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Chaotic analysis is a relatively novel area in the study of physiological signals. Chaotic features of electroencephalogram have been
analyzed in various disease states like epilepsy, Alzheimer’s disease, sleep disorders, and depression. All these diseases have primary
involvement of the brain. Our study examines the chaotic parameters in metabolic encephalopathy, where the brain functions
are involved secondary to a metabolic disturbance. Our analysis clearly showed significant lower values for chaotic parameters,
correlation dimension, and largest Lyapunov exponent for EEG in patients with metabolic encephalopathy compared to normal
EEG. The chaotic features of EEG have been shown in previous studies to be an indicator of the complexity of brain dynamics. The
smaller values of chaotic features for encephalopathy suggest that normal complexity of brain function is reduced in encephalopathy.
To the best knowledge of the authors, no similar work has been reported on metabolic encephalopathy. This finding may be useful
to understand the neurobiological phenomena in encephalopathy. These chaotic features are then utilized as feature sets for Support
Vector Machine classifier to identify cases of encephalopathy from normal healthy subjects yielding high values of accuracy. Thus,

we infer that chaotic measures are EEG parameters sensitive to functional alterations of the brain, caused by encephalopathy.

1. Introduction

The electroencephalogram (EEG) is one of the methods to
study the “brain at work” in real time. The EEG is a signal
generated from the brain which reflects the sum total of
excitatory and inhibitory postsynaptic potentials of large
population of cortical neurons. The use of EEG as an adjuvant
to clinical diagnosis of neurological diseases has drifted from
mere visual observation of the waveforms to complex analysis
of the EEG signal using well-defined algorithms. Objective
analysis of EEG is being parlayed similar to efforts made
in radiology to rule out individual bias. To date in clinical
practice, EEG observation is the standard, for all neurological
conditions. The use of newer methods in EEG analysis gives
objective evidence and shows its potential to be used for

comparison in various clinical scenarios. As the EEG signal
is in the order of microvolt and often affected by many
artefacts like eye and muscle movements, highly efficient
signal processing algorithms may be utilized to explore the
subtle information embedded in it. One of the emerging
techniques in the field of analysis of EEG is to extract the
chaotic features in the EEG signal and utilize these indicators
for diagnosing various neurological diseases.

A few studies in the past have performed nonlinear
analysis of EEG in neurological diseases like epilepsy [1-
5], Alzheimer’s disease [6-8], depression, and other mental
diseases [9, 10]. Research has also been conducted on analysis
of nonlinear features of EEG in various stages of sleep [11]
and stages of anaesthesia [12, 13]. Many of the above works
have reported positive findings. The basic theory behind
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conducting nonlinear analysis in EEG is that EEG signal is
produced fundamentally due to a nonlinear deterministic
process between various neurons which are highly dynamic
in nature [14]. Nonlinear property is exhibited even at the
neuronal level [15]. Since brain activity is the sum total of
interactions of millions of neuronal populations, nonlinear
analysis is an apt approach for EEG study [16]. Chaotic
analysis, which forms a subset of nonlinear analysis, is
therefore well suited for studying EEG signals and its
nature.

The pioneering works of chaotic analysis of EEG were
reported in seizure disorders and epilepsy as early as in 1980s
[17-20]. Those works highlighted the lowering of chaotic
parameter, correlation dimension (CD), during seizure when
compared with that of normal EEG, suggesting that seizures
might be due to a pathological “loss of complexity,” which
made them describe seizure as a state of “low dimensional
chaos.” Brain, being an intricate network of coupled and
dynamic interacting subsystems, a higher brain function like
cognition is highly dependent on the efficient integration
and processing of signals in the network. The complexity
of the brain dynamics increases when a subject performs a
cognitive task. The brain dynamics during various cognitive
tasks were studied extensively using nonlinear analysis. These
studies have also attempted to show the relationship between
brain dynamics complexity to the type and difficulty of the
specific task. Several studies have described an increase in the
CD during cognitive tasks [21, 22] which are “higher brain
functions.” The tasks used in the studies included arithmetic,
visual, verbal, graphemic, and memory retrieval. Another
study revealed the correlation of EEG complexity with the
difficulty level of the cognitive task [23]. The studies on
normal cognition were extended to the application of non-
linear analysis to neurological diseases characterized by
disturbed cognition, in particular dementia [24]. Studies
on patients with Alzheimer’s disease, a common type of
dementia, demonstrated a loss of dynamical complexity [6,
25].

While many of the studies mentioned above demon-
strate the decreasing trend in chaotic features in various
types of neurological diseases and an increasing pattern
during a higher brain function, the pattern of chaotic fea-
tures during encephalopathy remains unexplored. Metabolic
encephalopathy can be defined as fluctuating or reversible
global change in brain function manifesting with impairment
of attention, disturbances in the circadian sleep-wake cycle,
deficits in higher level brain functions, and changes in arousal
[26]. It is a disease condition when the normal activity of
brain is affected either temporarily or permanently due to
malfunctioning of some other organs of the body. Various
types of encephalopathy are defined based on the primary
cause of brain affliction. To the best of our knowledge, similar
data and results are sparse in metabolic encephalopathy.
This study aims at applying chaotic analysis of EEG in
patients with encephalopathy and comparing its features
with that of normal EEG and thereby to probe whether
chaotic features are good indicators for diagnosing this
disease.
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2. Materials and Methods

2.1. Data Acquisition

2.1.1. Study Design. The study design was retrospective case-
control study.

2.1.2. Study Setting. EEG data used in this study has been
taken from the EEG Lab, Department of Neurology, Govern-
ment Medical College, Thiruvananthapuram, Kerala, India.
Research committee approval and ethics committee clearance
of the institution were obtained prior to the conduct of the
study.

2.1.3. Study Sample with Inclusion and Exclusion Criteria

Cases. EEG data of 30 patients with metabolic encephalopa-
thy were recorded. The patients with metabolic encephalopa-
thy aged more than 18 years were included for the study.
Patients with structural pathology, infections of the CNS, and
cerebral vascular insult (confirmed by neuroimaging or other
investigations) and patients with clinical picture suggestive
of metabolic encephalopathy but without obvious metabolic
disturbances detected in the necessary biochemical inves-
tigations and metabolic encephalopathy occurring in the
background of another neurological illness causing cognitive
dysfunction or a degenerative condition were excluded from
our study. Most of the cases were in a state of delirium during
EEG recording. The EEG signals of patients were recorded
without any medication.

Controls. These selected cases were compared with a control
group of 30 normal individuals. Patients who came with
single episode of syncope but were clinically normal and
having normal brain imaging, where seizures and structural
lesions were ruled out, have been enrolled as normal healthy
controls.

2.14. Selection of Specific Epochs of EEG Recordings for
Analysis. Artefact free regions in the EEG were identified by
neurologists, specially trained in interpretation of EEG, for
our study. These selected areas of each EEG recordings were
saved as epochs of a continuous stretch, each of 12-second
duration. As the sampling frequency was fixed at 500 Hz
during recording, each EEG epoch contained approximately
6000 sampling points. Around 8-12 epochs of EEG were
obtained for each EEG recording, in both normal and
encephalopathy groups. This range was set as the availability
of artefact free “clean EEG” stretches of 12-second duration
was variable in different recordings. EEG was recorded using
average reference montage in the Nicolet EEG machine using
NicVue v.3.0 software. 10-20-electrode system was adopted
for the EEG tracing with 21-channel recording. The contacts
used were Fpl, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, T3, T4,
T5, T6, O1, O2, Al, A2, Fz, Cz, and Pz in addition to the
ground electrode, EKG, and EMG electrodes. 314 EEG epochs
of normal subjects were compared with 331 epochs of EEG of
patients with encephalopathy. Tables 1 and 2 give the details of



Neurology Research International 3
TABLE 1: Demographic data of normal and encephalopathy group participated in the study.

Group No. of participants No. of epochs Age (Mean; SD) Gender (M/F)

Encephalopathy 30 331 (57.88;11.2) 17/13

Normal 30 314 (50.13; 11.3) 16/14

TABLE 2: Various types of encephalopathy included in the database
epochs for representing encephalopathy group.

Type of encephalopathy No. of patients No. of epochs
Hepatic 17 188
Uremic 13 143

demographic data of patients and details of the epochs taken
for this analysis, respectively.

2.2. Chaotic Feature Extraction. The data that was recorded
was preprocessed by removing artefacts by passing through
band pass filter to extract the area of interest, i.e., 0.5Hz
to 60 Hz. EEG data was then saved as epochs of 12-second
duration in text files in ASCII format. These 12 s EEG epochs
were processed in MATLAB for extracting chaotic features.
All the technical work related to this study and computation
of features were done using MATLAB R2014a which is a high
level technical computing software and used extensively in
signal processing and numerical integration.

Biosignals are nonstationary and dynamic in nature.
There is an innate variability in the normal physiological
state of human body, which is a dynamic system. In other
words, a normal biosignal is inherently “chaotic” in nature.
A shift from this, to a more ordered or “less chaotic” system,
can indicate a diseased state [27]. So, chaotic analysis of
these signals has given better results when compared to
time-domain and frequency-domain analysis. This is the
basic assumption which underlies the attempts in conducting
chaotic analysis in EEG signals.

The EEG signal is represented as a one-dimensional time
series vector x(n) = {x, x,,...,xy}, where N is the number
of sampling points and the subscripts indicate the time instant
of the data point.

This one-dimensional signal has to be modelled in an m-
dimensional phase space or state space (Rm). Takens intro-
duced a method explaining how to reconstruct the model
in phase space [28]. This method is called Takens’ method
of delays. This method is employed till now in the field of
nonlinear analysis. The EEG epoch x(n) is modelled in an m-
dimensional Euclidean space as

X,m)=[xn),xn-2A),...,.x(n—-(m-1)A1)], 1

where A is the time delay and m is the embedding dimension
(vide infra). The time delay and embedding dimension
are called embedding parameters. Thus, each vector in m-
dimensional state space consists of m coordinates [29]. In case
of dissipative deterministic dynamical systems where energy
is lost with time, various trajectories will converge to a sub-
space of the total state space, which is called attractor, when
the system is observed for a long time [29]. The subspace is

called attractor because it is supposed to converge (or attract)
trajectories from all possible initial conditions. The dynamics
corresponding to a strange attractor is called deterministic
chaos.

In state-space reconstruction, the major requirement is to
select the optimum value for embedding parameters A and m.

2.2.1. Estimation of Time Delay (A). Time delay can be cal-

culated from autocorrelation method or mutual information

method. A is the time (in samples) of the first zero crossing of

autocorrelation function. The mutual information method to

find optimum A was proposed by Fraser and Swinney [30, 31].
Mutual information is

= Pij
s=- ;i (A) In ——. 2
gop, b, )

As A increases, s decreases and then again increases.
Optimum delay is taken as the time delay when mutual
information, s, reaches its first minimum.

2.2.2. Estimation of Embedding Dimension (m). False Nearest
Neighbor (FNN) method is commonly employed for cal-
culating optimum value of embedding dimension. It was
suggested by Kennel et al. based on the assumption that if
the attractor is constructed successfully in m-dimensional
space, all points that are close will also be sufficiently close in
m + 1 dimensional space [32]. A point that does not satisfy is
considered as false neighbor. The number of false neighbors is
calculated for increasing value of m. The value of m at which
false neighbors become zero or decrease drastically is taken
as the optimum value of embedding dimension .

2.2.3. Correlation Dimension (CD). The complexity of a
system can be measured using CD. Grassberger-Procaccia
proposed an algorithm to calculate CD [33]. It can be calcu-
lated as the slope of the linear scaling region of log C(r)/ log .
Here, C(r) gives the probability that two points chosen
randomly are distant r or less [34]. In (3), 0 stands for
Heaviside function which gives a “yes or no decision” whether
two points v; and v; are distant r or less [29].

j
Correlation sum C(r) is

1NN
C(r) = FZ; 'IZ#'G(r—|v,-—vj'). (3)
i=1 j=L,i#j

Correlation dimension CD is calculated as

CD = 1im 28E D),
r—0 log (1)
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TABLE 3: Median and interquartile range values for CD and LLE of EEGs of normal and encephalopathy group.

Mann-Whitney U test

Chaotic feature Group Sample size Median Inter quartile range
z p
cD Normal 314 2.01 1.85-2.20 18.36 <0.001
Encephalopathy 331 0.95 0.92-1.02
LLE Normal 314 0.20 0.18-0.23 17025 <0.001
Encephalopathy 331 0.08 0.00-0.12
Chaotic analysis isti
D Statlstlc'al
analysis
EEG data Pre processing Epochs saved | ‘| Phase space
recording of EEG data for 12 seconds I 7l reconstruction
SVM
LLE Classifier

FIGURE 1: Block diagram of chaotic analysis of EEG samples.

N is number of data points in phase space.
r is radial distance around each reference point Xi.
v;» v; are points of the trajectory in the phase space.

0 is Heaviside function.

2.2.4. Largest Lyapunov Exponent (LLE). Lyapunov exponent
A measures the rate at which the trajectories separate from
one another. It gives some dynamic information about the
attractor. Largest Lyapunov exponent calculates the chaoticity
of a system. LLE (A,,,) of the attractor gives the average
rate of convergence or divergence of nearby trajectories in
phase space. The commonly used algorithms for calculating
LLE were proposed by Wolf et al. [35] and Rosenstein et al.
[36]. They are used commonly to extract LLE from EEG data.
The mean divergence between neighboring trajectories can
be expressed as

D(t) = De™™. (5)

D is the initial separation between neighboring points and
d(t) represents distance between them in time ¢.

LLE is the slope of average logarithmic divergence of
neighboring trajectories.

y ) = (n[d,0)]). ©)
t

Positive Lyapunov exponent is a good indicator that the

system under consideration is chaotic in nature. Here in our

analysis, m is taken as 10 and A is taken as 1 for calculating the

chaotic parameters [3, 37].

2.3. Analysis of Data. The data obtained by the aforesaid pro-
cedures were subjected to statistical analysis. Mann-Whitney
U test was performed and ROC curves were plotted. Sta-
tistical analysis was done in SPSS software. Support Vector

Machine (SVM) Classifier was implemented in MATLAB and
performance parameters were analyzed to classify the two
groups. Sensitivity, specificity, and accuracy were calculated.
See Figure 1 for an overview of the whole methodology of this
study as a flow diagram.

3. Results and Discussion

3.1 Statistical Analysis. The CD and LLE of the samples were
analyzed. The test of normality by both Kolmogorov-Smirnov
(K-S test) and Shapiro-Wilk test revealed that the data was not
normally distributed (p < 0.05). Hence, nonparametric test
was preferable for the comparison of CD and LLE between
normal and encephalopathy group.

The median value of CD and LLE for the encephalopathy
study group was found to be much less when compared to
that of the normal group (refer to Table 3, Figures 2 and 3).
Statistical analysis (Mann-Whitney U test) was done to test
the significance of this result and it proved that the decrease
of CD and LLE for the encephalopathy group was statistically
significant (CD, p value < 0.001; z-value = 18.36, and for
LLE, p value < 0.001; z-value = 17.03) (see Table 3). Since p
values are less than 0.001, it can be inferred that there is a
highly significant difference in the CD and LLE values in the
normal and encephalopathy groups that cannot be attributed
to chance. There is less than 0.1% chance for these groups to
have similar chaotic features.

Figure 2 shows distribution of CD and LLE in groups
of normal and encephalopathy. Both CD and LLE decrease
considerably in metabolic encephalopathy. It shows that both
complexity and chaoticity of brain dynamics get lowered due
to encephalopathy.

A scatter diagram was plotted to visualize the pattern
of CD and LLE of encephalopathy and normal cases (see
Figure 3). The scatter plot gives the impression that the CD
and the LLE values tend to be clustered around lower values in
the encephalopathic state, whereas they tend to be higher in
normal individuals. An ROC curve (Receiver and Operating
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FIGURE 2: Box plot representing distribution of (a) correlation dimension (CD) and (b) largest Lyapunov exponent (LLE) in EEG of
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FIGURE 3: Scatter plot representing distribution of CD and LLE in
EEG of encephalopathic patients and EEG of normal subjects.

Characteristic curve) was plotted to derive approximate cut-
oftf values of CD and LLE so as to make a prediction of
whether the EEG is normal or one with encephalopathy. The
closer the curve follows the left-hand border and the top
border of the ROC space, the more accurate the test will be.
Here, ROC curve suggests that sensitivity and specificity are
both very high for both CD and LLE for normal EEG and
EEG of patients with encephalopathy (see Figure 4). The area
under curve, AUC, for the plot of CD was 93.2% and for LLE
was 85.6%. This suggests that CD may be a better parameter to
predict the state of encephalopathy than LLE.

An attempt to deduce cut-off values of CD and LLE for
predicting encephalopathy was made. A cut-off of CD value
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FIGURE 4: ROC curve in EEG of patients with encephalopathy and
EEG of normal subjects.

of <1.67 had a sensitivity of 80% and specificity of 93% to
predict encephalopathy. A cut-off of <1.91 had a sensitivity
of 95% but specificity drops to 64%. For LLE a cut-off value
of <0.16 had 80% sensitivity and 80% specificity to predict
encephalopathy. A cut-off of <0.197 had a 90% sensitivity and
58% specificity in diagnosing encephalopathy. A specificity of
95% was found if we set a cut-off value of <0.00005 but the
sensitivity would be only 30%.

3.2. Classifier Performance. Values of 300 EEG epochs of nor-
mal and 300 epochs of encephalopathic cases were included
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TABLE 4: Dataset for training and testing.
Encephalopathy Normal Total
Training 150 150 300
Testing 150 150 300

TaBLE 5: Confusion matrix for encephalopathy classification based
on chaotic features of EEG.

Predicted: NO Predicted: YES

Actual: NO 143 7 300
Actual: YES 0 150 300
300 300

for classification. Out of the chaotic features of 600 epochs,
300 were utilized for training and 300 were used for testing
the classifier. Detail of data set is given in Table 4. Sup-
port vector machine (SVM) classifier was employed for the
classification of two groups, giving high accuracy of 97.67%.
Confusion matrix for this classification is given in Table 5. It
gave 100% specificity and 95.33% sensitivity.

3.3. Discussion. We found that CD and LLE decrease con-
siderably in metabolic encephalopathy compared to normal
subjects. It shows that both complexity and chaoticity of
brain dynamics reduce in encephalopathy. If we consider
the brain as an interacting structure of multiple systems
and subsystems, during encephalopathy, there is relatively
more synchronization between the interacting elements. The
higher the level of synchronization between various sources
in a network, the lower the complexity.

An EEG feature that is consistently seen in encephalopa-
thy is called triphasic wave (TW). Triphasic waves have
morphology of a positive deflection preceded and succeeded
by a negative deflection. It classically has amplitude more than
70 uV. The TWs are usually seen at nearly 1-2 Hz frequency.
Figure 5 shows the pattern of triphasic waves seen in EEG of
encephalopathy in our study sample, though not present in
all cases of encephalopathy. These are seen as sharp spikes
and it is seen diffusely on all electrodes of both sides but
with more prominence in frontal leads [38, 39]. We hypoth-
esise that the synchronous waveforms in these TWs may
contribute to the decreased chaoticity and complexity seen
in encephalopathic patients, in our analysis. The higher syn-
chrony and hence lower chaoticity exhibited in TWs seen in
encephalopathy are analogous to the synchrony exhibited
during the hypersynchronous neuronal firing in a seizure [2].

Complexity, the core parameter that we assess using CD
and LLE, is eponymous to the measure of randomness in a
system of interacting elements. During normal wakeful state
of healthy humans, there is a high dimensional complexity,
with its interacting systems and subsystems having a weak
level of synchronization. In the setting of the condition of
encephalopathy, the disease state that we investigated, we can
assume that the level of synchronization between elements
becomes stronger as evidenced by the low dimensional chaos
demonstrated in our results. This finding may be useful to
understand better the neurobiologic phenomena in the brain
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FIGURE 5: Triphasic wave patterns seen in EEG of encephalopathic
patients.

of subjects with encephalopathy. The interactions between the
various neurons are less independent in case of encephalopa-
thy compared to healthy brain dynamics, resulting in lesser
complexity. CD and LLE give an exact measure of complexity
and chaoticity, which may be utilized by neurologists to
identify and diagnose the disease condition. These features
may also be considered as potential parameters for automated
diagnosis of encephalopathy.

However, one limitation of the study should be recog-
nised. The EEG epochs collected from encephalopathy
patients were pooled together to compare with the EEG
epochs of normal subjects. The different types of enceph-
alopathies or their grades of severity were not analyzed.

4. Conclusion

We investigated the chaotic features for EEG in patients
with metabolic encephalopathy and found that significant
decreased values were observed in both chaotic features,
CD and LLE, compared to normal EEG. Results imply
that, during the condition of encephalopathy, the complexity
and chaoticity, that is, the unpredictability and randomness
of the brain EEG, reduce considerably when compared to
normal controls. One of the reasons for this phenomenon
can be the presence of synchronous triphasic waves seen in
encephalopathy. To the best of our knowledge, this is one of
the first studies to explore chaotic parameters of EEG and we
infer that these features are sensitive to functional alterations
of the brain caused by encephalopathy. This study can be
extended to utilize chaotic features for detecting various types
of encephalopathy and thus in automated diagnosis of the
condition.
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