The Role of Alpha-Tocotrienol during Development of Primary Hippocampal Neurons

Han-A Park,¹ Kristi Crowe-White,¹ Lukasz Ciesla,¹ Sydni Bannerman,¹ Madison Scott,¹ Abigail Davis,¹ Bishnu Adhikari,¹ Garrett Burnett,¹ Katheryn Broman,¹ Khondoker Adeba Ferdous,¹ Kimberly Lackey,¹ Pawel Lickznerski,² and Elizabeth Jonas²

¹University of Alabama and ²Yale University

Objectives: Alpha-tocotrienol (α -TCT), a form of vitamin E, is a lipophilic antioxidant with neuroprotective properties. We recently reported that α -TCT treatment prevents oxidative stress-induced proteolytic cleavage of B-cell lymphoma-extra large (Bcl-xL), a prosurvival mitochondrial protein necessary during neuronal growth. However, it is still unclear if α -TCT exhibits beneficial effects during the physiological development of neurons. In this study, we hypothesized that chronic α -TCT treatment advances the development of primary hippocampal neurons by improving mitochondrial function. **Methods:** Primary rat hippocampal neurons were grown in neurobasal media with or without α -TCT for three weeks, and media was replaced with conditioned media containing fresh α -TCT every week. Intracellular α -TCT levels were quantified using HPLC-MS, and intracellular ATP and mitochondrial superoxide levels were determined using luciferase and mitoSOX, respectively. Neurite morphology was examined by Sholl analysis. mRNA and protein levels of Bcl-xL were quantified using qPCR and immunoblotting, respectively.

Results: Primary hippocampal neurons grown in media containing α -TCT had increased intracellular α -TCT levels and decreased mitochondrial superoxide. Treatment with α -TCT increased mRNA and protein levels of Bcl-xL, neuronal ATP, and the number of neurite branches in primary hippocampal neurons.

Conclusions: We found that primary rat hippocampal neurons treated with α -TCT developed advanced neurite complexity. We suggest that α -TCT treatment improves mitochondrial function via upregulation of Bcl-xL, supporting normal neuron development.

Funding Sources: RGC Program (University of Alabama); Crenshaw Research Fund (University of Alabama).