
Non-coding RNA Research 8 (2023) 534–541

Available online 1 August 2023
2468-0540/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Review Article 

MiRNAs and lncRNAs in the regulation of innate immune signaling 

Ilgiz Gareev a,*, Manuel de Jesus Encarnacion Ramirez b, Evgeniy Goncharov c, Denis Ivliev d, 
Alina Shumadalova a, Tatiana Ilyasova a, Chunlei Wang e 

a Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia 
b Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation 
c Traumatology and Orthopedics Center, Central Clinical Hospital of the Russian Academy of Sciences, 117593, Moscow, Russia 
d Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia 
e Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China   

A R T I C L E  I N F O   

Keywords: 
Innate immune 
ncRNAs 
miRNAs 
lncRNAs 
Regulation 

A B S T R A C T   

The detection and defense against foreign agents and pathogens by the innate immune system is a crucial 
mechanism in the body. A comprehensive understanding of the signaling mechanisms involved in innate im-
munity is essential for developing effective diagnostic tools and therapies for infectious diseases. Innate immune 
response is a complex process involving recognition of pathogens through receptors, activation of signaling 
pathways, and cytokine production, which are all crucial for deploying appropriate countermeasures. Non- 
coding RNAs (ncRNAs) are vital regulators of the immune response during infections, mediating the body’s 
defense mechanisms. However, an overactive immune response can lead to tissue damage, and maintaining 
immune homeostasis is a complex process in which ncRNAs play a significant role. Recent studies have identified 
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as key players in controlling gene expression in 
innate immune pathways, thereby participating in antiviral defenses, tumor immunity, and autoimmune dis-
eases. MiRNAs act by regulating host defense mechanisms against viruses, bacteria, and fungi by targeting mRNA 
at the post-transcriptional level, while lncRNAs function as competing RNAs, blocking the binding of miRNAs to 
mRNA. This review provides an overview of the regulatory role of miRNAs and lncRNAs in innate immunity and 
its mechanisms, as well as highlights potential future research directions, including the expression and matu-
ration of new ncRNAs and the conservation of ncRNAs in evolution.   

1. Introduction 

Non-coding RNA (ncRNA) is a type of RNA transcript that constitutes 
more than 90% of human RNA. Unlike messenger RNA (mRNA), which 
encodes proteins, ncRNA does not typically encode proteins, except for a 
few with open reading frames that have coding potential. Instead, 
ncRNA plays a crucial role in regulating various biological processes, 
including development, proliferation, transcription, post-transcriptional 
modification, apoptosis, and cellular metabolism [1–3]. Different types 
of ncRNA include microRNA (miRNA), small interfering RNA (siRNA), 
PIWI-interacting RNA (piRNA), transfer RNA-derived small RNA 
(tsRNA), nuclear small RNA (snRNA), nucleolar small RNA (snoRNA), 
long non-coding RNA (lncRNA), circular RNA (circRNA), and pseudo-
genes [1,4,5]. To date, among these ncRNAs that are involved in the 
innate immune signaling, the most studied are miRNAs and lncRNAs 
[6–8]. 

MiRNAs are a type of short ncRNA, typically 22–23 nucleotides in 
length. Their coding genes are transcribed by RNA polymerase II and 
they regulate mRNA expression by binding to the 3′ untranslated region 
(3′UTR) of mRNA. Over 60% of coding genes are potential regulatory 
targets of miRNAs [1,9,10]. LncRNAs are non-coding RNAs that are over 
200 nucleotides in length. Their biogenesis process is similar to that of 
mRNA. LncRNAs play important roles in various biological processes, 
including cell cycle regulation, chromatin modification, and mRNA 
translation [11,12]. 

Innate immunity is the most prevalent and rapidly acting type of 
immunity. It can recognize and eliminate a broad range of pathogens 
(Fig. 1). 

The innate immune system recognizes pathogen-associated molecu-
lar patterns (PAMPs) and host damage-associated molecular patterns 
(DAMPs) through pattern recognition receptors (PRRs) on the surface of 
innate immune cells. This recognition triggers inflammation and the 
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recruitment of immune cells to eliminate pathogenic microorganisms 
and self-harming molecules [13,14]. Recent research has made new 
discoveries about the characteristic functions, biosynthesis, and innate 
immune signal transduction of ncRNAs. Specifically, there have been 
advances in understanding how miRNAs and lncRNAs regulates the 
expression and function of innate immune signal gene-targets. 

2. PRRS and their signaling pathways in innate immunity 

The PRRs that have been identified include Toll-like receptors 
(TLRs), C-type lectin-like receptors (CLRs), nucleotide-binding oligo-
merization domain (NOD)-like receptors (NLRs), retinoic acid-inducible 
gene protein I (RIG-I)-like receptors (RLRs), melanoma deficiency factor 
2 (absent in melanoma 2, AIM2)-like receptors (ALRs), and 2′- 
5′oligoadenylate synthetase (2′-5′oligoadenylate synthesis, OAS)-like 
receptors (OLRs) [15–17]. TLRs are transmembrane proteins expressed 
in various cells, including dendritic cells, macrophages, and epithelial 
cells [18]. Upon recognition of PAMPs, TLRs recruit downstream mol-
ecules to activate nuclear factor-κB (NF-κB), interferon (IFN) regulatory 
factor (IRF), and mitogen-activated protein kinase (MAPK), leading to 
the initiation of the innate immune response [19,20]. There are two TLR 
signaling pathways based on the different downstream molecules: the 
MyD88-dependent pathway and the IFN-β TIR domain adapter protein 
(TRIF)-dependent pathway. The MyD88-dependent pathway mainly 
induces the transcription of inflammatory cytokines, while the 
TRIF-dependent pathway is unique to TLR3 and TLR4. Upon stimulation 
by ligands, TLR3 and TLR4 recruit TRIF or TRIF-related adapter mole-
cules (TRAM). The interaction between TRIF and tumor necrosis factor 
receptor-associated factor 6 (TRAF6) leads to the ubiquitination of 
receptor-interacting protein-1 (RIP-1) by IKKi/TANK-binding kinase 1 
(TBK1). RIP-1 activates the transforming growth factor beta 
(TGF-β)-activated kinase 1 (TAK1) complex. The interaction of TRIF and 
TRAF3 recruits TBK1 and IKKi, leading to the phosphorylation of 
interferon regulatory factor 3 (IRF3) to form a dimer, which binds to the 
IFN-β promoter in the nucleus and induces interferon expression [18]. 
CLRs are a group of transmembrane proteins with one or more 

carbohydrate recognition domains (CRDs) or C-type lectin-like domains 
(CTLDs) that are involved in calcium-dependent recognition of pathogen 
surface carbohydrates [21]. NLRs are cytoplasmic receptors that acti-
vate NF-κB signaling and induce changes in gene expression upon 
stimulation, leading to the formation of inflammatory complexes. RLR is 
a cytoplasmic sensor that detects RNA viruses, and upon binding to viral 
RNA, signals to mitochondrial antiviral signaling protein (MAVS) to 
induce IFN response mediated by IRF3 and IRF7 [22,23]. ALR is a 
cytoplasmic DNA sensor that activates the STING-dependent interfer-
on-stimulated gene (ISG) pathway through the endoplasmic 
reticulum-associated adapter stimulator of interferon genes (STING) 
upon detection of DNA in the cell [24]. OLR is a group of cytoplasmic 
nucleic acid sensors, including OAS protein and cyclic GMPAMP syn-
thase (cGAS), which produce second messenger molecules such as 
cGAMP upon activation by double-stranded nucleic acid in the cyto-
plasm, which bind and activate STING to initiate downstream innate 
immune response [17,25]. Although the downstream signal trans-
duction pathways of innate immunity, such as STING and MAVS, have 
been studied in depth, the specific recognition mechanism of different 
nucleic acid sensors for different nucleic acids in the initiation of innate 
immune signals remains to be further investigated. 

Each component of the innate immune pathway is tightly regulated 
at both the transcriptional and post-transcriptional levels, and 
increasing evidence suggests that ncRNAs play a crucial role in innate 
immune regulation. NcRNAs can regulate various components of the 
innate immune response, including IRF, TRIF, RIG-I, MAVS, cGAS, 
STING, and others (Table 1) [26–37]. In addition, well-known inflam-
matory signaling pathways such as TLR and NF-kB are activated during 
innate immune responses by various negative regulators, in particular 
miRNAs and lncRNAs (Fig. 2). 

Fig. 1. General principles of the innate immune response. The innate immune system is a first-level biological barrier that detects various pathogens such as 
viruses, bacteria, parasites, and toxins, or reacts to injuries of various origins. 
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3. The specific mechanism of NCRNA regulation of innate 
immune response 

3.1. Regulation of innate immunity by miRNAs 

3.1.1. Regulation of IRF by miRNAs 
IRF proteins are transcription factors with a conserved amino- 

terminal DNA-binding domain (DBD) that recognizes the promoter of 
IFN genes, regulating their expression [26]. MiRNA-23b, pol-miR-731, 
and miR-146a directly act on the 3′UTR of IRF mRNA, reducing its levels 
and inhibiting type I IFN-mediated immune response. In viral infections, 
miRNA-23b and pol-miR-731 are upregulated, inhibiting antiviral 
response [38,39], while the expression of miR-146a decreases in sys-
temic lupus erythematosus patients, correlated with disease activity 
[40]. Binding of miR-217-5p to the 3′UTR of nucleotide oligomerization 
domain 1 (NOD1) inhibits its expression, indirectly inhibiting IRF3 [41]. 
MiRNA can indirectly regulate IRF through various mechanisms. Nc886 
indirectly inhibits the phosphorylation of IRF3 through the RIG-I/MAVS 
pathway, although the specific mechanism remains unclear [42]. 
Therefore, miRNAs can directly or indirectly modulate the expression or 
activity of IRF, contributing to antiviral responses and the development 
of innate immune diseases. However, further research is needed to 

elucidate the mechanism by which Nc886 indirectly inhibits the phos-
phorylation of IRF3 through the RIG-I/MAVS pathway [42]. 

3.1.2. Regulation of IFN-β and TRIF by miRNAs 
TLR3 signaling pathway plays a crucial role in the innate immune 

response against various viruses. In this pathway, TLR3 directly in-
teracts with TRIF, leading to the activation of IRF3 by TBK1 [43,44]. 
Interestingly, miRNAs have been shown to regulate the TLR3-TRIF 
pathway and affect the body’s antiviral response. For example, 
miR-15a-5p can bind to the 3′UTR of TRIF mRNA and downregulate its 
expression [45]. Moreover, circDtx1, a circular RNA derived from the 
Deltex E3 ubiquitin ligase 1 (Dtx1) gene, acts as a competing endoge-
nous RNA (ceRNA) that sequesters miR-15a-5p, thereby upregulating 
TRIF expression and attenuating the inhibitory effect of miR-15a-5p 
[45]. This indicates that circRNA-miRNA-mRNA regulatory networks 
can interfere with the regulation of miRNAs on TRIF and collectively 
participate in the regulation of innate immunity. The TLR3-TRIF 
pathway is involved in the innate immune response against various vi-
ruses, such as influenza virus, respiratory syncytial virus, herpes simplex 
virus 2, and mouse cytomegalovirus [46]. 

3.1.3. Regulation of RIG-I by miRNA 
RIG-I, a protein encoded by the DDX58 gene, consists of two N-ter-

minal caspase activation and recruitment domains (CARD) and a C- 
terminal RNA helicase domain, and its primary function is to detect 
double-stranded 5′-triphosphate RNA (3pRNA) [47]. Upon recognizing 
viral RNA, the ubiquitination process by the E3 ligase TRIM25 activates 
the CARD domain of RIG-I, which then interacts with the adapter protein 
MAVS located on the outer mitochondrial membrane. This triggers 
downstream activation of transcription factors IRF3 and NF-κB, result-
ing in the production of type I interferon and pro-inflammatory cyto-
kines [48]. In both humans and mice, miR-218 has two binding sites in 
the 3′UTR of the DDX58 gene, and it can directly inhibit the transcrip-
tion of RIG-I, thereby inhibiting the production of type I interferon and 
promoting virus immune escape [49]. MiR-202-5p can suppress the 
expression of TRIM25 at the post-transcriptional level, inhibiting the 
ubiquitination of RIG-I and making it inactive [50]. Nonetheless, some 
miRNAs are believed to be RIG-I agonists and contribute to the enhanced 
immune response [51]. In prostate cancer cells, for instance, miR-139 
acts as a RIG-I ligand to activate RIG-I and induce an IFN-β response 
[52]. Therefore, miRNAs can promote or suppress the innate immune 
response by regulating the expression level and activity of RIG-I at both 
the transcriptional and post-transcriptional levels. 

3.1.4. Regulation of MAVS by miRNAs 
MAVS is a protein that is located on the outer mitochondrial mem-

brane and consists of an N-terminal CARD domain, a proline-rich region, 
and a C-terminal transmembrane domain [22]. It plays a crucial role in 
the innate immune signaling pathways mediated by mitochondria [53], 
and its activity and effectiveness are tightly regulated by ubiquitination 
and deubiquitination, as well as phosphorylation and dephosphoryla-
tion [22,54]. 

MiRNA can regulate the innate immune response by directly or 
indirectly controlling the expression of MAVS. Several miRNAs, 
including miR-3570, miR-122, miR-125a, miR-125b, miR-22, and miR- 
3470b, have potential complementary sequences to the 3′UTR of MAVS, 
which they use to inhibit MAVS expression at the post-transcriptional 
level. This inhibition, in turn, inhibits MAVS-mediated NF-κB and 
IRF3 signal transduction, leading to the suppression of the antiviral 
response and the promotion of viral replication [54–60]. On the other 
hand, miR-302b targets the mitochondrial transporter SLC25A12, which 
indirectly regulates MAVS-mediated innate immunity [61]. However, 
circPOK functions as a competitive endogenous RNA of MAVS and en-
hances the innate immune response by adsorbing miR-21-3p. Therefore, 
the regulation of miRNAs on MAVS is also affected by circRNAs. 

Table 1 
Presents some studies that studied the regulatory role of miRNAs and lncRNAs in 
innate immunity.  

MiRNA/ 
lncRNA 

Function in Innate Immunity Target References 

miR-146a Regulates inflammation by 
targeting TRAF6 and IRAK1/2 in 
TLR signaling pathway 

TRAF6 and 
IRAK1/2 

[26] 

miR-155 Regulates the differentiation and 
function of immune cells; regulates 
the expression of TLRs and 
downstream signaling molecules 

SOCS1, PU.1, 
TAB2, TAK1, 
and IRAK1 

[27] 

miR-9 Regulates TLR signaling pathway 
and suppresses inflammatory 
response 

NF-κB and JAK/ 
STAT 

[28] 

lncRNA- 
IL7R 

Enhances the production of pro- 
inflammatory cytokines by 
promoting the TLR signaling 
pathway 

TRAF6, IRAK1, 
and IRAK4 

[29] 

lncRNA- 
NEF 

Regulates the production of type I 
IFN in response to viral infection 

RIG-I and MDA5 [30] 

lncRNA- 
Cox2 

Regulates macrophage 
polarization and inflammatory 
response 

CREB/C/EBPβ 
axis 

[31] 

NEAT1 Promotes the production of pro- 
inflammatory cytokines and 
enhances the activation of TLR 
signaling pathway 

NF-κB and 
MAPK 

[32] 

MALAT1 Enhances the activation of TLR 
signaling pathway and promotes 
the production of pro- 
inflammatory cytokines 

SIRT1/MAPK/ 
NF-κB axis 

[33] 

GAS5 Negatively regulates the 
production of type I IFN in 
response to viral infection 

RIG-I and MDA5 [34] 

lncRNA- 
EPS 

Regulates the expression of 
inflammatory cytokines and 
enhances the activation of TLR 
signaling pathway 

TRAF6, IRAK1, 
and IRAK4 

[35] 

SNHG6 Regulates TLR signaling pathway 
and suppresses inflammatory 
response 

NF-κB and JAK/ 
STAT 

[36] 

TUG1 Regulates the expression of 
inflammatory cytokines and 
enhances the activation of TLR 
signaling pathway 

NF-κB and 
MAPK 

[37] 

THRIL Enhances the production of pro- 
inflammatory cytokines by 
promoting the TLR signaling 
pathway 

TRAF6, IRAK1, 
and IRAK4 

[37]  
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3.1.5. Regulation of miRNA on cGAS/STING signaling pathway 
Activation of cGAS by double-stranded DNA leads to the synthesis of 

cGAMP from ATP and GTP, which then activates the downstream 
molecule STING. STING recruits TBK1, which phosphorylates and acti-
vates IRF3, ultimately leading to the expression of type I interferon [62]. 
The 3′UTRs of cGAS and STING mRNA contain potential binding sites for 
some miRNAs [63,64]. miRNAs can exert an immunosuppressive effect 
by binding directly to mRNA or indirectly regulating the expression of 
cGAS/STING. YU et al. [65] demonstrated that miR-23a/b can directly 
bind to the 3′UTR of cGAS mRNA, leading to inhibition of cGAS 
expression and consequently inhibiting the innate immune response 
mediated by cGAS. Similarly, miR-24, miR-210, and miR-24-3p regulate 
the expression of STING by targeting its 3′UTR region, thereby inhibiting 
the STING-mediated signaling pathway [63,64,66]. Under hypoxic 
conditions, miR-25 and miR-93 indirectly regulate the expression of 
cGAS by acting on the epigenetic factor NCOA3, which maintains cGAS 
expression levels. This leads to downregulation of cGAS mRNA levels 
and helps hypoxic tumor cells escape the immune response [67]. In 
teleost fish, the circular RNA circSamd4a enhances the STING-mediated 
NF-κB/IRF3 signaling pathway by adsorbing miR-29a-3p through the 
sponge effect during the antiviral immune response [68]. 

3.2. Regulation of innate immunity by lncRNA 

3.2.1. Regulation of IRF by lncRNA 
LncRNAs can regulate the innate immune response by either 

adsorbing miRNA through the sponge effect or directly binding to 
components of the innate immune pathway [41]. For instance, lncRNA 
NARL, which is related to antibacterial and antiviral functions of NOD1, 
can bind to miR-217-5p competitively and promote the 
TLR-TBK1-dependent phosphorylation of IRF3, thus enhancing the im-
mune response [41,69] (Fig. 3). In addition, ncLrrc55-AS can bind to 
phosphoesterase methylesterase 1 (PME-1), promote PME-1-mediated 
demethylation and inactivation of protein phosphatase PP2A (an in-
hibitor of IRF3 signaling), and enhance IRF3 phosphorylation and 
signaling [70]. Conversely, lnc-MxA directly binds to the IFN-β pro-
moter, interferes with the binding of IRF3 and the NF-κB subunit p65 to 
IFN-β, and inhibits the transcription of IFN-β, resulting in an immuno-
suppressive effect [71]. These findings suggest that lncRNAs can 
modulate IRF3 signaling through different mechanisms, leading to 
either immune-enhancing or immunosuppressive effects. 

3.2.2. Regulation of RIG-I by lncRNA 
LncRNAs can regulate the signaling pathway mediated by RIG-I and 

play an immunosuppressive or immune-enhancing role in various dis-
eases such as tumor immunity and viral infections. In murine macro-
phages, lnc-Lsm3b competes with viral RNA for binding to the CTD of 

Fig. 2. Schematic illustration of the regulatory 
role of some microRNAs (miRNAs) and long non- 
coding RNAs (lncRNAs) on the inflammatory 
signaling cascades of toll-like receptors (TLRs) 
and nuclear factor-κB (NF-κB) during activation 
of innate immunity. Activation of the immune sys-
tem under the influence of various factors (pathogens 
or trauma) through inflammatory TLR-NF-Kb 
signaling cascades is a complex and delicate struc-
ture, which is also subject to epigenetic regulation 
through miRNAs.   
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RIG-I during the late stage of RNA virus infection, leading to its inacti-
vation and the subsequent inhibition of IFN I production [72]. However, 
no homologous gene of lnc-Lsm3b has been found in the human genome 
due to the species specificity of lncRNA expression [73]. In humans, 
lncATV is upregulated after virus infection and negatively regulates 
RIG-I-mediated antiviral innate immunity [73]. After Hantavirus infec-
tion, the transcription of lncRNA NEAT1 increases and it promotes 
IFN-β-mediated innate immunity by eliminating the transcriptional 
repression effect of proline- and glutamine-rich cleavage factor SFPQ on 
RIG-I and DDX60 molecules by relocating SFPQ to paraspeckles in the 
nucleus [74]. Therefore, the regulation of RIG-I by lncRNA may differ 
across species and involve different mechanisms. 

3.2.3. Regulation of MAVS by lncRNAs 
LncRNAs can function as endogenous competing RNAs (ceRNAs) of 

miRNAs, or interfere with mitochondrial homeostasis, thereby inhibit-
ing the activation of MAVS and regulating innate immunity. For 
instance, MAVS anti-virus-related lncRNA (MARL) acts as an endoge-
nous competing RNA of miR-122 by directly binding to it, inhibiting its 
activity and expression level, and promoting the expression of MAVS 
protein. As a result, it inhibits virus replication and promotes antiviral 
response [56]. However, there are limited studies on the regulation of 
MAVS by lncRNA. It is unclear whether other lncRNAs regulate the 
innate immune response by interfering with the combination of miRNA 
and MAVS, and whether there are lncRNAs that inhibit innate immunity 
by regulating MAVS. Further research is needed to address these 
questions. 

3.2.4. Regulation of lncRNA on cGAS/STING signaling pathway 
The cGAS/STING signaling pathway is involved in the expression of 

type I interferons and inflammatory cytokines that are critical for DNA- 
induced innate immunity. The HDP-RNP complex can regulate the 
synthesis of cGAMP in the DNA-stimulated innate immune response, 
which can affect the cGAMP-mediated IFN-β mRNA level, and the 
lncRNA NEAT1 is necessary for HDP-RNP assembly [3], thus indirectly 
regulating the cGAS pathway. Knocking out lncRNA MALAT1 has been 
found to inhibit the expression of STING and its transcriptional promoter 

activity in lung epithelial cells induced by hyperoxia. MALAT1 promotes 
the transcription of STING through the MALAT1-CREB signaling 
pathway, as evidenced by the mRNA expression level of cAMP response 
element binding protein (CREB) and the binding of STING promoter, 
which decreases after MALAT1 is silenced [75]. XIA et al. discovered a 
circRNA, cia-cGAS, that belongs to lncRNA. It binds to cGAS under 
steady-state conditions, blocks its synthetase activity, and inhibits 
cGAS-mediated production of IFN in hematopoietic stem cells, thereby 
maintaining the body’s steady-state [76]. These studies demonstrate 
that lncRNAs can positively or negatively regulate the cGAS/STING 
signaling pathway through different mechanisms, and the regulation of 
lncRNAs on the cGAS/STING signaling pathway is a complex process. 

4. Conclusion 

The precise regulation of the innate immune response is crucial for 
maintaining immune homeostasis and initiating adaptive immunity. 
Numerous studies have shown that ncRNAs are involved in regulating 
innate immune responses, with changes in their expression levels 
induced during viral infections and autoimmune diseases. Among 
ncRNAs, miRNAs and lncRNAs have been extensively studied for their 
regulatory roles in innate immunity. Generally, miRNAs bind to the 
3′UTR of mRNA to directly regulate the expression of related proteins in 
the innate immune pathway, while lncRNAs act as endogenous 
competing RNAs to prevent the combination of miRNAs and mRNA, 
regulating innate immunity. However, some lncRNAs can directly bind 
to components of the innate immune pathway or regulate innate im-
munity by affecting mitochondrial function. Moreover, the expression of 
lncRNAs is species-specific, and conserved lncRNAs play roles in pro-
cessing, localization, and function, whereas non-conserved lncRNAs 
further complicate the study of their regulation. Furthermore, studies 
have also revealed the involvement of circRNAs in regulating innate 
immunity and the development of immune-related diseases, with 
circRNAs forming complex regulatory networks with miRNAs and 
mRNAs to regulate innate immunity [77]. Therefore, ncRNAs regulate 
innate immune responses through multiple mechanisms, and their 
complex regulatory network requires further exploration to provide 

Fig. 3. Shows the regulatory mechanism of non- 
coding RNAs (ncRNAs) on interferon regulatory 
transcription factor 3 (IRF3). The Toll-like receptor 
(TLR) recognizes pathogen-associated molecular pat-
terns (PAMPs) and activates downstream signaling 
pathways through the Toll/IL-1R (TIR) domain. The 
TIR domain-containing adaptor protein (TIRAP) and 
interleukin 1 (IL-1) receptor-associated kinase (IRAK) 
initiate the downstream signaling cascade through 
tumor necrosis factor receptor-associated factor 
(TRAF), leading to the activation of inhibitor of nu-
clear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) kinase (IKK) complex, mitogen- 
activated protein kinases (MAPKs), and TANK- 
binding kinase 1 (TBK1). Inducible IκB kinase 
(IKKi), receptor-interacting protein 1 (RIP1), and 
transforming growth factor β-activated kinase 1 
(TAK1) also participate in this process. The TIR- 
domain-containing adaptor protein inducing inter-
feron beta (IFN-β) (TRIF) and TRIF-related adaptor 
molecule (TRAM) activate the downstream signaling 
pathway, which eventually leads to the phosphory-
lation and activation of IRF3, and the expression of 
interferon (IFN) genes. Optineurin (OPTN) also par-
ticipates in this process. In addition, ncRNAs, such as 
long non-coding RNAs (lncRNAs) and microRNAs 
(miRNAs), can regulate the expression and activity of 

IRF3. LncRNAs, such as nucleotide-binding oligomerization domain (NOD1) antibacterial and antiviral-related lncRNA NARL, ncLrrc55-AS, and lnc-MxA, can 
regulate IRF3 phosphorylation and signaling by interacting with different components of the innate immune pathway. MiRNAs can also regulate IRF3 activity by 
binding to its mRNA.   
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novel insights for the diagnosis and treatment of innate immune-related 
diseases [78–82]. Besides, the progress made in producing, modifying, 
and delivering RNA molecules has significantly contributed to the 
development of RNA-based therapeutics. As our knowledge of RNA 
biology continues to expand, we are witnessing a parallel growth in the 
field of RNA therapeutics. The field of RNA therapeutics is experiencing 
rapid growth and significant expansion. With over fifteen RNA-based 
therapies already approved by regulatory authorities and several more 
in advanced stages of clinical development, this powerful and versatile 
platform shows immense potential in addressing unmet medical needs 
that current treatments cannot fulfill. While fundamental challenges 
such as delivery, stability, and immunogenicity have been tackled, the 
development of RNA drugs continues to progress rapidly. However, 
there are still opportunities for further improvement and optimization, 
including targeted delivery to specific cell types, enhancing endosomal 
escape, and increasing potency [83]. 
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