table 1). The tendencies for the
H/C ratios are not as obvious, as the values for bio-oil are similar to the hydrocarbons and
higher than those from coals.
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Table 3. Moisture content, elemental analysis, and HHV of bio-oil produced from different types of biomasses after 60 min.

Sample Moisture *
(%)

Elemental Analysis (%) HHV
(MJ/kg) O/C 10H/C

EDR *
(%)S C H N O

B
io

-o
il

s

Bark 0.96 <0.5 68.79 10.99 <2.0 20.22 34.90 0.294 1.598 1.86
Sapwood 0.98 <0.5 70.30 11.20 <2.0 18.50 35.85 0.263 1.593 1.96

Heartwood 0.86 <0.5 70.90 10.10 <2.0 19.00 34.82 0.268 1.425 1.87
Branches 0.84 <0.5 66.65 10.20 <2.0 23.15 32.96 0.347 1.530 1.78
Pinewood 0.51 <0.5 69.95 10.66 <2.0 19.39 35.04 0.277 1.524 1.89

C
oa

ls

Anthracite [70] – 0.83 91.60 3.50 1.60 2.39 35.63 0.026 0.382 –
Lignite [70] – 0.61 60.51 4.01 1.22 33.66 21.52 0.556 0.663 –

Bituminous coal [70] – 0.43 81.80 5.00 1.50 11.21 33.69 0.137 0.611 –
Coal [70] – 0.41 78.31 4.71 2.30 13.50 30.86 0.172 0.601 –

H
yd

ro
ca

rb
on

s Kerosene [70] – 0.10 85.80 14.10 0.00 0.00 46.50 0.000 1.643 –
Gasoline [70] – 0.10 85.50 14.40 0.00 0.00 46.88 0.000 1.684 –
Fuel oil 6 [70] – 0.05 85.70 10.50 1.70 2.00 42.30 0.023 1.225 –
Fuel oil 2 [70] – 0.00 87.30 12.90 0.00 0.01 43.80 0.000 1.478 –

Diesel [70] – 0.30 86.50 13.20 0.00 0.00 45.70 0.000 1.526 –

Pitch [70] – 0.00 59.67 7.27 0.00 33.05 26.70 0.554 1.218 –
Peat [70] – 0.17 56.88 5.98 1.53 35.38 22.65 0.622 1.051 –

* EDR—energy densification ratio.

Accordingly, Figure 5a shows a significant improvement of the HHV of the bio-
oil compared to the biomass feedstock. The HHV of the bio-oils ranged from 32.96 to
35.85 MJ/kg, with the highest value recorded for the bio-oil from the sapwood. On average,
liquefaction increases the HHV of the samples by 87%. Despite some variation among the
calculated values of the HHV of the bio-oils from distinct biomass fractions, the differences
were insignificant. Accordingly, the bio-oils’ energy gain is clear by evaluating the energy
densification ratio, ranging from 1.86–1.96. This improvement is associated with the loss
of oxygen (~61%) and water during liquefaction, increasing the carbon and hydrogen
average mass fractions by ~50% and ~78%, respectively. Thermochemical liquefaction
described in this work results in higher HHV values than the bio-oils obtained via fast
pyrolysis. This phenomenon is explained by the higher oxygen content in the fast pyrolysis
process [48–51,71–73].
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The van Krevelen diagram shown in Figure 5b is a comprehensive way to compare
samples with different oxygen and hydrogen contents. The chemical composition makes
the bio-oils and the liquid hydrocarbon fuels the most alike, as observed in the diagram.
The bio-oils’ data points shift from the biomasses’s, approaching hydrocarbons. This
indicates a greater chemical similarity to the latter. Species with higher hydrogen content
ignite more easily, hence burning “cleaner”.

The produced bio-oils present higher oxygen content than the hydrocarbon-based
fuels, therefore they do not present an alternative to the applications where lower oxygen
content is required. However, their quality is sufficient for industrial uses, serving as a
biofuel replacement of coal.

The bio-oil moisture content is low (0.51–0.98%) since water evaporates during lique-
faction. Additionally, the bio-oils from thermochemical liquefaction are much drier than
those from fast pyrolysis [48–51,71–74].

3.5. Thermogravimetric Analysis of the Biomass and Bio-Oils

Thermal stability is an important factor in selecting a material for a specific end
use, predicting product performance and improving its quality. The TGA results (mass
loss and DTG) are shown in Figure 6 in five graphs concerning each biomass and its
respective liquefaction product. Each bio-oil sample consistently lost most of its mass at
lower temperatures (100–300 ◦C) than their corresponding biomasses, which started to lose
mass from 160 ◦C, systematically slowing down at 400 ◦C.
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Considering the thermogravimetric analysis as a proxy to determine the biopolymeric
composition in terms of cellulose, hemicellulose, and lignin [75], the TGA biomass anal-
ysis showed that the TGA curves were very similar, proving low variability in chemical
composition within the tested samples.

A slight difference was spotted for heartwood, where the DTG curve showed a
pronounced peak at 310 ◦C, corresponding to a slightly higher amount of hemicellulose
and amorphous cellulose [76], though this minor variation is insignificant. Within all
biomass samples, the initial loss stage begins at ~28 ◦C and ends at ~130 ◦C (Table 4).

Table 4. TG temperatures and mass loss of the biomasses and bio-oils.

1st Stage 2nd Stage 3rd Stage 4th Stage

Sample Temp.
Range (◦C)

Mass
Loss (%)

Temp.
Range (◦C)

Mass
Loss (%)

Temp.
Range (◦C)

Mass
Loss (%)

Temp.
Range (◦C)

Mass
Loss (%)

B
io

m
as

s

Bark

25–135

7

160–340

31

340–400

27

400–600

12
Sapwood 7 33 35 8
Heartwood 8 28 28 12
Branches 12 28 29 7
Pinewood 8 32 32 13

B
io

-o
il

Bark 50–162 30 162–300 37

300–600

14

— —
Sapwood 50–185 47 185–300 28 9
Heartwood 50–185 35 185–300 34 11
Branches 50–170 36 170–300 34 10
Pinewood 50–185 23 170–300 41 12

The mass loss within the first range of the interval 25–135 ◦C averaged ~ 9% due
to the removal of moisture and light volatile components from the biomass. The second
stage (160–340 ◦C) was characterised by an average mass loss of ~ 30.4%. This stage,
often described as active pyrolysis, is related to the degradation of hemicellulose and
cellulose [76]. The third stage (340–400 ◦C) weight loss averaged about ~ 30.2% of mass
loss (Table 4), with the maximum mass loss rate. The third stage is also considered an
active pyrolysis stage. The thermal decomposition profiles of holocellulose and lignin are
well defined [76], with the decomposition temperature ranges of hemicellulose, cellulose,
and lignin being about 210–325, 310–400, and 160–900 ◦C, respectively. Even though
the active pyrolysis stage degrades both hemicelluloses and cellulose, the simultaneous
decomposition of lignin occurs in the second stage and predominantly in the third stage.
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In the last stage (400–600 ◦C) there is a slight mass loss, attributed to the slow degra-
dation of lignin to produce char as residue. This stage is also called passive pyrolysis and
similar behaviour has been previously disclosed for other biomasses [76].

The TGA analysis shows that bio-oils from liquefaction are more volatile than the
original biomasses, requiring lower temperatures to vaporise and decompose. Indeed,
the lower energy required to combust them alongside the higher HHV (averaging about
35 MJ/kg) makes bio-oils from burned wood an attractive potential energy source for
heavy industrial applications such as cement kilns.

The TGA curves also showed that the bio-oils decompose in a three-stage pattern
(Table 4). The onset thermal temperature of thermal decomposition was ~50 ◦C, and the
first stage, ending at 162–185 ◦C, corresponds to the lighter derivatives with an average
loss of 37% of the samples’ mass. The first stage showed a slightly higher mass loss than
the other two stages. The second stage, which persisted up to 300 ◦C, showed an average
mass loss of ~33%, probably corresponding to the bio-oil’s heavier components. Note
that bio-oil requires lower temperatures to decompose compared to the initial biomass.
In the third stage (300–600 ◦C), one identifies a slight loss of mass, on average ~11%,
attributed to the formation of non-degradable ash and carbon [77] resulting from the
sample’s slow degradation. The DTG curves show that the bio-oil drops weight at an early
stage, confirming the presence of a lighter product than the biomass counterparts. In fact,
most of the mass loss is verified to occur below ~220 ◦C, hence strongly supporting their
potential to be used in combustion processes [78].

4. Conclusions

Our work demonstrates that liquefaction of burned pinewood biomass from forest
fires delivers similar conversion rates as non-burned wood. Sapwood and heartwood
have the highest conversion rate, reaching 82% and 84%, respectively. The bark fraction,
corresponding to the outer trunk layer, is the feedstock with the lowest conversion rate
(55%), as it is the most affected by wildfire. As expected, the bio-oils from the burned
biomass fractions showed lower moisture content and a higher HHV (ranging between
32.96 and 35.85 MJ/kg) than the initial biomasses. This increase in HHV resulted from
oxygen loss and the increase in carbon and hydrogen mass fractions. The liquefaction after
60 min led to the highest conversion for the bark and heartwood. Regarding sapwood,
branches, and pinewood shavings, slightly higher conversions (by up to 8%) were obtained
after longer times, whilst consuming more energy.

Additionally, the van Krevelen diagram indicates that the produced bio-oils are
closer and more chemically compatible (in terms of hydrogen and oxygen content) to the
hydrocarbon fuels than to the initial biomass counterparts. Our results show that lower
temperatures vaporise the lighter components of the bio-oils. Based on these results, we
conclude that bio-oil from burned woods could be a viable alternative as an energy source
for heavy industrial applications, such as cement kilns.

Overall, biomass from forest fires can be utilised in the liquefaction process without
compromising its efficiency and performance. Through liquefaction, we can mitigate the
negative effect of wildfires by recovering part of the lost value of burned woods.
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