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Abstract: A novel branch-trunk Ag hierarchical nanostructure was synthesized via a galvanic
replacement reaction combined with microwave-assisted synthesis using Te nanowire as a sacrificial
template. The Te nanowire was synthesized via a hydrothermal process. We further investigated the
potential application of the obtained hierarchical nanostructures in electrochemical sensor analysis.
The results showed that the as-prepared sensor exhibited a wide linear range with 0.05 µM to
1.925 mM (R = 0.998) and the detection limit was estimated to be 0.013 µM (S/N = 3). These results
indicate the branch-truck Ag hierarchical nanostructures are an excellent candidate material for
sensing applications.
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1. Introduction

Recently, three dimensional (3D) hierarchical nanostructure have provoked considerable interest
due to their rich architectures, distinct properties and various novel applications [1–4]. Controlled
synthesis of hierarchical nanostructure is highly desirable, owing to their structure merits. Among
the myriad of possible nanostructures, branch-truck nanostructures have been studied in recent years
because a great deal of branch nanostructure on a nanowire backbone could provide an even higher
surface-to-volume ratio compared to single nanowires. For example, Her et al. proposed a simple
two-step thermal vapor transport process to prepare brush-like p-Te/SnO2 hierarchical nanostructures,
which were used to detect NH3 and exhibited excellent catalytic behavior [5]. Khoang et al. designed
a branch-truck hierarchical SnO2/ZnO nanostructure by combining a thermal evaporation method
and a hydrothermal approach. These SnO2/ZnO hierarchical nanostructures were systematically
investigated for ethanol-sensing. These results revealed that the electrochemical sensors based on
hierarchical nanostructures showed high sensibility and selectivity [6].

H2O2 is widely used in fields such as organic synthesis [7], environmental detection [8], biology [9],
clinical [10], pharmaceutical [11], food production [12], sterilization [13] and so on [14,15]. In particular,
it plays a role of considerable importance in the metabolic processes of organisms [16]. Therefore,
it is critically important to develop an accurate, fast and reliable method for the detection of H2O2.
Compared with other analytical methods for detecting of H2O2 [17–21], electrochemical sensors have
become one of the hottest topics due to their higher sensitivity, simpler operation and lower cost [22–24]
However, direct reduction of H2O2 at bare electrodes show poor sensitivity, low selectivity and poor
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reproducibility. Because of the high electrochemically active area as well as excellent electronic transfer
capability, metal nanomaterials have been tried out as sensing materials to modify the electrode surface
for developing H2O2 sensors with high sensitivity and good selectivity.

As a typical noble nanomaterial, Ag nanomaterial exhibits excellent conductivity as well as high
catalytic properties. This was because nanoscale Ag show a rapid specific surface area increase and
more atoms exposed on the surface make for increased active sites. In the catalytic decomposition of
H2O2, Ag nanomaterials could accelerate the electron transfer rate, reduce the reaction energy and
amplify the detection signal. For example, we have reported high sensitivity H2O2 sensors based on a
perpendicular Ag nanowires array [25]. The catalytic properties of nanomaterials are closely related
to their size, morphology and the types of composites. Therefore, it was important to prepare novel
Ag nanostructures with superior function. Ag nanoparticles [26], nanowires [27], nanoplates [28],
hollow hierarchical microspheres [29,30] have all been reported as sensing materials for developing
H2O2 electrochemical sensors. However, to the best of our knowledge, up to now, no branch-truck
Ag nanostructures have been reported for this purpose. Branch-trunk Ag hierarchical nanostructures
provide a very high electrochemically active area and thereby lead to high detection sensitivity. They
could also act as enhanced elements for effectively accelerating the electron transfer between the
electrode and probe molecules, which would lead to a rapid current response and in the meantime
reduce the overpotential of electrochemical reactions.

In this paper, we report the synthesis of branched-truck hierarchical nanostructures containing
Ag nanowire trunks and Ag nanorod branches by a simple two-step synthesis pathway. High-quality
single crystalline Te nanowire backbones were synthesized using a hydrothermal approach, whereas
Ag nanorod branches were subsequently grown perpendicularly to the axis of Te nanowires via
microwave-assisted synthesis (EG as solvent and reducing agent, PVP as polymer surfactant and CuCl2
as control agent). The as-prepared branched-truck hierarchical nanostructure-modified electrode was
used as a novel high-performance H2O2 sensor. The experimental data illustrated that the branch-truck
Ag hierarchical nanostructure-modified electrodes demonstrated excellent catalytic performance for
H2O2 reduction, while detection with a wide linear range, good selectivity and long-term stability
was achieved.

2. Experimental

2.1. Materials

K3Fe(CN)6, K4Fe(CN)6, ammonium hydroxide, acetone, hydrazine (50%), KH2PO4, K2HPO4 were
purchased from Tianjin Damao Chemical Factory (Tianjin, China). PVP [poly-(N-vinyl-2-pyrrolidone)]
was obtained from Sigma-Aldrich (Darmstadt, Germany), AgNO3, Na2TeO3 and H2O2 was obtained
from Xiya Reagent (Chengdu, China). All the chemicals were of analytical grade. Distilled water was
used in the experiments.

2.2. Apparatus

The electrochemical experiments were performed using a CHI660D electrochemical workstation
(Chenhua, Shanghai, China). A standard three-electrode system (Ag branch-trunk hierarchical
nanostructures modified electrode as work electrodes, Pt as the counter electrode and Ag/AgCl
(saturated KCl) as reference electrode) was used in all the experiments. Scanning electron microscopy
(SEM) analyses were performed using a 6701F instrument (JEOL, Tokyo, Japan). X-ray diffraction (XRD)
analysis was carried out on an Ultima IV X-ray diffractometer (Rigaku, Tokyo, Japan). A microwave
oven with 10–500 W power was used.

2.3. Synthesis of Branch-Truck Ag Hierarchical Nanostructures

Te nanowires were synthesized according to the reference [31]. Briefly, 1.0 g PVP and 0.0922 g of
sodium tellurite were dissolved in 35 mL of double-distilled water to form a homogeneous solution
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under vigorous magnetic stirring at room temperature. Then 1.65 mL of hydrazine hydrate and
3.35 mL of aqueous ammonia solution were added into the previous solution. The final solution was
transferred into a Teflon-lined stainless steel autoclave (50 mL in total volume), which was closed and
maintained at 180 ◦C for 4 h, and then the sample was allowed to cool to room temperature. 110 mL
of acetone was added into the final solution to precipitate the product, which was then centrifuged
and washed with double-distilled water and absolute ethanol several times, respectively. Synthesis
of branch-truck Ag hierarchical nanostructure: in brief, 15 mL of 1 mM CuCl2/EG was prepared
firstly. Then, 1.27 mg of Te nanowires and 1 g PVP was added into the above solution, followed by
the addition of 5 mL of 20 mM AgNO3/EG solution. The resulting solution was then transferred to a
microwave for heating reaction at (temperature). After the reaction, the solution was cooled to room
temperature. The final product was obtained, in order to remove the remaining CuCl2, EG and PVP,
after the solution was centrifuged and washed in acetone, alcohol and deionized water at a speed of
9000 r/min for 5 min each, respectively.

2.4. Fabrication of Branch-Truck Ag Hierarchical Nanosturture Sensor

First, bare glass electrode (GCE) was polished on suede with 1.0 and 0.3 µm Y-Al2O3 powder,
respectively. The electrodes were washed with ethanol and double distilled water for 20 min, and then
the performance of bare glass electrodes were detected in K3Fe(CN)6/K4Fe(CN)6. 1 mg branch-truck
Ag hierarchical nanostructures were dispersed in 1 mL Nafion solution (1%) for 10 min. The suspension
solution was dispersed onto a GCE surface with a microsyringe and dried at room temperature.

3. Results and Discussion

3.1. Characterization

Te nanowires were used as substrate and templates to prepare the branch-truck Ag hierarchical
nanostructures. Figure S1 shows the SEM image of the as-prepared Te nanowires with a diameter of
several hundred nanometers. XRD patterns of the Te nanowires were showed in Figure S2. All peaks
can be indexed with the standard JCPDS card no. 36–1452 which confirms the hexagonal phase of
tellurium nanowires. The peaks observed at 2θ values of 23.08◦, 27.72◦, 38.36◦, 40.52◦, 43.44◦, 45.98◦,
46.92◦, 49.63◦, 56.82◦, 62.78◦, 63.93◦, 65.72◦, 67.64◦, 71.92◦, and 75.24◦are assigned to the diffractions
from (100), (101), (102), (110), (111), (003), (200), (201), (202), (113), (210), (211), (104), (212) and (304)
planes, respectively. Figure S3 show cyclic voltammograms of Te nanowires modified electrode in PBS
solution with scan rate of 50 mVs−1. A pair of sharp redox peaks at +0.264 V and −0.74 V are due to
the self-redox of Te nanowires [32].

3.2. The Influence of Synthesis Condition:

When Te nanowires were used as precursor and template, the hierarchical Ag nanostructure was
obtained via microwave-assisted synthesis by adjusting the synthetic parameters. In the presence of
PVP and CuCl2, the microwave power was set at 300 W and the reaction time was set at 30 s, Te-Ag core
shell nanowire backbones were found to be fully covered by Ag thin layers with abundant flake-like
Ag nanostructures (Figure 1A,B).

When the reaction time was prolonged to 60 s, complete nanorods with about 50–80 nm in width
and 100–300 nm in length grew perpendicularly on the surface of the nanowires (Figure 1C,D). We
further increased the reaction time to 90 s, and the branched Ag nanostructure was still growing in
size. Ag nanorods eventually completely covered the nanowire backbones to form branch-stem Ag
hierarchical nanostructures with an average diameter of ca. 100 nm and lengths of several hundreds of
nanometers (Figure 1E,F). When the microwave power was set at 500 W and the microwave time was
set at 90 s, vertical nanoplates will spring out of the Ag nanowire backbones to form Ag nanoplates
on the surface of Te nanowire structures (Figure S4A,B). Vertical nanoplates can be generated either
sparsely or densely by increasing the number of platelets at higher growth temperatures and lower
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pressures [33]. In the absence of PVP and CuCl2, when the microwave power was set at 300 W and the
microwave time was set at 90 s, Ag nanoparticles with irregular sizes and shapes were found to be
generated on the surface of Te nanowires whereas no nanorods were observed on the Ag nanowires
backbone (Figure S5A,B). This is because PVP, as a surfactant, will direct the growth of Ag to the
nanorod structure form [34–36].
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Figure 1. Typical SEM images of the branch-trunk Ag hierarchical nanostructures of different reaction
time. (A,B) 30 s ; (C,D) 60 s; (E,F) 90 s.

The XRD patterns of as-synthesized branch-stem Ag hierarchical nanostructures with various
growth times are shown in Figure 2. The XRD patterns of 60 s branch-stem Ag hierarchical
nanostructures is the mixture of diffraction peak of silver and tellurium. For comparison, the peaks of
90 s branch-stem Ag hierarchical nanostructures occurring at 38.14◦, 44.32◦, 64.43◦, 77.56◦, and 81.54◦

were attributed to diffractions from the (111), (200), (220), (311), and (222) crystal planes, which were
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consistent well with a face-centered cube of Ag. No diffraction peaks corresponding to Te were
found, which suggested that the Te nanowire backbone have been completely replaced with Ag.
The schematic illustration of the growth mechanism of Ag branches on the Ag nanowire backbones by
microwave-assisted synthesis was shown in Figure 3.
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Figure 3. Schematic illustration of the formation mechanism of branch-trunk Ag hierarchical
nanostructures and branch-trunk Ag hierarchical nanostructure-modified GCE used for detecting H2O2.

An enormous amount of silver nanoparticles was synthesized via microwave-assisted synthesis.
Ag cations replace Te in Te nanowires to form Ag nanoparticles at Te nanowires surface via a galvanic
displacement reaction. The reaction between Te nanowires and Ag+ can be formulated as follows:

Ag+ + Te + 3H2O = Ag + TeO3
2− + 6H+ (1)
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As the galvanic replacement reaction proceeded, the Ag nanoparticles would grow along Ag
crystal seeds on the surface of the Ag nanowire to form nanospikes and nanoflakes. As the reaction
continued, the Ag nanospikes and nanoflakes increased in size gradually and formed nanorods. Finally,
high-quality Ag nanorods were produced and attached to the Ag nanowires.

Figure 4 depicts cyclic voltammograms (CVs) of bare GCE (a) and branch-truck Ag hierarchical
nanostructures/GCE (b) in 0.1 M PBS (pH = 7.4) in the presence of 0.5 mM H2O2 with scan rate
of 50 mVs−1. A strong peak at about −0.48 V, attributed to the reduction of H2O2, was seen on
branch-truck Ag hierarchical nanostructures modified GCE whereas a very small reduction peak was
obtained at −0.61 V for H2O2 at bare GCE. The insert of Figure 4 shows the cyclic voltammogram of
bare GCE in 0.1 M PBS (pH = 7.4) in the presence of 0.5 mM H2O2 with scan rate of 50 mVs−1.
Compared with bare GCE, a positively shifted peak potential of 110 mV was observed on the
branch-truck Ag hierarchical nanostructures modified/GCE. There was an increase in current by
increasing H2O2 concentration. When H2O2 concentration was increased from 2 mM to 8 mM, an
increase reduction current was observed (Figure 5). Thus, branch-truck Ag hierarchical nanostructures
could greatly reduce the overpotential and increase the catalytic current toward the reduction of H2O2,
which was important for improving the high sensitive and selective detection for H2O2.
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Direct electrochemical reduction of H2O2 at ordinary solid electrodes shows low electrode kinetics
and high overpotential. Based on the available literature, the mechanism of H2O2 electroreduction can
be described as follows [37]:

OH (aq) + e−
 OH− (2)

H2O2 + e−
 OH (aq) + OH− (3)

2OH− + 2H+ 
 2 H2O (4)

In the case of silver-catalyzed decomposition of H2O2, the reaction turned more irreversible [37]:

H2O2
Ag→ 1/2 O2 + H2O (5)

O2 + 2e− + 2H+ → H2O2 (6)

The O2 produced in the catalytic reaction would induce detection signal on the electrode.
According to some theories in the literature, the mechanism of the O2 reduction on the electrode
as described below [38,39]:

O2 + e−
 [O·−] (ads) (7)

[O·−] (ads) + H2O 
 HO2
·
(ads) +OH− (8)

Then:
HO2·(ads) +O2

·−
 HO2
−

(ads) +O2 (9)

or:
HO2

·
(ads) +e−
 HO2

−
(ads) (10)

Figure 6 shows the amperometric response of the branch-truck Ag hierarchical
nanostructures/GCE with gradually additions of H2O2 to the PBS solution under stirring
conditions. As the potential was set at −0.5 V, the branch-truck Ag hierarchical nanostructures/GCE
responded rapidly and achieved steady-step current by adding H2O2 to the solution. The insert of
Figure 6 shows the low concentration range. The corresponding linear calibration curve shown in the
inset of Figure 7 reveals there were a good linear relationship between the reduction peak current
and the H2O2 concentration with the range of 0.05 µM to 1.925 mM with a correlation coefficient of
0.998. The regression equation was I (µA) = −83.18 C − 2.1897 (C is the concentration of H2O2 in mM).
The detection limit of H2O2 sensors was 0.013 µM (S/N = 3).

The sensitivity was calculated to be 325.52 µA mM−1 cm−2. The as-fabricated H2O2 sensors were
compared with those of Ag nanomaterials-based non-enzymatic H2O2 sensors in Table 1. The proposed
method was better than the previous reports. To illustrate the feasibility in practical sample analysis of
the proposed branch-truck Ag hierarchical nanostructures/GCE the determination of H2O2 in milk
samples were studied. The real samples were diluted 10 times with water and diluted milk samples
were streamed into five groups separately (S. No 1, S. No 2, S. No 3, S. No 4, S. No 5), and then
different concentrations of H2O2 (0.01, 0.05, 0.10, 0.15, and 0.20 mM) were spiked into five groups
(S. No 1, S. No 2, S. No 3, S. No 4, S. No 5) of practical samples. The chronoamperometric responses
were recorded of the spiked concentration, measured concentration of H2O2, and relative standard
deviation (RSD) (three repeated experiments). The results, listed in Table 2, showed good reliability
and reproducibility for the branch-truck Ag hierarchical nanostructures/GCE.
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Table 1. Comparison of the fabricated sensor with other Ag material-based non-enzyme sensors for H2O2.

Electrode Sensitivity
(µA mM−1 cm−2)

Linear Range
(µM) LOD (µM) Ref

Ag NPs/rGO/GCE 225 50–5000 10 [40]
Ag Y/CPE 650.7 20–5000 1.4 [41]

Ag NPs/rGO/GCE — 10–6000 1.8 [42]
Ag-Au@Cu2O NWs/GCE — 100–9000 1.1 [43]

AgNPs/SBA-16/GCE 816.6 20–8000 2.95 [44]
Ag@SiO2@Ag/GCE 56.07 5–24,000 1.7 [45]

AgNPs/X-CPE 60.6 20–11,760 9.1 [26]
Ag/boehmite NTs/rGO/GCE 80.14 0.5–10,000 0.17 [46]

branch-truck Ag HN/GCE 325.52 0.05–1925 0.013 our report

Where GCE—glassy carbon electrode, CPE—carbon paste electrode, Ag NPs—Ag nanoparticles, rGO—reduced
grapheme oxide, Ag Y—Ag nanoparticles arrays, Ag-Au@Cu2O NWs—Cu2O nanocubes decorated by
Ag-Au alloy nanoparticles, SBA-16—mesoporous SBA-16 nanoparticles, Ag@SiO2@Ag—Ag@SiO2@Ag, X—NaX
nanozeolite, boehmite NTs—Ag decorated boehmite nanotubes, branch-truck Ag HN—branch-truck Ag
hierarchical nanostructures.
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Table 2. The practical sample analysis result of hydrogen peroxide for the branch-truck Ag hierarchical
nanostructures/GCE in pH 7 PBS (three repeated experiments).

S. No Added Concentration (mM) Found Concentration (mM) Recovery (%) RSD (%)

1 0.0100 0.01012 101.2 3.1
2 0.0500 0.05005 100.5 1.6
3 0.1000 0.09987 99.87 3.2
4 0.1500 0.15015 100.1 5.6
5 0.2000 0.01996 99.8 1.8

Where S. No 1—diluted milk sample 1, S. No 2—diluted milk sample 2, S. No 3—diluted milk sample 3,
S. No 4—diluted milk sample 4, S. No 5—diluted milk sample 5.

In practical samples analysis, some coexisting biomolecules can cause serious interference in the
detection of a single component. Possible interfering species for detecting H2O2 such as dopamine
(DA), ascorbic acid (AA), glucose and uric acid (UA) were investigated by amperometric response
(Figure 8) with additions of 100 µL 1 mM H2O2, 1 mM H2O2, 10 mM AA, 10 mM DA, 10 mM UA and
10 mM glucose and 200 µL 1 mM H2O2. The branch-truck Ag hierarchical nanostructures/GCE showed
a high sensitivity amperometric response to H2O2 whereas there is no obvious amperometric response
for the interfering species AA, glucose and UA. Additionally, the interferent DA only produces a weak
reduction current at −0.5 V. Therefore, at an applied potential of −0.5 V coexistint interferents do not
interfere with the selective determination of H2O2.
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As important evaluation sensor parameters, the repeatability and stability of the H2O2 sensors
were investigated. The branch-truck Ag hierarchical nanostructures modified electrodes were used to
detect 1 mM H2O2 with the applied potential range of −1.0 V to 1.0 V. The catalytic current decreased
to 90.5% after 10 scanning cycles, illustrating that the as-prepared sensor had highly reproducibility
(Figure 9). Furthermore, the relative standard deviation (RSD) for five branch-truck Ag hierarchical
nanostructures modified electrodes to detect the same 0.5 mM H2O2 solution was 4.1%, further
indicating the good reproducibility of the branch-truck Ag hierarchical nanostructures-based H2O2

sensor. To study the stability of the sensor, the branch-truck Ag hierarchical nanostructures modified
GCE was tested after 21 days, 90% of its initial current response was remained. These results show the
sensor has satisfactory performance.
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