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A B S T R A C T   

Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other 
diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of 
saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that 
have neuroprotective effects on the central nervous system. In this paper, we review the 
ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning 
and memory disorders to provide valuable references and insights for the development of new 
drugs for the treatment of learning and memory disorders. Our summary results suggest that 
Panax ginseng saponins have significant effects on improving learning and memory disorders, and 
these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, 
antioxidant, β-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and 
function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic 
homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin- 
like constituents as drug candidates for improving learning and memory disorders.   

1. Introduction 

Learning and memory, as advanced cognitive functions of the brain, play essential roles in human survival, development, and 
cognition. Neuroscience has primarily focused on researching the mechanisms involved in the formation and degeneration of learning 
and memory. This line of inquiry is of paramount importance in the treatment of neurodegenerative diseases and enhancing the quality 
of human life. Specifically, learning refers to the cognitive process of adapting to the external environment, while memory encom-
passes neural activity that preserves and reproduces learned behaviors through interactions among neurons and synapses [1]. Current 
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research has indicated that neuroinflammation [2], neuronal apoptosis [3], and altered synaptic plasticity [4] have significant impacts 
on learning and memory capacity. Moreover, neuronal injury resulting from normal aging or various diseases associated with the 
central nervous system (CNS) - including Alzheimer’s disease (AD) [5], vascular cognitive impairment and dementia (VCID) [6], 
malnutrition dementia [7], depression [8], traumatic brain injury [8], post-traumatic stress disorder (PTSD) [9], and Kosakov syn-
drome [10], can lead to cognitive impairment with a decline in learning and memory ability. 

Recently, medicinal plants have gained much attention, with Panax notoginseng, a well-known and popular Chinese medicine, 
being found to have potential as a neuroprotective agent [11]. Notoginseng Radix et Rhizoma, commonly referred to as Tianqi or Sanqi 
in East Asian nations, denotes the dried root and rhizome of Panax notoginseng (Burk.) F. H. Chen, a member of the Panax species 
within the Araliaceae family Panax notoginseng boasts a long-standing medicinal legacy that spans over four centuries. Saponins, as a 
widely present compound in medicinal plants, have pharmacological activities such as anti-inflammatory, antioxidant, and the in-
hibition of abnormal autophagy and apoptosis in hippocampal neurons [12–14]. These properties make them have a significant 
pharmacological effect in improving learning and memory. The main components isolated from Notoginseng Radix et Rhizoma are 
PNS, which have antioxidant, anti-apoptotic, and anti-endoplasmic reticulum stress effects [15–17]. Different anatomical parts (root, 
stem, leaf, bud, and seed) of Notoginseng Radix et Rhizoma contain various saponins, including ginsenoside (Rb1, Re, Rg1, Rg2, Rh1), 
notoginsenoside (R1-R6), and aescin (VII) [18]. The five saponins with the highest content in Notoginseng – notoginsenoside R1 (7%– 
10%), ginsenoside Rb1 (30%–36%), Rg1 (20%–40%), Rd (5%–8.4%), and Re (3.9%–6%) constitute up to 90% of the total PNS and are 
the most studied components in pharmaceutical experiments by far [19](Fig. 1). 

Notoginseng and Ginseng both belong to the Araliaceae Juss. family. They contain chemical components with a high degree of 
similarity [20]. In terms of pharmacological effects, Ginseng has a relatively good effect on improving learning and memory, and at the 
same time, there are also many studies proving the potential of Notoginseng and its saponins in improving learning and memory 
disorders [21]. Although some articles summarize the effects of Ginseng and ginsenoside on cognition [22] and the central nervous 
system [23], no review comprehensively summarizes the effects of Notoginseng and its saponins on improving learning and memory 
disorders. We searched the PubMed and China National Knowledge Infrastructure databases via using “Panax notoginseng saponins”, 
“Notoginseng saponins","Ginsenoside","Notoginsenoside” and “Learning and memory disorders” as search terms. The PubMed data-
base was comprehensively searched up to August 2022, and it showed 85 pieces of literature; we excluded some irrelevant ones and 
searched for other potential and relevant references. and there were no limitations in the language of all publications. Therefore, this 
article provides a comprehensive review of the improvement effects and mechanisms of PNS in learning and memory disorders, aiming 
to provide a beneficial reference for future research. 

2. Research on the etiology of learning and memory disorders 

The ability to learn and form memories is crucial for organisms to adapt strategically to changing environmental demands [24]. 
Whether it depends on the learning and memory of the hippocampus, non-hippocampal memory, or non-neuronal immune memory, it 
requires a complete neuronal structure and a healthy brain physiological environment [25–27]. Learning and memory disorders are 
symptom clusters that can manifest in many diseases, such as Alzheimer’s disease (AD) [5], vascular cognitive impairment and de-
mentia (VCID) [6], malnutrition dementia [7], depression [8], traumatic brain injury (TBI) [28], post-traumatic stress disorder (PTSD) 
[9], and Korsakov syndrome (KS) [10] and so on. 

There are direct or indirect relationships between these aforementioned disorders and learning and memory disorders. The main 
reason for the learning and memory impairments in AD patients is due to the accumulation of extracellular β-amyloid (Aβ), which 

Fig. 1. The chemical structures of the five saponins with the highest content in Panax notoginseng.  
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affects neuronal functions [29–32]. Meanwhile, Aβ promotes the abnormal phosphorylation of tau protein, leading to its aggregation 
into neurofibrillary tangles and generates toxic effects on neurons [33–35]. VCID is an age-related mental disability caused by a range 
of cerebrovascular disorders involving neurovascular dysfunction, blood-brain barrier (BBB) disruption, white matter damage, 
microRNA, oxidative stress, neuroinflammation, and gut microbiota alterations [6,36,37]. Malnutrition can lead to learning and 
memory disorders, and elderly people with dementia are at an increased risk of malnutrition due to various nutritional problems 
[38–41]. While the mechanism of how depression leads to learning and memory impairments remains unclear [42,43], several studies 
have demonstrated that treating and repairing neurons in the hippocampus can improve cognitive disorders caused by depression [8, 
44,45]. Traumatic brain injuries can induce not only acute learning and memory disorders but also a number of neurodegenerative 
diseases [46–50]. Post-traumatic stress disorder (PTSD) can lead to dysregulation in multiple biological systems. These dysregulations 
include immune system dysregulation, heightened inflammation, oxidative stress, mitochondrial dysfunction, renin-angiotensin 
system dysregulation, and accelerated biological aging. These various dysregulations collectively contribute to an elevated risk of 
subsequent learning and memory disorders [9,51–53]. Korsakov syndrome (KS) is a severe neurological disorder characterized by 
anterograde amnesia [10] that results from alcoholism [53,54]. 

In current clinical trials (Phase III and Phase IV), drugs targeting learning and memory disorders include agonists or inhibitors of 
central nervous system receptors, including N-Methylaspartate and Memantine; opioids like Meperidine and Morphine; sleep aids and 
tranquilizers such as Suvorexant and Melatonin; Calcium channel blockers like Nilvadipine and Amlodipine; Hormones, for instance, 
Estradiol; Non-steroidal anti-inflammatory drugs (NSAIDs), such as Indomethacin; Anesthetics including Benzocaine and Cadexomer 
iodine; Anti-anxiety drugs and antidepressants including Opipramol and Buspirone; anticonvulsant medications like Topiramate and 
Lamotrigine; neuroprotectants such as 3-N-butylphthalide and Cerebrolysin; along with vitamins like Nicotinamide and B group vi-
tamins. In addition, certain herbal-related drugs such as Black cohosh, Valerian, Piper methysticum, Chamomile, Passionflower, 
Erythrina mulungu, and Yohimbe have either entered or completed Phase III and Phase IV clinical trials alongside others [55,56]. 
(Fig. 2 for associated disorders as well as the main drug types). 

3. The improvement of learning-memory disorder by notoginseng saponins 

3.1. Notoginsenoside R1 

Notoginsenoside R1 (R1) is a distinctive saponin found in the root of Panax notoginseng, comprising approximately 7–10% of its 
saponins [57,58]. Studies have shown that R1 can increase the membrane excitability of CA1 pyramidal neurons in hippocampal slices 
by lowering the spike threshold, possibly through a mechanism involving the inhibition of voltage-gated K (+) currents, thereby 
preventing Aβ-induced synaptic dysfunction and improving hippocampal-based memory performance in an AD mouse model [59]. 
Furthermore, voltage-gated sodium channels (Nav) play a crucial role in regulating cell excitability and the initiation and transmission 
of action potentials (APs) [60]. R1 modulates the abundance and/or spatial arrangement of voltage-gated sodium channels (Nav). 
Furthermore, R1 enhanced the viability of neurons damaged by Aβ1-42. The reduction of neuronal hyperexcitability caused by R1 
could be associated with the inhibition of Navβ2 cleavage, resulting in the partial restoration of the aberrant localization of Nav 1.1α 
[61]. In addition, it has been demonstrated that R1 can alleviate impaired learning and memory in SD mice by regulating the Melatonin 
receptor type 1A (MTNR1A)-mediated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin 
(mTOR) signaling pathway, thereby reducing excessive autophagy and apoptosis of hippocampal neurons [62]. Moreover, it protects 

Fig. 2. Associated disorders causing learning and memory disorders and the main types of drugs entering phase III and IV clinics.  
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against isoflurane-induced learning and cognitive dysfunction by promoting the expression of miR-29a and preventing inflammatory 
responses [63]. R1 promotes post-stroke angiogenesis by activating the Nicotinamide phosphoribosyltransferase- Nicotinamide 
adenine dinucleotide- Sirtuin 1 (NAMPT-NAD-SIRT1) cascade, which helps to improve vascular cognitive impairment and dementia 
[57]. 

3.2. Ginsenoside Rg1 

Ginsenoside Rg1 (Rg1) has the highest content among PNS, accounting for approximately 20%–40% of PNS [58]. Studies targeting 
Rg1 to improve learning and memory disorder have also been conducted at a relatively early stage; an earlier study found that Rg1 can 
improve performance in a passive avoidance learning paradigm and enhance cholinergic metabolism [64]. 

Several studies have illustrated the efficacy of Rg1 in alleviating learning and memory deficits associated with Alzheimer’s disease. 

Table 1 
Effects and mechanisms of ginsenoside Rg1 in ameliorating learning and memory impairment as reported and evidenced.  

Effect Mechanism and Descriptions Cited 
references 

Improving learning and memory disorder; improving performance in a 
passive avoidance learning paradigm 

Enhancing cholinergic metabolism [64] 

Effective in improving learning and memory disorders caused by 
Alzheimer’s disease 

Reducing the amount of Abeta detected in the brains of mice; reducing 
the level of amyloid beta; regulating the activity of PKA/CREB; 
improving cognitive performance in SAMP8 mice 

[65,66] 

Inducing neuroprotection and ameliorating learning and memory 
disorders 

Ameliorating amyloid pathology; modulating the amyloid precursor 
protein process; improving cognition; activating PKA/CREB signaling 

[67] 

Attenuating the generation of Aβ; improving learning and memory Enhancing the binding of PPARγ to the BACE1 promoter; suppressing 
the activity of BACE1; increasing the expression of IDE 

[81,82] 

Reducing okadaic acid-induced spatial memory impairment; 
preventing Aβ formation 

Through the GSK3β/tau signaling pathway [68] 

Restoring hippocampal long-term potentiation and memory Promoting the clearance of AD-related proteins; activating the BDNF- 
TrkB pathway 

[69] 

Improving behavioral deficits in AD mice By regulating the expression of CPLX2, SYN2, and SNP25 proteins [83] 
In response to the senescence of neuronal cells; ameliorating learning 

disabilities in aged rats 
Reversing tert-butyl hydroperoxide-induced morphological changes; 
promoting expression of synaptic plasticity-related proteins; regulating 
the PI3K/AKT pathway 

[70–72] 

Protecting against neural stem cell senescence Ameliorating D-galactose-induced cognitive impairment; reducing 
oxidative stress; downregulating the Akt/mTOR signaling pathway 

[73] 

Ameliorating cognitive deficits in aging mice induced by D-galactose 
and AlCl3 

Restoring FGF2-Akt and BDNF-TrkB signaling axis; inhibiting apoptosis [74] 

Alleviating learning and memory impairments induced by painkillers 
and other chemicals 

Improving spatial learning capacity impaired by morphine; restoring 
morphine-inhibited long-term potentiation 

[84] 

Effectively improving memory impairment induced by scopolamine  [85] 
Inhibiting mitochondrial dysfunction; exerting antioxidant, anti- 

inflammatory, and anti-apoptotic effects 
Ameliorating isoflurane-induced caspase-3 activation; attenuating 
isoflurane/surgery induced neurocognitive impairment and Sirt3 
dysfunction 

[86–88] 

Ameliorating lipopolysaccharide-induced cognitive impairment Through regulation of the cholinergic system [89] 
Protecting against neuronal degeneration induced by chronic 

dexamethasone 
By inhibiting mouse NLRP1 inflammatory cytokines [90] 

Ameliorating cognitive deficits induced by repeated alcohol 
intoxication 

Modulating NR2B-containing NMDARs and excitotoxic signaling [91] 

Rg1 showed good effects against neurological functions, neural 
structures, and neurophysiological aspects affecting learning and 
memory 

Ameliorated chronic restraint stress-induced learning and memory 
deficits by reducing reactive oxygen species (ROS) production, reducing 
neuronal oxidative damage in mouse frontal cortex and hippocampal 
cornu ammonis 1 (CA1), inhibiting the expression of NADPH oxidase 2 
(NOX2), neutrophil cytosol factor 1 (p47phox), and ras-related c3 
botulinum toxin substrate 1 (RAC1). 

[92] 

Modulated firing in the medial prefrontal cortex of rats and inhibited 
hippocampo-medial prefrontal cortical long-term potentiation. 

Rg1 ameliorated the learning and memory deficits induced by chronic 
restraint stress in rats by mediating the BDNF/TrkB/extracellular 
signal-regulated kinase (Erk) pathway in the prefrontal cortex. 

[93,94] 

Rg1 acts similarly to growth factors in promoting the proliferation and 
differentiation of neural stem cells. 

May reduce cognitive impairment induced by cardiac arrest by 
regulating neuroinflammation and hippocampal plasticity. 

[95,96] 

Promotes remyelination and functional recovery in demyelinating 
diseases by enhancing oligodendrocyte progenitor cell-mediated 
remyelination, improving spatial memory, motor function, and 
anxiety-like behavior in mice. 

Promotes glutamate release, possibly through a Ca2+/calmodulin- 
dependent protein kinase II (CaMKII)-dependent pathway, to regulate 
central nervous system neurotransmitters to enhance learning and 
memory. 

[97,98] 

Reduces PTSD-like behaviors in mice by reducing corticosterone and 
corticotrophin-releasing hormone levels. 

Has a protective effect on PTSD-like behavior in mice by promoting 
synaptic proteins and reducing inward rectifying potassium channel 4.1 
(Kir4.1) and tumor necrosis factor alpha (TNF-α) in the hippocampus. 

[79,80,99] 

Potential application in the treatment of learning and memory 
disorders in postmenopausal women. 

Can prevent cognitive impairment and hippocampal neuronal apoptosis 
in vascular dementia mice, probably by promoting g protein-coupled 
receptor 30 (GPR30) expression. 

[75–77]  
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This is attributed to its capacity to reduce amyloid-beta levels [65,66], modulate the activity of protein kinase A (PKA) and cAMP 
response element-binding protein (CREB) [67], as well as promote neuroprotection and memory enhancement through various 
pathways [68,69]. Moreover, Rg1 has demonstrated the ability to enhance cognitive abilities in aged mice, hinder Aβ formation, 
suppress inflammatory responses, regulate neurotransmitters, and boost neural stem cell proliferation, significantly improving 
stress-induced learning and memory impairments [70–74]. Furthermore, Rg1 exhibits potential therapeutic applications in treating 
learning and memory impairments in perimenopausal women [75,76], vascular cognitive impairment [77], sepsis-associated en-
cephalopathy [78], and post-traumatic stress disorder [79,80]. For details, refer to Table 1. 

3.3. Ginsenoside Rb1 

Ginsenoside Rb1(Rb1) accounts for 30–36% of the total saponins found in Notoginseng Radix et Rhizoma and has been studied 
extensively [58]. In vitro studies have demonstrated that Rb1 enhances choline uptake into nerve endings and promotes the release of 
acetylcholine (ACh) from hippocampal slices. This indicates that the potential of Rb1 to mitigate memory deficits may be linked to its 
facilitation of ACh metabolism in the central nervous system [78]. Further research reveals that Rb1 can increase the expression of 
phosphorylated Akt (P-Akt) and phosphorylated mTOR (P-mTOR), reduce the effect of phosphorylated phosphatase and tensin ho-
molog (P-PTEN), and alleviate memory impairment, pyramidal cell necrosis, and apoptosis in the hippocampal CA1 region of rats after 
L-glutamate and Ca2+ microperfusion, in a dose-dependent manner [100]. In addition, intravenous administration of Rb1 can 
up-regulate the expression of B-cell lymphoma-extra large (Bcl-x(L)) and prevent the death of ischemic neurons. Intravenous 
administration of gRb1 exhibits a greater range of effective doses than intracerebroventricular injection, possibly because the 
blood-brain barrier regulates the central adsorption of Rb1 from the bloodstream, allowing for an optimal amount of Rb1 to be 
transported into the ischemic brain [101]. Furthermore, metabolite M1 of Rb1 has been shown to improve Aβ(25–35)-induced memory 
impairment, axonal atrophy, and synaptic loss [102]. The metabolite compound K of Rb1 may also improve learning and memory 
disorders by resisting inflammation and oxidation, promoting neurotransmitter release, and reducing Aβ deposition through various 
mechanisms [103–108]. 

3.4. Ginsenoside Rd 

Ginsenoside Rd (Rd) accounts for 5%–8.4% of the total saponins present in Notoginseng [58]. In vitro and in vivo studies suggest 
that Rd promotes the proliferation of neural stem cells (NSCs) without affecting their differentiation, which could explain how ginseng 
enhances intelligence [109]. 

Inflammation and apoptosis severity are highly correlated with cognitive decline. Rd has been shown to alleviate inflammation 
induced by β-amyloid peptide 1–40 and attenuate cognitive dysfunction in a rat model of Alzheimer’s disease [110]. Moreover, 
subsequent studies confirmed that Rd can reduce tau phosphorylation and sequential cognition impairment after ischemic stroke 
[111]. Furthermore, another study found that Rd increases the expression of α-secretase and soluble amyloid precursor protein α while 
decreasing the expression of β-secretase and amyloid β by activating estrogen-like activity, thereby enhancing the learning and 
memory function of ovariectomized rats [112]. Another study revealed that Rd improves learning and memory ability in amyloid 
β-protein precursor transgenic mice, possibly through inhibiting the transcription activity of nuclear factor kappa-light-chain-enhancer 
of activated B cells (NFκB) [113]. 

Administration of Rd has also been shown to ameliorate cognitive dysfunction induced by chronic cerebral hypoperfusion in mice, 
with induction of BDNF responsible for Rd-mediated neuroprotection both in vivo during chronic cerebral hypoperfusion and in vitro 
during oxygen-glucose deprivation/reperfusion [114]. Additionally, treatment with Rd reversed the decrease in phosphorylated PI3K, 
CREB, BDNF, and TrkB expression in the hippocampus caused by chronic restraint stress. The findings suggest that Rd can improve 
cognitive impairment in chronically stressed mice by mitigating oxidative stress and inflammation while upregulating the hippo-
campal BDNF-mediated CREB signaling pathway [115]. 

Finally, a study found that Rd can reduce anxiety and depression in mice by improving gut dysbiosis caused by alterations in 
intestinal microorganisms [116]. 

3.5. Ginsenoside Re 

Ginsenoside Re(Re) is a minor component of the main saponins found in Panax notoginseng, accounting for 3.9%–6% of their total 
content [58]. Previous studies have shown that administration of Re before brake stress significantly improves helpless behavior and 
cognitive impairment by modulating the central noradrenergic system in rats [117]. Moreover, Re has been demonstrated to protect 
against chronic restraint stress-induced cognitive deficits by regulating NACHT, LRR and PYD domains-containing protein 3(NLRP3) 
and nuclear factor-erythroid 2-related factor 2 (Nrf2) pathways in mice [118]. Chronic treatment with Re can also reduce the levels of 
TNF-α and malondialdehyde (MDA) in both cerebral regions of diabetic rats and significantly improve their cognitive function [119]. 

A combined pharmacokinetic and pharmacodynamic study of Re suggested that increased levels of dopamine and acetylcholine 
outside the cells, particularly in the hippocampus, may contribute to its anti-dementia activity [120]. Additionally, Re can protect 
against phencyclidine-induced behavioral changes and mitochondrial dysfunction in the dorsolateral cortex of mice. This protective 
effect is achieved through the interactive modulation of glutathione peroxidase-1 and NADPH oxidase [121]. 

Furthermore, other studies have confirmed that Re can inhibit the interaction between platelet-activating factor receptor (PAFR), 
NF-κB, and microglia proliferation in the hippocampus and reduce memory impairment in aged Klotho-deficient mice through the 
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mutual regulation of angiotensin II iiAT1 receptor, Nrf2, and glutathione peroxidase-1 (GPx-1) genes [122,123]. 

3.6. Other panax notoginseng saponins 

In addition to the five main components of PNS mentioned above, other saponins comprise approximately 9.8% of PNS [58]. 
Although their content is relatively low, they exhibit significant pharmacological effects on learning and memory disorders that cannot 
be ignored, and their actions and mechanisms are shown in Table 2. 

4. Conclusion and remarks 

PNS are a series of natural compounds that improve learning-memory disorders and cognition through their effects on the central 
nervous system. In this review, we summarize the therapeutic effects and molecular mechanisms by which various Panax ginseng 
saponin-like constituents improve learning-memory disorders (Fig. 3). The available data and our summarized results suggest that 
Panax ginseng saponins may improve learning-memory impairment through various pharmacological activities, such as their anti- 
inflammatory, anti-apoptotic, and antioxidant properties, reduction of amyloid beta levels, maintenance of mitochondrial homeo-
stasis, improvement of neuronal structure and function, promotion of neurogenesis, modulation of neurotransmitter release, and 
maintenance of probiotic homeostasis. Based on these findings, Panax notoginseng saponin-like components, as a series of specific 
natural compounds, hold promising potential for improving learning and memory disorders. 

In ameliorating the learning-memory impairment associated with AD, PNS-like components play a role in improving learning- 
memory impairment by modulating the PKA/CREB pathway [65,66], GSK3β/tau pathway [67], regulating PPARγ [82], NFκB 
[123], and reducing amyloid β levels. 

In enhancing the hippocampus, neurons, and their structure and function, PNS-like components have been shown to promote the 
value-added of neural stem cells [94,109], regulate the PI3K/Akt/mTOR pathway, reduce excessive autophagy and apoptosis of 
hippocampal neurons [62,100], regulate neuronal structure and function [61,97,140], and modulate neurotransmitters in the central 
nervous system [78,98,111]to improve learning and memory disorders. 

In response to learning and memory disorders caused by chemicals such as anesthetics, painkillers, and alcohol, PNS-like com-
ponents improve mitochondrial function [86,129] through anti-inflammation [63,84,90,131,144], reduce Sirt3 dysfunction 75, 
modulate the PI3K/AKT/GSK-3β signaling pathway [88], modulate the NF-κB signaling pathway [133], and modulate the ERK/-
CREB/BDNF signaling pathway [141]. 

In stroke and vascular dementia-induced learning and memory disorder, PNS-like components play ameliorative roles by pro-
moting angiogenesis [57], reducing hippocampal neuronal apoptosis [77,101,130], and providing neuroprotection [114]. 

In neuronal cell aging, PNS-like components have been effective in ameliorating learning and memory disorder by improving 
morphological changes in cell aging [70], regulating the PI3K/AKT/mTOR pathway [71–73], and regulating the FGF2/Akt and 
BDNF/TrkB signaling pathways [73]. 

Due to post-traumatic stress disorder, depression, and external physical stimuli that lead to learning and memory disorder, PNS-like 
components may play a role in the amelioration of learning and memory disorder by reducing neuronal inflammation and oxidative 
damage [80,92,115,136], modulating the BDNF/TrkB/Erk signaling pathway [93,115,134,142], regulating the NLRP3/Nrf2 signaling 
pathway [118], regulating neurotransmitter and hormone levels [79,117,124,128,136], and regulating intestinal flora dysbiosis115. 

In addition to the above, PNS also plays a role in the treatment of learning and memory disorder in postmenopausal women [75, 
76], ameliorating cognitive dysfunction in mice with sepsis-related encephalopathy [145], and improving cognitive function in dia-
betic rats [119]. 

Table 2 
Effects and Mechanisms of other Panax notoginseng saponins in Ameliorating Learning and Memory Impairment as Reported and Evidenced.  

Chemical 
Component 

Effects Mechanism and Descriptions Cited 
references 

Ginsenoside 
Rb3 

Antidepressant-like effects, modulates neurotransmitters  [124] 

Ginsenoside Rf Improves spatial learning and memory in AD mice  [125] 
Ginsenoside 

Rg2 
Enhances cognitive behavior; protects against memory 
impairment; anti-apoptotic effects 

Autophagy induction, protein aggregate clearance, 
protective effects 

[126–130] 

Ginsenoside 
Rg3 

Attenuates learning and memory disorders; controls fear 
memory regression 

Anti-inflammatory activity, Aβ42 uptake and degradation, 
HPA axis, BDNF-TrkB pathway 

[131–134] 

Ginsenoside 
Rg5 

Ameliorates cognitive dysfunction, prevents apoptosis, impacts 
gene expression related to cognitive impairment 

Neuroinflammatory attenuation, decreases β-amyloid 
accumulation, HO-1/Nrf2 signaling pathway, gene 
expression modulation 

[135,136] 

Ginsenoside 
Rh1 

Improves memory in mouse models, increases cell survival Cell survival, upregulates BDNF expression [137,138] 

Ginsenoside 
Rh2 

Reverses cognitive impairment from sleep deprivation, 
promotes spatial learning, protects against memory impairment, 
exhibits antidepressant effects 

Cholinergic transmission regulation, reduction of 
oxidative stress, ERK-CREB-BDNF signaling pathway 
modulation 

[139–142] 

Ginsenoside 
Rk3 

Cognitive improvement Improves spatial learning and memory deficits in double 
transgenic mouse models of APP/PS1 

[143]  
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PNS have been extensively studied for the treatment of cardiovascular and cerebrovascular diseases, yielding abundant results. As 
research in human brain science, behavior, and brain-related diseases, such as Alzheimer’s disease, has progressed, there has been a 
gradual increase in studies exploring the potential of PNS in treating learning and memory disorders. In comparison to ongoing or 
completed clinical trials examining pharmacological interventions for learning and memory disorders, PNS have exhibited broader 
and more effective therapeutic effects. However, due to factors such as the cost and availability of PNS, there is a lack of comprehensive 
clinical research examining their efficacy in improving learning and memory disorders. With the advancement of professional 
expertise and technical capabilities, it is anticipated that future studies will contribute to a more thorough understanding of the role of 
PNS in treating and improving learning and memory disorders. 

In conclusion, this review was conducted by discussing the ameliorative effects of PNS-like constituents on learning and memory 
disorders due to various causes. The summarized results and analyses suggest that Panax notoginseng saponin-like constituents hold 
promise as a series of natural active ingredients for improving learning and memory disorders. 
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