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Generalized Linear Models for Flexible

Parametric Modeling of the Hazard Function

Benjamin Kearns , Matt D. Stevenson, Kostas Triantafyllopoulos,

and Andrea Manca

Background. Parametric modeling of survival data is important, and reimbursement decisions may depend on the
selected distribution. Accurate predictions require sufficiently flexible models to describe adequately the temporal
evolution of the hazard function. A rich class of models is available among the framework of generalized linear mod-
els (GLMs) and its extensions, but these models are rarely applied to survival data. This article describes the theoreti-
cal properties of these more flexible models and compares their performance to standard survival models in a
reproducible case study. Methods. We describe how survival data may be analyzed with GLMs and their extensions:
fractional polynomials, spline models, generalized additive models, generalized linear mixed (frailty) models, and
dynamic survival models. For each, we provide a comparison of the strengths and limitations of these approaches.
For the case study, we compare within-sample fit, the plausibility of extrapolations, and extrapolation performance
based on data splitting. Results. Viewing standard survival models as GLMs shows that many impose a restrictive
assumption of linearity. For the case study, GLMs provided better within-sample fit and more plausible extrapola-
tions. However, they did not improve extrapolation performance. We also provide guidance to aid in choosing
between the different approaches based on GLMs and their extensions. Conclusions. The use of GLMs for para-
metric survival analysis can outperform standard parametric survival models, although the improvements were mod-
est in our case study. This approach is currently seldom used. We provide guidance on both implementing these
models and choosing between them. The reproducible case study will help to increase uptake of these models.
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In many medical studies, the outcome of interest is the
time until an event occurs. Examples include mortality,
disease progression, or hospital admission. To aid with
decision making, the hazard function is estimated from
parametric models. A prominent example is health tech-
nology assessment, which aims to quantify both the ben-
efits to patients and the costs a health care system would
incur if a treatment were funded.1 To allow for fair com-
parisons across different treatments, it is important that
all relevant benefits and costs are quantified, which often
requires use of a lifetime horizon.2 However, time-to-
event (TTE) data with complete follow-up are rarely
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available. As such, parametric models may be used to
extrapolate model outcomes to a lifetime and hence
obtain estimates of mean TTE (such as mean survival).3,4

Standard 1- and 2-parameter models are available,
including the exponential, Weibull, Gompertz, log-logistic,
and lognormal models.5 However, these models may not
be sufficiently flexible to capture complex, time-varying
hazards.6,7 In the next section, we introduce generalized
linear models (GLMs) and show that standard survival
models may be expressed as GLMs. This provides insight
into the limitations of the standard models: they all
impose an assumption of linearity. More flexible para-
metric models that relax this assumption are required. A
number of these have been proposed within the framework
of GLMs and their extensions, but to date, they are sel-
dom used to analyze TTE. These are described in the sec-
tions titled ‘‘Relaxing the Assumption of Linearity’’ and
‘‘Extensions to the GLM,’’ with an overview in the
‘‘Theoretical Comparison of Approaches’’ section. An
application of these is described in the section titled
‘‘Empircal Comparison of Approaches,’’ which demon-
strates that the GLM-based models can provide superior
within-sample estimates and more plausible extrapolations
than standard survival models. Concluding remarks are
provided in the ‘‘Discussion’’ section.

This article has 2 aims. The first is to propose the use
of GLMs for the analysis of TTE data. This includes
flexible GLMs such as fractional polynomials (FPs) and
restricted cubic splines (RCS), which are closely related
to Royston-Parmar (R-P) models. The second aim is to
present generalizations to GLMs: generalized linear
mixed models (GLMMs),8 generalized additive models
(GAMs),9 and dynamic generalized linear models
(DGLMs).10,11

Analyzing TTE Data within a GLM Framework

Standard Survival Models as Linear Models

The framework of GLMs extends (generalizes) the stan-
dard linear model to response variables with distributions

in the exponential family, including normal, Poisson,
binomial, gamma, and inverse Gaussian distributions.12

An advantage of GLMs is that they provide a unified
framework—both theoretical and conceptual—for the
analysis of many problems, including linear, logistic, and
Poisson regression.13 A random variable Y belongs to the
exponential family of distributions if its probability den-
sity (or mass) function can be written as follows:

f (yt; u)= exp½a(y)b(u)+ c(u)+ d(y)�; ð1Þ

where a(y) and d(y) are functions of the data, whereas
b(u) and c(u) are functions of the distribution parameter
u and assumed to be twice differentiable. Equation 1 may
also include other parameters, which are treated as nui-
sance parameters.13 Examples for the normal, Poisson,
and binomial distributions are provided in Table 1. For
these, a(y)= y.

For a TTE GLM, the observed outcome is the num-
ber of deaths during an interval: yt. This is linked to the
at-risk population at time t (denoted by tt) using a distri-
bution from the exponential family. Use of the Poisson
distribution assumes that yt = tt 3 lt, where lt is the
hazard at time t. Alternatively, use of the binomial distri-
bution assumes that yt = t1 3 pt, where pt is the cumula-
tive probability of death. The model specification is as
follows12:

Observationmodel : E½yt�=mt 3 tt,

yt ; exponential family distribution ð2aÞ

Response function : mt = h(xT
t b); ð2bÞ

where E½�� denotes the expected value, the bold font
denotes a vector, and

b is a vector of parameter coefficients to be estimated
from the data;

xt is a covariate, assumed known (with transpose xT
t );

and

Table 1 Normal, Poisson, and Binomial Distributions as Members of the Exponential Familya

Distribution b(u) c(u) d(y)

Normal m

s2 - m2

2s2 � 1
2
log(2ps2) �y2

2s2

Poisson logu �u �logy!
Binomial log( p

1�p
) nlog(1� p)

log
n

y

� �

am and s2 are the mean and variance, p is the probability, n is the number of trials, and
n

y

� �
= n!

y!(n�y)! is the binomial coefficient.
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h() is a one-to-one response function that maps the lin-
ear predictor (xT

t bt) to mt. Its inverse is known as the link
function and is denoted as g().

Model parameters may be obtained via maximum
likelihood estimation. The general expression for the
logarithm of the likelihood is

log L=
XN

t = 1

Lt =
XN

t= 1

ytb(ut)+
XN

t = 1

c(ut)+
XN

i= t

d(yt);

where N is the number of time intervals. For the Poisson
and binomial models, this becomes

Poisson : log L=
XN

t= 1

ytlog (ut)� ut � log (yt!)½ � ð3aÞ

Binomial : log L=
XN

t = 1

ytlog
pt

1� pt

� �
+ntlog (1� pt)+ log

nt

yt

� �� �
: ð3bÞ

In summary, a GLM may be specified by 3 components:

1. The distribution from the exponential family, as
defined in equation 1;

2. the response (or link) function; and
3. the covariate vector.

For survival analyses, options for mt include the (cumu-
lative) survival function, its complement the (cumulative)
failure function, the hazard function, and the cumulative
hazard function; see references 5 and 14 for more details.
Depending on the specification, we can express standard
survival models as a linear model: mt =b0 +b1xt. Table
2 provides these specifications. The log-logistic and log-
normal distributions have a cumulative function as their
outcome. It would not be sensible to model such an out-
come as a constant value, which demonstrates why there
is no single-parameter special case of these models. In
contrast, the Weibull and Gompertz distributions model

a noncumulative outcome, so it is possible to model this
as a single value, resulting in the exponential model.

An important aspect of survival data is that there is
typically censoring of observations. Censoring occurs
because for standard models, the outcome is the time of
the event occurring, and for some individuals, the event
is not observed (so it is censored). Within the GLM
formulation, time changes from being the outcome to
a covariate, so there are no censored observations.
Information on censoring is included by calculating the
‘‘at-risk’’ sample and including this information in the
model. For models with a binomial distribution, there is
an explicit parameter for the sample size. For models
with a Poisson distribution, information on the sample
size may be incorporated as an ‘‘offset’’ term.

Limitations with Linearity

The assumption of linearity may not always be realistic.
For example, for overall survival, the hazard of all-cause
mortality will increase over time due to patient aging. In
contrast, frailty effects may result in in a decrease in
disease-specific mortality over time (as those with an
increased hazard will die sooner, leaving those with a
lower hazard). The impact of treatment on survival may
also vary over time: there may be an initial elevated risk
of death due to adverse events, treatment-related toxici-
ties may increase other-cause mortality over time, and
treatment stopping rules and trial inclusion criteria may
have an effect.15 These considerations motivate the need
for more flexible survival models, which are considered
within the GLM framework in the next 2 sections.

Relaxing the Assumption of Linearity

We briefly describe flexible models that may be applied
to survival data within a GLM framework. More details
are provided in the Supplementary Appendix. Without
loss of generality, y is used to denote either a random
variable or the observed data.

Table 2 Specification of Standard Survival Models as Generalized Linear Models

mt Distribution Response Function Covariate Model

Hazard Poisson Exponential None Exponential
Hazard Poisson Exponential Time Gompertz
Hazard Poisson Exponential Log(time) Weibull
Cumulative failure Binomial Logistic Log(time) Log-logistic
Cumulative failure Binomial Inverse probit Log(time) Lognormal
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Fractional Polynomials

FPs represent the outcome as a sum of polynomial terms;
increasing the number of terms (the order of the FP)
increases the flexibility of the model. A closed-test proce-
dure may be used to identify the order. For a single vari-
able, an ith-order FP is defined as

E(yt)=FP(i)=b0 +
Xi

j= 1

bjx
pj ð4Þ

where the set of powers pj is prespecified and may include
fractional powers (hence, the name FPs). FPs include lin-
ear models as special cases, so depending on specifica-
tion, they may include one of the standard models from
Table 2. Some limitations with FPs are that they may not
have sufficient power to detect nonlinearity, and they can
be sensitive to extreme values in the data. This sensitivity
occurs because FPs are global models: b values are
assumed to be constant over time.

RCS and R-P Models

A cubic spline represents a continuous function as a
series of piecewise cubic polynomials,14 hence relaxing
the assumption of global time effects. Model flexibility is
based on the number of piecewise intervals (equivalently,
the number of ‘‘knots’’). For extrapolation, the cubic
polynomial from the last interval may be used, or it may
be restricted to a linear function: this latter assumption
results in an RCS. An example specification is provided
in the Supplementary Appendix.

R-P models use RCSs but not in the GLM frame-
work. Typically, the outcome is the log cumulative
hazard, which is monotonic. However, model estimates
are not guaranteed to be monotonic, so implausible val-
ues may result.

As they are not global models, splines may overfit
local ‘‘noise’’ in the data,16 and there is in general no
closed-test procedure for choosing between different
models.

Extensions to the GLM

This section provides a brief overview of extensions to
GLMs, with more details in the Supplementary Appendix.

Generalized Linear Mixed Models

A GLMM extends the GLM by incorporating random
effect terms, which can help to quantify the impact of

unmeasured covariates and provide more realistic esti-
mates of uncertainty. An example of an FP(2) with a ran-
dom effect (denoted by bt) is

E(yt)=FP(2)=b0 + bt +b1xp1 +b2xp2 , bt ; N (0,c2):

GLMMs are also referred to as frailty models.17 In the-
ory, any GLM may be extended by adding a random
term as shown above. The main limitation with GLMMs
is that as the random effects are not observed, there may
be difficulties in model specification and parameter
estimation.

Generalized Additive Models

A GAM is a GLM in which 1 or more of the covariates
are modeled as a set of basis functions.18 For example, a
univariate GAM is defined as

E(yt)=
Xq

j= i

bj(t)bj = f (t );

where bj(t) is the jth basis function and q is the dimension
of the basis function. Higher values of q result in more
flexible models. Both FPs and RCSs may be viewed as
GAMs. The main extension provided by a GAM is that
model complexity is penalized during parameter estima-
tion (via shrinkage of the b). GAMs with a cubic spline
basis have theoretical justification as being approximate
‘‘smoothest interpolators’’9; see the Supplementary
Appendix for more details. Limitations of GAMs will
depend on the basis function used. For example, if a
spline is used, the limitations of these will still apply.

Dynamic GLMs and Dynamic Survival Models

In a DGLM model, coefficients (b) are allowed to vary
over time. When applied to TTE data, DGLMs are
known as dynamic survival models (DSMs).19 Specification
is (compare with equation 2)

Observationmodel : E½yt�=mt 3 tt

yt ; exponential family distribution ð5aÞ

Response function: mt = h(xT
t bt) ð5bÞ

Transitionmodel : bt =Fbt�1 + zt ð5cÞ

Initial conditions: b0 ; MVN(b0,Z0); ð5dÞ
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where MVN denotes a multivariate normal distribution,
F is a function describing how the coefficients evolve
over time, and zt is an error term (see the Supplementary
Appendix for further details). DGLMs may be viewed as
combining GLMs with time-series methods. In particu-
lar, parameter estimates may be based on minimizing the
error of within-sample extrapolations. This makes these
models particularly appealing when the primary objective
of the analysis is extrapolation. The main limitations with
DGLMs are identifying suitable initial values and conver-
gence of algorithms to estimate model coefficients.19,20

Theoretical Comparison of Approaches

Five different modeling approaches were considered:
FPs, splines, GAMs, GLMMs, and DGLMs. The frailty
terms from a GLMM may be combined with either of
the other 4 models. The following prompts are provided
to aid with choosing between the different approaches.

What is the primary objective of the analysis? If the main
objective is in generating extrapolations, this implies
the use of a DGLM, as this is the only one of the mod-
els for which parameter estimation is based on mini-
mizing forecasting error. If instead the main objective
is to provide estimates of the observed data, then any
of the approaches may be used.

FPs or spline-based models? Spline-based models may be
preferred on theoretical grounds, as being approximate
smoothest interpolators, whereas there are a number
of limitations with the use of FPs (see the
Supplementary Appendix). This suggests the use of a
spline-based model in preference to an FP within a
GLM framework, with the latter as a form of sensitiv-
ity analysis.

To penalize during or after estimation? Parameter estima-
tion with a GAM automatically penalizes for model
complexity, which helps to avoid overfitting.
Alternatively, information criteria may be used. There
are a number of different information criteria that could
be used, whereas GAMs have a specific objective func-
tion. The choice between these is likely to be study spe-
cific: sometimes there may be good reasons to use a
specific information criterion, whereas in other cases,
the more automated approach of a GAM may be pre-
ferred. For both approaches, it is not possible to use sig-
nificance tests to choose between model specifications.

Are there any subject matter considerations? For example,
there may be reason to believe that there are important
unmeasured confounders, which suggests incorporat-
ing random effects. Or it may be thought that there

will be important local fluctuations in this hazard,
which suggests the use of either a spline or dynamic
model in preference to the global FPs.

Empirical Comparison of Approaches

Data Set

We used a freely available data set to demonstrate both
the limitations of assuming linearity and the use of more
flexible models. Analyses were performed in R; the code
used is available as supplemental material. Hence, the
case study is fully reproducible.

The data were on the survival of individuals following
a diagnosis of breast cancer and from a study conducted
by the German Breast Cancer Study Group.21,22

Individuals with primary node-positive breast cancer
were recruited between July 1984 and December 1989.
Events were defined as either cancer recurrence or death
(from any cause). Data were available for 686 individu-
als, of whom 299 experienced an event during follow-up.
The maximum follow-up was 7.28 years, with a mean
follow-up of 3.08 years. The use of GLMs required that
individual-level data were restructured in the form of life
tables. Samples of the individual-level data and the cor-
responding (monthly) life table are provided in Tables 3
and 4, respectively. For Table 3, an event indicator of 1
denotes that an event occurred (otherwise, the indicator
is 0, and the outcome is time to censoring).

As described in the ‘‘Limitations with Linearity’’ sec-
tion, the assumptions of linearity imposed by standard 2-
parameter survival models may be unrealistic. To high-
light this, we show model estimates against the observed
data in Figure 1 for each model (the 1-parameter expo-
nential model is not shown, as it would be appropriate
only if both the Weibull and Gompertz estimates had no
slope). The specification of the x- and y-axes is such that
the model estimates form a straight line. Figure 1 shows
that the linear estimates generally provide a poor visual
description of the data, with the best description arising
from the lognormal model.

Table 3 Sample of the Breast Cancer Data

Patient ID Outcome Time (y) Event Indicator

1 0.0219 0
15 0.1973 1
220 1.9562 1
221 1.9644 0
678 6.7288 1
686 7.2849 0
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Methods

We considered 5 broad classes of models.

FP models. We considered FP(2) models, with the com-
plexity of the chosen model based on the closed-test pro-
cedure, and the chosen powers based on minimizing
Akaike’s information criterion (AIC).

Generalized linear mixed models. We fit FP models as
described above, but we also included frailty terms.

Spline-based models. Both RCS models and GAMs were
considered. For the RCS model, between 1 and 5 internal
knots were considered, with the choice based on minimiz-
ing AIC. For the GAM, we considered 2 approaches to

Table 4 Data from Table 3 Restructured for Poisson Regression

Month Sample Size Events (m) Censorings At risk (t) Hazard (l)

(0, 1) 686 0 7 682.5 0
(1, 2) 679 0 3 677.5 0
(2, 3) 676 1 4 674 0.001
(22, 23) 477 5 3 475.5 0.011
(23, 24) 469 7 4 467 0.015
(24, 25) 458 8 12 452 0.018
(87, 88) 1 0 1 0.5 0

Figure 1 Breast cancer case study: observed and modeled hazard.
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selecting the dimension of the basis function: one used a
fixed (arbitrary) value of 11 (v1), and the other was based
on minimizing AIC (v2). These 2 approaches were con-
sidered, as some penalization for overfitting is included
during model fitting, so it is unclear if model choice
based on AIC is required. For all models, the knots were
placed at equally spaced percentiles of the observed
uncensored death times.21

Dynamic models. We examined 3 specifications: local
level, local trend, and local level with global trend. There
was no need to base model choice on minimizing AIC
(as the data used to estimate the model parameters are
separate from the objective function, which is based on
minimizing 1-step ahead forecasts).

Standard survival models. Eight survival models were
considered: exponential, Weibull, Gompertz, gamma,
log-logistic, lognormal, generalized gamma, and general-
ized F. Results are displayed for the 3 best-fitting models
(based on AIC). Note that the generalized gamma and
generalized F models have 3 and 4 parameters, respec-
tively, and so are more flexible than the standard sur-
vival models of Table 2.

The above choice of models was designed to be repre-
sentative but not exhaustive of the variety of different
approaches possible. All of the models used the natural
logarithm of time as the only covariate of interest (with
the exception of the Gompertz, which used time). All of
the GLM-models assumed a Poisson distribution with
an exponential response function.

Goodness of Fit

Goodness of fit (GoF) measures how well the statistical
model describes the observed data. It should be distin-
guished from predictive ability, which measures how well
the model predicts external data (such as future observa-
tions). One measure of GoF is AIC, which is defined as

� 2log L+ 2k; ð6Þ

where L is the model likelihood and k is the number of
parameters in the model.23 Because the likelihood is mul-
tiplied by a negative number, lower AIC values are to be
preferred.

A number of variants on AIC have been pro-
posed.23,24 An empirical study by Hyndman and col-
leagues24 compared 5 GoF measures and noted that they
all performed similarly. Further, Burnham and
Anderson23 noted that the AIC has strong theoretical

motivation, whereas Jackson and colleagues25 noted that
the AIC is preferable when models are used to represent
complex phenomena (such as survival processes).
Because it has both empirical and theoretical support,
the AIC shall be used in this article. Any GoF measure
should be used in combination with subject-matter
considerations. In addition, estimates of the hazard func-
tion were visually compared with the observed hazard
function.

The AIC measures GoF to the observed data. It is
unknown if models with a good within-sample fit provide
good extrapolations.14 To measure the extrapolation per-
formance of the models, we split the data set into 2 parts.
The first part considered events occurring within the first
3 years, censoring all events after 3 years (half of the
sample were at risk of an event at 3 years). Extrapolation
performance was defined as the sum of squared errors
(SSE) between the model estimate of the hazard and the
observed hazard (calculated for monthly intervals) for
the remaining follow-up:

l̂t � lt

� �2
, t 2 f37 to 88 monthsg: ð7Þ

Results

Table 5 provides GoF values for each model and esti-
mates of lifetime mean life expectancy. Two AIC values
are provided: one using the entire data set the other using
the first 3 years. The number of parameters is provided
as a measure of model complexity: the 2 GAMs do not
have an integer number of parameters, as parameter
effects are shrunk during model estimation. Plots of the
estimated hazard function for each model are displayed
in Figure 2 for the observed data. Corresponding extra-
polations are given in Figure 3. As the best-fitting 2-
parameter standard survival model (based on all the
available data), the lognormal is provided as a black ref-
erence line on all panes.

Within-Sample GoF

All of the more flexible models provide lower AIC values
than the lognormal, although in general, differences
between values are small and cannot be tested for statis-
tical significance. Visually, all of the models provide a
good fit to the observed data in Figure 2, although there
is variation in the degree to which local fluctuations are
captured.

Of the 11 models, the lowest AIC values arose from 2
DSMs. However, the third DSM had the highest AIC of
all the flexible models. This suggests that the extension to
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Table 5 Breast Cancer Case Study: Log-Likelihood and Information Criteria for the Models

Model Log-Likelihood Parameters AIC: Full Data AIC: Years 1–3 SSE
a
: Years 4–7 Life Expectancy

Local level –142.72 3 291.45 168.48 3.84 37.62
Local level with drift –142.09 4 292.19 180.25 18.58 23.41
GAM v2 –150.63 3.84 308.94 172.08 4.01 37.12
RCS –150.55 4 309.10 172.12 4.05 35.46
GAM v1 –144.05 10.66 309.42 173.89 3.81 14.13
Generalized Gamma –153.03 3 312.06 175.31 3.78 43.40
FP with random effects –152.13 4 312.27 173.54 4.25 15.70
FP –153.42 3 312.84 172.51 4.29 15.40
Generalized F –152.97 4 313.94 174.40 4.01 43.87
Local-level local trend –152.36 5 314.71 180.68 3.76 41.61
Lognormal –157.55 2 319.11 179.42 3.73 40.64

For derivation of SSE values, see the ‘‘Goodness of Fit’’ section.

AIC, Akaike’s information criterion; FP(2), second-order fractional polynomial; GAM, generalized additive model; RCS, restricted cubic

splines; SSE: sum of squared errors (3 10 000).

Figure 2 Breast cancer case study: observed and modeled hazard. FP, fractional polynomial; RE, random effects; RCS, restricted
cubic spline; GAM, generalized additive model; Gen, generalized. Hollow circles represent observed data; sizes are proportional
to the denominator. For all panes, the lognormal is included in black. Three observations are removed: see Figure 3 for these.
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dynamic models can lead to an improved GoF, but there
is no guarantee that this will always occur. The next best
AIC values arose from the 3 spline-based models, all of
which had very similar GoF. However, the 2 approaches
to GAM estimation did result in markedly different mod-
els: the one with automated fitting was more complex
(with almost 3 times as many parameters) than the one
based on minimizing AIC while also providing a better
absolute fit (based on log-likelihood).

Of the 3 standard survival models, the 2 generalized
models (gamma and F) provided similar GoF, and both
improved on the 2-parameter models. Fit for the 2 FPs
was similar to that for the generalized gamma and gener-
alized F survival models and lower than that for the
spline models. The inclusion of random effects had a
negligible impact on the AIC.

Flexible parametric modeling of the hazard provides
insight into how it varies over time. The GAM (v1) and
DSMs were slightly better at capturing local fluctuations
in the hazard rate. This is most notable at approximately
1 and 1.5 y. However, as the most flexible models consid-
ered, there is a danger that these local fluctuations repre-
sent noise. If this is the case, then the best-fitting models
may be overfitting the data, with no guarantee that this
will lead to improved extrapolations.

Extrapolation GoF

When fitting the 11 models to the first 3 years, the rank-
ing of the models was generally the same as for the full
data set, with the local-level model providing the lowest
AIC and the lognormal one of the highest. An exception
is the DSM with drift, which changes from having the
second lowest AIC to the second highest. GoF to the
observed data did not predict extrapolation performance.
For example, both the lognormal and local trend models
had the highest AIC values but the lowest SSEs. As with
the AIC values, in general there was little difference
between SSE values. An exception is the DSM with a
drift, which provided poor extrapolations as it predicted
an increasing trend.

In general, the results in Table 5 demonstrate that
there is little difference between the competing models,
both for within-sample and extrapolated GoF. However,
Figure 3 shows that resulting extrapolations (beyond the
full data follow-up) can vary markedly by model.
Differences begin at about 4 years and are likely to be
due to the small patient numbers. For example, at 5 y,
the sample size at risk is 113; at 6 years, it is 34; and at 7
y, it is 3. When choosing between the models, it is very
important to assess the plausibility of the extrapolations
with clinical experts, noting the outcome definition used.

For this case study, the mean age of the sample is 53 y,
and the outcome is either cancer recurrence or death
from any cause. The mean survival for German women
of this age was 32.6 y in 2000 (the oldest year for which
there are data). This acts as an upper bound on the likely
survival of this sample, as women with breast cancer are
likely to have worse survival than the age-matched gen-
eral population, and cancer recurrences would further
reduce the estimated survival. Of the 11 models consid-
ered, only the 4 that predicted an increasing extrapolated
hazard (DSM with drift, GAM with default settings,
both FPs) gave a lifetime mean survival less than this.

Discussion

A wide variety of flexible parametric models may be used
to analyze and extrapolate TTE data within a GLM
framework, along with its extensions to GAMs,
GLMMs, and DGLMs. These include FPs, spline-based
models, and DSMs. An advantage of the GLM-based
models over standard survival models is that they can be
made arbitrarily flexible as required to match the com-
plexity of the observed hazard function (for example,
increasing the order of an FP or the number of knots in
an RCS). In contrast, to obtain more complex standard
survival models, different specifications are required
(such as moving from a Weibull to a generalized gamma
model). Further, 2 of the GLM extensions (GAMs and
DGLMs) penalize for overfitting as part of parameter
estimation,9,20 thus removing much of the subjectivity
over model choice. To our knowledge, this is the first
time that all of these approaches have been compared at
both a theoretical and an applied level, with recommen-
dations to aid in choosing between the models.

The case study demonstrated that it is straightforward
to perform a TTE analysis within a GLM framework
and that results are at least as good as, and often superior
to, those from standard survival models. However, differ-
ences in GoF were typically small, and in this example,
there was no relationship between within-sample GoF
and extrapolation performance. A strength of the case
study is that we considered a variety of different statisti-
cal models, some of which are currently infrequently used
in survival analyses.3,19 The fully reproducible nature of
the case studies shall help to increase the uptake of these
more advanced methods.

There were marked differences in the extrapolations
from each model and hence estimates of lifetime mean
survival. Using external evidence, only the extrapolations
from 1 each of the DSMs and GAMs along with both
FPs were plausible, whereas the best 3 standard survival
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models all provided implausible extrapolations. This
highlights a further benefit of the GLM approach, as it
increases the potential to identify models that simultane-
ously provide good within-sample fit and plausible extra-
polations. Formally incorporating such evidence is an
important area of ongoing research.26,27 However, this
task is often nontrivial. For example, external data sets
may exist, but they may not be fully generalizable to the
decision problem. This could be due to differences in the
patient population, the health care system, or the time
period. Hence, this external data set may need to be
adjusted, and assumptions shall be required about how
the observed data relate to the external data set.

Parametric analysis of TTE data typically has up to 2
objectives: to obtain a parsimonious description of the
observed data and/or to predict outcomes for the unob-
served future (extrapolation). More work is required into
the relative strengths and weaknesses of the alternative

models in both settings. For example, for the best-fitting
FP model, inclusion of random effects had a negligible
impact on the AIC. Further research is required to see if
this is a general phenomenon, or if more nuanced model-
ing would lead to a more substantive improvement in fit,
or if these enhancements would be beneficial for other
observed hazard patterns. The case study also highlights
that a within-sample measure of GoF cannot be used to
choose between models for extrapolation, as has been
observed previously.27–29 The case study expands on
these findings as it compares global models (FPs and sur-
vival models), piecewise models (spline-based models),
and local models (DSMs). Further work on model choice
when used for extrapolation could build on the the work
of forecasting competitions.30

The case study had limitations. First, we compared
models based on AIC (within-sample) and SSE (extrapo-
lations). We were not able to test the differences for

Figure 3 Breast cancer case study: extrapolated hazards. FP, fractional polynomial; RE, random effects; AR, autoregression;
RCS, restricted cubic spline; GAM, generalized additive model; Gen, generalized. For all graphs, the lognormal is included in
black.
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statistical significance. For AIC, there is some guidance
on what differences may be important, but this holds
only for nested models.23 While the more flexible models
generally improved within-sample fit, they did not
improve extrapolation performance. In addition, for
many analysts, use of the more flexible models will come
at an additional cost, as there will be a need to under-
stand both the theoretical details (strengths and limita-
tions) of the method and how to implement the
model. The guidance in the ‘‘Theoretical Comparison of
Approaches’’ section and the reproducible case study
should help to reduce these costs, although they will still
be a factor when choosing between the difference
models.

The use of a single case study may also be viewed as a
limitation. It is unclear if the (generally) superior GoF
provided by DSMs and GAMs generalizes to other set-
tings. The results for the 3 DSMs illustrate an important
caution against generalization: if only the 2 DSMs with-
out a local trend were considered, DSMs would provide
the best-fitting models. In contrast, if only the DSM with
a local trend were considered, we would conclude that their
fit is not as good as that of the spline-based models. The
GoF of the DSM with drift also varied markedly between
using the full data set and using the first 3 years of data.
More experience with these different models and their per-
formance for different sample sizes and follow-up times is
required before firm conclusions can be made about which
(if any) will provide more accurate estimates.

Conclusion

Parametric modeling of the hazard function allows for
predictions of future outcomes. Standard survival models
may be insufficiently flexible to reflect the complexities of
observed hazard patterns. The GLM framework and its
extension to GAMs, GLMMs, and DGLMs can provide
insight into the structure of standard 1- and 2-parameter
models and their assumptions of linearity. In addition to
providing more flexible models (as we have demonstrated
here), it also allows for a rich class of model specifica-
tions via different combinations of the outcome, distribu-
tion, and response function, although this comes at the
cost of needing to understand how and when to imple-
ment these models. We have provided guidance to aid in
the choice between these models. Further, spline-based
GLMs provide a useful alternative to R-P models: with
appropriate response function, these models cannot esti-
mate implausible negative hazards, unlike R-P models. A
motivating and fully reproducible case study has demon-
strated that these currently underused approaches can

sometimes provide better GoF and more plausible extra-
polations than standard survival models.
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