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Background: Bacterial infections involving multidrug-resistant Gram-negative bacteria have become cri-
tically involved in the current antibiotic crisis. This, together with the bacterial evolution ability, priori-
tizes the discovery of new antibiotics. Research on microbial iron acquisition pathways and metabolites,
particularly siderophores, has highlighted hopeful aspects for the design of advanced antimicrobial
approaches. Moreover, exploiting siderophores machinery to treat diseases associated with iron overload
and cancer is of additional interest for the therapeutic arena.
Aim of Review: This review highlights and provides a renewed perspective on the evolutionary path of
siderophores, from primordial siderophores to new iron chelating agents, stimulating the field to build
on the past and shape the future.
Key Scientific Concepts of Review: The effectiveness of siderophore-mimicking antibiotics appears to be
high and selective for Gram-negative pathogens, rendering multidrug-resistant (MDR) bacteria suscepti-
ble to killing. Herein, cefiderocol, a new siderophore antibiotic, is well positioned in the clinic to treat
MDR infections instigated by Gram-negative bacteria, particularly urinary tract infections and pneumo-
nia. This siderophore has a mode of action based on a ‘‘Trojan horse” strategy, using the iron uptake sys-
tems for efficient bacterial penetration and killing. Recent progress has also been achieved concerning
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new iron chelating compounds to treat diseases associated with iron overload and cancer. Though these
compounds still face great challenges for a clinical application, their promising results open up new doors
for the design and development of innovative iron chelating compounds, taking benefit from the struc-
turally diverse nature of siderophores.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1
Common siderophores produced by bacteria and the respective chemical group.

Group Siderophores Bacteria References

Catecholate Bacillibactin Bacillus cereus
Bacillus subtilis

[18–20]

Enterobactin Escherichia coli
Salmonella spp.
Klebsiella pneumoniae

Salmochelin Salmonella spp.
Klebsiella pneumoniae

Agrobactin Agrobacterium spp.
Rhizobium radiobacter

Vanchrobactin Vibrio anguillarum
Anguibactin

Hydroxamate Aerobactin Shigella flexneri
Aerobacter aerogenes
Escherichia coli
Klebsiella pneumoniae

[21–24]

Alcaligin Alcaligenes eutrophus
Bordetella
bronchiseptica

Ferrioxamine
B

Salmonella enterica
Yersinia enterocolitica

Carboxylate Rhizobactin Rhizobium meliloti
Sinorhizobium meliloti

[19,25,26]

Staphyloferrin Staphylococcus aureus

Phenolate Pyochelin Pseudomonas spp. [27,28]

Mixed Pyoverdine Pseudomonas spp. [19,28,29]
Ferrichrome Yersinia enterocolitica

Pseudomonas putida
Yersiniabactin Yersinia enterocolitica

Klebsiella pneumoniae
Introduction

Biomedical and pharmaceutical areas are facing growing chal-
lenges with the continued upsurge of multidrug resistance among
bacteria, which has contributed to the global increase of infections
caused by such resistant microorganisms. These bacterial infec-
tions, typically biofilm-related, are an escalating health problem,
leading to a substantial rise in mortality, morbidity, and treatment
costs [1,2]. Bacterial biofilms have been associated with many
chronic and recurrent bacterial infections, with up to 80% of human
infections involving biofilm formation [1,3]. Biofilm development
is a complex process, multifaceted and dynamic, involving numer-
ous mechanisms such as extracellular matrix (ECM) production,
quorum sensing (QS), and nutrient and chemical signal response,
with the colonizer cells inherently resistant to both host innate
immune defenses and antibiotic treatments [4]. Multiple factors
have been recognized to confer the multi-factorial resistance of
biofilms to antibiotics. These comprise a limited diffusion of antibi-
otics through the biofilm ECM, reduced metabolic and growth
rates, the presence of persister cells, and an altered physiology of
bacteria in biofilms comparatively to the same cells in planktonic
state [5–7]. Hence, bacterial biofilm formation along with antibi-
otic resistance has contributed to an escalating and intractable
problem in the health sector.

Owing to the increasing antibiotic resistance, the focus of cur-
rent research is to discover new antibiotics to address and fight
multidrug-resistant (MDR) pathogens, especially Gram-negative
bacteria - for which the situation is particularly serious [8]. One
viable and promising strategy for the design of new antimicrobial
compounds is by using or targeting bacterial virulence factors,
where siderophores are included. This approach will allow escap-
ing the selective pressure for resistance as occurs from antibiotic
use. Besides that, these bacterial virulence factors affect other
virulence mechanisms, in particular biofilm formation [9,10].
Moreover, a reduced impact in the host commensal microbiome
is expected from targeting these bacterial virulence factors [10].

Iron is an essential nutrient for both humans and bacteria [11].
Despite its multifaceted biological functions in humans (i.e. DNA
biosynthesis, oxygen transport, cell respiration, and gene regula-
tion), iron can be harmful at high levels because of its toxicity
and ability to cause oxidative stress [12,13]. Hence, the bioavail-
ability of iron in mammalian hosts is strictly controlled throughout
its absorption, transport, and storage. However, the iron availabil-
ity is limited under aerobic conditions since the main soluble fer-
rous iron (Fe2+) is oxidized to its insoluble ferric form (Fe3+),
being further polymerized to ferric (oxy)hydroxide [13,14]. Fur-
thermore, the majority of iron existing in circulation is tightly
bound to host proteins like transferrin, limiting iron access to
invading pathogens, which also require iron [15]. Responding to
this challenge in a pathogenic context, bacteria synthesize and
secrete low molecular weight molecules known as siderophores,
which can acquire and solubilize iron from the host [16,17]. Side-
rophores are natural iron chelators and their biosynthesis is driven
by the iron concentration in the surrounding environment. These
iron chelators are secreted out for iron acquisition when the bacte-
ria detect limited iron levels, with further scavenging and binding
of iron to form an iron-siderophore complex that is recognized and
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translocated inside the cells by specific cell-surface receptors
[16,17]. Both Gram-positive and Gram-negative produce sidero-
phores (Table 1), however, their iron uptake mechanisms are
different.

In Gram-positive bacterial pathogens, the uptake of iron-
siderophore complexes comprises an ATP-binding cassette (ABC)
transporter and a membrane-anchored binding protein [30,31].
In Gram-negative bacteria, active transport of these complexes
requires a specific outer membrane receptor, namely TonB system
(TonB, ExbB, ExbD), an inner membrane ABC transporter and a
periplasmic binding protein [30,31]. The large structural and func-
tional diversity of siderophores, commonly divided into cate-
cholate, hydroxamate, carboxylate and phenolate–according to
the moieties involved in iron chelation (Table 1), constitute a
valuable chemical library for the design of specific siderophore-
mimicking antibiotics [16,32]. In addition, the involvement of side-
rophores at the root of numerous bacterial processes makes these
therapeutic antimicrobial compounds even more attractive
[33,34]. Extensive research on this topic has revealed the identifi-
cation and approval of a new siderophore cephalosporin antibiotic
– cefiderocol – with powerful antibacterial action on MDR Gram-
negative pathogens [35,36]. Such siderophore-based compounds
could potentially give a boost in dealing with biofilm infections
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and, consequently, contribute to circumvent the antibiotic resis-
tance crises.

It has become clear that siderophores have biological properties
that extend beyond simple iron acquisition. Iron overload is known
to be a common complication for the treatment of many diseases
like sickle cell disease and thalassemia, which are among the most
frequent monogenic global disorders [37,38]. The reduction of
body iron overload to normal range levels using siderophores as
an effective chelation therapy is promising to decrease the morbid-
ity and mortality rates from these disorders. In fact, the iron chela-
tion ability, from primordial siderophores to new designed iron
chelating agents, has already been translated for clinical use to
treat iron overload diseases [39–41]. Moreover, the involvement
of iron chelating agents in cancer therapy has also been increas-
ingly evidenced [42,43]. Iron excess may lead to an increased risk
for developing cancer, and siderophores can contribute to iron
homeostasis [44,45].

Given the involvement and importance of siderophores for both
physiology and pathogenicity of bacteria, using or targeting such a
bacterial pathway seems to be a deep well for developing new
antimicrobial agents. Moreover, exploiting siderophores machin-
ery for the treatment of many other diseases such as iron overload
diseases and cancer, gives future directions to the therapeutic
arena [46–48]. Despite a large number of original research on the
topic, no recent attempt has been made to review and critically
address the progress on the mechanisms involving siderophores
in biofilms, cell biology and survival, and their consequent use as
therapeutics. This review seals this gap and discusses the evolu-
tionary path of siderophores, from primordial siderophores to
new iron chelating agents, with a critical emphasis on in vitro,
in vivo, and available clinical information. The review starts with
a brief overview of siderophores biology along with an in-depth
analysis of their mechanism of action, followed by recent findings
on their exploitation in the clinical context, examining their poten-
tial as new antimicrobial compounds and iron chelators to treat
diseases associated with iron overload and cancer. The most effi-
cient compounds that have reached clinical trials are highlighted.
This study is not envisioned to be an exhaustive comprehensive
review of the literature on siderophores, but an investigation of
the progress in their development for antimicrobial therapy, iron
overload diseases and cancer, from 2000 to 2021.

Leveraging bacterial biofilm mechanisms to develop antimicrobials
and iron chelating agents

Understanding bacterial biofilm mechanisms is fundamental to
develop effective control strategies. Biofilm development depends
on the synthesis of specific molecules. The comprehensive knowl-
edge of the specific pathways involved can provide insights on new
therapeutic targets for drug discovery. The biofilm formation pro-
cess typically encompasses cell–cell interaction mechanisms,
involving both regulatory mechanisms and the synthesis of sec-
ondary metabolites, including siderophores (Fig. 1) [49].

One of the main regulatory mechanisms in biofilms is recog-
nized as quorum sensing (QS). QS is a communication mechanism
between bacteria by releasing, sensing and responding to small dif-
fusible signal molecules. Indeed, several bacteria are able of using
QS mechanisms to regulate biofilm formation [51]. QS induction is
also involved in biofilm maturation and dispersion (Fig. 1) [50].
Moreover, pathogenic bacteria in biofilms use QS mechanisms to
trigger virulence and develop resistance to antibiotics. In addition
to this regulatory mechanism, bacterial secondary metabolites,
particularly siderophores, also possess a significant role in several
cellular processes in biofilms, being likewise responsible for viru-
lence and infection [9,52,53]. These chelating agents, together with
iron, are essential for the switch between planktonic to sessile
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state, including the gene expression in biofilms [9,52–54]. Singh
et al. [52] demonstrated that lactoferrin (a human iron transport
protein), used to chelate free iron, delayed Pseudomonas aeruginosa
biofilm formation under concentrations needed to inhibit plank-
tonic growth. Moreover, iron chelation by lactoferrin prevented
the planktonic cells from attaching to surfaces, the first crucial
stage involved in biofilm development (Fig. 1). Several other eye-
catching works showed the ability of iron chelators to disrupt
and/or kill mature biofilms [52–54]. The regulation of biofilm for-
mation by iron with siderophore-dependent pathways (Fig. 2) has
been largely demonstrated in many bacterial species [55–57]. For
instance, Modarresi et al. [33] observed the role of iron in the
siderophore-producing bacterium Acinetobacter baumannii, an
opportunistic pathogen responsible for causing a wide variety of
diseases ranging from urinary tract infections to more serious con-
ditions like ventilator-associated pneumonia and sepsis [34]. They
found that QS and biofilm formation were regulated by iron con-
centration in a dose dependent manner, indicating that iron limita-
tion plays a fundamental role in siderophore production that
results in strong or weak biofilm production [34]. Wu and Outten
[58] evaluated the role of iron availability in regulating biofilm for-
mation by E. coli and observed that biofilm formation was
repressed under low iron conditions. Banin et al. [55] showed the
importance of iron in biofilm formation by P. aeruginosa, an oppor-
tunistic bacterium involved in various infections, ranging from
septicemia, urinary infections, and cystic fibrosis [56]. It was
observed that P. aeruginosa mutants, which cannot acquire iron
via the iron acquisition system, formed thin biofilms similar to
those developed by the wild-type in low iron conditions [55]. Nev-
ertheless, when an excess of iron was provided to the mutant, sim-
ilar biofilm development to wild-type strain occurred [55].
Additionally, Chen et al. [57]found a slower growth of K. pneumo-
niae in iron restricted environments. K. pneumoniae is the most
clinically relevant species of Enterobacteriaceae and is known to
cause both community-acquired and nosocomial infections. More-
over, iron promoted K. pneumoniae biofilm formation, while the
presence of an iron chelator attenuated biofilm formation. Collec-
tively, these data reveal that iron plays a critical role in the bacte-
rial biofilm formation process.

The relationship between iron, siderophore biosynthesis and
iron chelation in biofilm formation is evident. This provides a bet-
ter understanding of the iron signaling cascade critical for biofilm
development, which could help in the rational design of innovative
therapeutic agents. Furthermore, benefiting from the advances and
findings of the biological function and trafficking of siderophores,
there has been a paradigm shift toward potential vulnerabilities
of these molecules that can be exploited clinically, especially for
the antimicrobial field and for the treatment of diseases associated
with iron overload and cancer.

Siderophores for antimicrobial therapy

New antimicrobial compounds based on siderophore-based
agents and/or siderophore-targeting are an auspicious path against
MDR bacteria, which could help clinicians fight against antibiotic
resistant pathogens. The development of new antimicrobial drugs
faces specific challenges on MDR Gram-negative bacterial patho-
gens, mostly on P. aeruginosa, A. baumannii, and Enterobacteri-
aceae, categorized by the World Health Organization (WHO) as
crucial bacteria that cause the greatest threat to human health
[8]. However, the progress translating the Gram-negative bacteria
clinical pipeline has been slow, partly owing to the difficulty over-
coming the outer lipid membrane and associated efflux pumps in
these bacteria, which have become resistant to carbapenems and
the third generation of cephalosporins [8,59]. One approach for cir-
cumventing the resistance displayed by Gram-negative pathogens



Fig. 1. Bacterial biofilm formation and development. During the complex process for biofilm formation, bacteria secret secondary metabolites, namely siderophores, to
chelate iron (Fe) essential as a signal for biofilm development. Then, bacteria adhere to surfaces by adsorption and form a microcolony through the secretion of extracellular
polymeric substances (EPS). In later stages, the biofilm is mature and densely populated due to the induction of the quorum sensing (QS) responsible for the regulation of
genes involved in biofilm maturation and maintenance. Lastly, some bacteria start to detach and the biofilm disperses (adapted from Landini et al. [50] and Post et al. [10]).

Fig. 2. Role of iron in acquisition mechanisms and bacterial biofilm formation. The
presence of iron (Fe) can positively or negatively regulate quorum sensing (QS)
regulators. A specific iron concentration is necessary for biofilm formation. If not,
the presence of iron can inhibit the expression of genes responsible for extracellular
protein synthesis, through QS regulators, necessary for bacterial surface adhesion.
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involves exploiting the iron uptake path of these bacteria through
the conjugation of a siderophore to an antibiotic. This promotes the
entry of the compound into cells when iron acquisition processes
are expressed [28,60]. In line with this, several siderophore-
antibiotic conjugates were already designed and tested. The results
demonstrated good in vitro action on several clinically relevant
MDR Gram-negative bacteria [61–63]. However, further develop-
ment of candidates has not reached the market because of
resistance mechanisms, dearth of reliable in vivo effectiveness
and occurrence of side effects [61,62,64]. For instance, the sidero-
phores monocarbam SMC-3176 (Fig. 3A) and monobactam MB-1
(Fig. 3B) have not advanced into clinical studies due to the lack
of correlation between good in vitro data and in vivo responses in
P. aeruginosa [61,62]. These compounds carried a risk of reduced
efficiency in P. aeruginosa because of the quick adaptative resis-
tance [61,62]. Moreover, in a work that compared the in vivo effi-
cacy of SMC-3176, MB-1 and a new siderophore cephalosporin,
known as cefiderocol (Fig. 4A), against P. aeruginosa strains, the
attenuated in vivo efficiencies of the siderophores SMC-3176 and
MB-1 were verified, while cefiderocol exhibited a powerful effect
in vivo on all P. aeruginosa strains tested, including the resistant
ones [65].

The antimicrobial efficacy of this advanced-generation cepha-
losporin has been assessed using several pathogenic bacteria
exhibiting potent and broad in vitro and in vivo action against
carbapenem-resistant strains of Enterobacteriaceae [66,67],
A. baumannii [67,68], P. aeruginosa [67–70], and K. pneumoniae
[68,70]. Several animal models have been used to demonstrate
the promising in vivo efficacy of cefiderocol, including murine lung
infection models [68,71], neutropenic murine thigh infection mod-
els [67,69,71], and murine urinary tract infection models [70].
Based on these and other in vivo data, the clinical efficacy of cefide-
rocol has been assessed, and it was the first cephalosporin antibi-
otic to further advance the phase 1 human clinical assays to
reach a stage of clinical development. This new siderophore (ear-
lier identified as S-649266) employs a ‘‘Trojan horse” transport
mechanism that allows entry to Gram-negative bacterial patho-
gens by exploiting the bacterial iron-siderophore uptake system
(Fig. 4B) [66,72]. Cefiderocol has a catechol moiety on the 3-
position of the R2 side chain attached to the cephalosporin mole-
cule, which chelates free iron [73,74]. Then, this complex is trans-
ported via the bacterial iron transport system across the outer
membrane of Gram-negative bacterial pathogens into the periplas-
mic space, attaches to penicillin-binding proteins and inhibits the
bacterial cell wall synthesis, causing cell death [73,75]. In
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Portsmouth et al. [76], a phase 2, randomized, double-blind, non-
inferiority phase 2 clinical study was performed to evaluate the
efficacy and safety of cefiderocol, compared to imipenem-
cilastatin, for the treatment of complicated urinary tract infections
(cUTI) instigated by Gram-negative uropathogens (NCT02321800).
Though envisioned as a non-inferiority assay, the outcomes of this
clinical trial favoured cefiderocol (see Table S1 A in Supplementary
Information for study details). Its superiority for the primary end-
point was boosted by the higher eradication of Gram-negative bac-
teria at test of cure (73% vs 56% with imipenem-cilastatin), since
the clinical outcome was equivalent for both groups (90% cefidero-
col vs 87% imipenem-cilastatin). The higher number of patients
that presented a microbiological outcome in the cefiderocol group
was suggested to be related to improved drug penetration into bio-
films, a key factor associated with recurrent UTIs, in parallel with
the distinctive bactericidal mode of action of cefiderocol. Further-
more, the safety profile of cefiderocol was demonstrated. Based
on this clinical trial, the Food and Drug Administration (FDA)
recently approved cefiderocol (Fetroja�, November 2019) for the
treatment of 18 years old patients or older, with cUTI, including
pyelonephritis caused by Gram-negative pathogens [35].
In addition, biofilm formation can be directly regulated by QS systems.



Fig. 3. Chemical structures of SMC-3176 (A) and MB-1 (B).
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Very recently, FDA authorized the approval of a supplemental
New Drug Application (sNDA) for cefiderocol (Fetroja�, September
2020) for the treatment of 18 years old patients or older, with
hospital-acquired pneumonia (HAP) and ventilator-associated
pneumonia (VAP) caused by Gram-negative bacteria resistant to
other antibiotics [35]. This consent was focused on the outcomes
of a randomized, double-blind, phase 3, non-inferiority clinical trial
that compared the efficacy and safety of cefiderocol with high-
dose, extended-infusion meropenem in patients with HAP, VAP,
or healthcare-associated pneumonia (HACP) (NCT03032380) [77].
That study showed the non-inferiority of cefiderocol to high-
dose, extended-infusion meropenem (12.4% vs 11.6%, respectively),
infused over 3 h, in patients with nosocomial pneumonia involving
a variety of Gram-negative pathogens, particularly P. aeruginosa, A.
baumannii and Enterobacterales (see Table S1 B in SI for study
details). This primary goal was then supplemented by microbiolog-
ical and clinical secondary responses. The microbiological eradica-
tion at test of cure in the modified ITT population was 48% in both
groups, whereas the clinical outcome was achieved by 65% vs 67%
of patients in the cefiderocol and high-dose meropenem group,
respectively. In addition, the safety profile of cefiderocol was
observed, which is in agreement with the safety findings obtained
in other studies of cefiderocol, including that of Portsmouth et al.
[76]. That work was carried out in a population of critically ill
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patients at high-risk, representative of the present aetiology and
epidemiology of nosocomial pneumonia. Furthermore, these clini-
cal data highlighted the extensive coverage of cefiderocol against
all Gram-negative bacterial pathogens considered of critical prior-
ity by the WHO [8].

Currently, three clinical studies in phase 2 for the treatment of
adult patients with bloodstream infections (NCT03869437), hospi-
talized pediatric patients with Gram-negative bacterial infections
(3 months to < 12 years) and cUTI (3 months to < 18 years)
(NCT04215991), and hospitalized pediatric patients with Gram-
negative bacterial infections (3 months to < 18 years)
(NCT04335539) are ongoing.

Siderophores and new iron chelating agents for the treatment of
diseases associated with iron overload and cancer

Siderophores have proven to be powerful iron chelating agents
for the clinical treatment of diseases with iron overload like sickle
cell disorder and thalassemia, and cancer. Thalassemia and sickle
cell disease are among the most frequent monogenic global disor-
ders [78,79]. Thalassemia is a result of mutations in globin genes
that cause the reduction or absence of hemoglobin synthesis, pre-
senting defects in the synthesis of either b-like (b-thalassemia) or
a-like (a-thalassemia) globin chains [78,80]. On the other hand,



Fig. 4. Chemical structure of cefiderocol (A) and its ‘‘Trojan horse” active transport mechanism to across the outer membrane of Gram-negative bacteria using the iron
transport system (B). Then, cefiderocol is released into the periplasmic space, attaches to penicillin-binding proteins and inhibits the bacterial cell wall synthesis, causing cell
death.

M. Ribeiro, Cátia A. Sousa and M. Simões Journal of Advanced Research 39 (2022) 89–101
sickle cell disease is a result of a homozygous missense mutation of
the b-globin gene that triggers polymerization of hemoglobin S,
and it is characterized by unpredictable episodes of acute illness
and progressive organ injury [79,81]. Due to their impact on
morbidity and mortality, these disorders are increasingly being
recognized as a global health problem. Blood transfusion is the
mainstay standard therapy for the control and treatment of tha-
lassemia and sickle cell disease [82]. However, many of these
patients require repeated transfusions, which causes significant
iron overload [82]. This overloading can lead to iron deposition
in vital organs such as brain, heart, liver and endocrine glands
[83]. The major cause associated with this organ injury is the over-
production of ROS in the presence of excess iron [83]. As the
human body has no active excretion mechanisms for excess iron,
new agents based on iron chelators have been under development
and approval [84,85]. Chelation therapy aims to stimulate the iron
excretion in patients having iron overload and to maintain or
return body iron to safe levels [84].

Various randomized clinical trials have been performed to
assess the efficacy and safety of iron chelation implicated in the
treatment of iron overload [37,38,86–88]. Deferoxamine (Des-
feral�, DFO), deferasirox (Exjade�, DFX), and deferiprone (Fer-
riprox�, DFP) have been the most important US FDA-approved
iron chelators over the past years (Fig. 5) [89]. Deferoxamine
(Fig. 5A), a hexadentate chelator binding iron at 1:1 M ratio, was
the first iron chelator introduced into clinical practice [90]. Despite
the great iron-scavenging features of deferoxamine, the short
plasma half-life (20–30 min) and poor oral bioavailability of this
iron chelator, based on a subcutaneous administration over 8–
12 h and 5–7 days/week, results in poor compliance [82,90,91].
Responding to this demanding therapeutic regimen, two orally
active iron-chelating compounds known as deferasirox and defer-
iprone have received approval for the treatment of iron overload.
Deferiprone (Fig. 5B) is a small molecule that binds to iron in a
3:1 ratio and presents a relatively short half-life (3–4 h, three times
daily), while deferasirox (Fig. 5C) binds to iron in a 2:1 ratio and
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have long half-life ranging from 8 to 16 h, which can be given once
daily, providing a 24-hours chelation coverage [82,91,92]. Com-
bined chelation therapy has also been introduced as a means to
manage iron overload when therapy based on a single chelating
compound is not effective. Several studies have demonstrated
the efficacy and safety of using combined chelation treatment to
remove iron overload, with different combinations being tested
in clinical practice, including with deferoxamine/deferasirox
[93,94], deferoxamine/deferiprone [95,96], and deferiprone/de-
ferasirox [97,98]. This combined or alternated chelation treatment
has been shown to decrease systemic and myocardial iron, provide
excellent control of the toxic label plasma iron species without
increasing the toxicity, and improve the endothelial and ventricu-
lar function in thalassemia patients presenting mild to moderate
cardiac iron loading [93,95,98].

Notably, based on all these findings, iron chelators bring signif-
icant hopeful implications for the patients safety and life expec-
tancy. For instance, without iron chelation therapy, the mean
survival from birth in thalassemiamajor patientswere 12–17 years,
with death occurring mostly due to cardiac failure or arrhythmia
[99]. Although each of these approved agents, applied alone or in
combination, has been shown to effectively sequester excess iron,
several parameters such as the severity of iron overload, the clini-
cal situation of the patient, treatment period, and respective final
costs must be taken into reflection when choosing the proper
chelation therapy for a specific clinical case [89]. So far, all these
iron chelators appear to be effective and well-tolerated, however,
their poor compliance (deferoxamine) [82,90,91] and adverse
effect profiles such as gastrointestinal symptoms (deferiprone
and deferasirox) [86,88,90,100], agranulocytosis (deferiprone)
[86,100] and renal damage (deferasirox) [39,101], have pushed
researchers to identify new oral iron chelators.

New oral chelators have reached the phase of clinical develop-
ment such as FBS0701, also known as SPD602, SSP-004184 or
SSP-004184AQ (Fig. 5D) [102,103]. The oral iron chelator
FBS0701 is included in the desazadesferrithiocin class of



Fig. 5. Chemical structures of deferoxamine (A), deferiprone (B), deferasirox (C), three of the most important US FDA-approved iron chelating compounds implicated in the
treatment of iron overload, and FBS0701 (D).
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siderophore-related tridentate chelators [103]. In phase 1 clinical
investigation, the multidose safety and pharmacokinetics studies
established the safety of FBS0701, with a mean half-life of 16.2–
21.3 h, suggesting the feasibility of once-daily dosing in iron-
overloaded patients [102]. A phase 2, randomized, multicenter,
clinical trial, designed to assess the efficacy, safety, and pharmaco-
dynamics of FBS0701 in the treatment of chronic iron overload,
demonstrated its good capability in iron chelation, presenting a
similar profile to currently approved iron chelating compounds
(NCT01186419) [103]. Besides the occurrence of adverse effects,
these did not appear to be dose related and happened at low fre-
quency [103]. Nevertheless, three clinical studies conducted in
phase 2 (NCT01363908; NCT01604941; NCT01671111) were ter-
minated because of the interruption in treatment with FBS0701
and the inability at the time to draw definitive conclusions from
the data.

Interestingly, the iron chelator FBS0701 has also shown poten-
tial for the treatment of malaria, one of the most prevalent and
deadly parasitic diseases worldwide [104]. The clinical indication
of drug resistance to the existing antimalarial agents as well as
the spread of resistant parasite strains further increases the inter-
est in iron chelating therapy [104]. For instance, in a work devel-
oped by Ferrer et al. [105] the iron chelator FBS0701 was found
to exhibit antimalarial properties against Plasmodium blood-stage
infections in vitro and in vivo. FBS0701 demonstrated a single oral
dose cure of the lethal Plasmodium yoelii murine malaria model
and this result was observed to persist after the chelator has
cleared from plasma [105]. This iron chelator can be administered
as a single daily dose due to its propitious adsorption and pharma-
cokinetic properties compared to deferoxamine and deferiprone
[102]. The ability of FBS0701 to remove labile iron from erythro-
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cytes was likely primarily responsible for both the antimalarial
activity and the prolonged effect of this chelator [105]. In another
work of Ferrer et al. [105] the effect of FBS0701 on stage V game-
tocytes infectivity to mosquitos was evaluated and it was observed
a substantial dose related reduction in mosquito infectivity. This
decline on mosquito infectivity was demonstrated to be a result
of iron chelation, as pre-incubation of FBS0701 with ferric chloride
reduced the inhibitory effect and restored gametocyte infectivity.
Thus, FBS0701 offers an interesting alternative or complementary
approach to current therapeutic agents for the treatment of
malaria.

Iron has also been implicated in playing major functions in can-
cer development, proliferation, and metastasis [106,107]. Cancer
occurrence and mortality is increasing rapidly globally. Indeed,
cancer has emerged as the first or second prominent reason for
death before age 70 years in 91 of 172 countries and third or fourth
ranking in 22 more countries, by a WHO estimate [108]. The
malign cancer phenotype is often associated with dysregulated
iron homeostasis, as its excess may lead to an increased risk of
developing cancer [106,107]. This iron overload plays a vital role
in cancer advancement, either by promotion of tumor develop-
ment, cell proliferation, and metastatic cascade or by involvement
in redox reactions responsible to catalyze the generation of ROS
and boost oxidative stress [107,109]. Hence, iron homeostasis
modulations such as iron depletion through chelators make it a
possible therapeutic target for cancer. Some iron chelators have
already been put into clinical assessment, including deferoxamine
(Fig. 5A), and triapine (3-aminopyridine-2-carboxaldehyde
thiosemicarbazone) (Fig. 6A) [110].

Deferoxamine, a siderophore currently employed in the clinical
treatment of diseases associated with iron overload, was the first



Fig. 6. Chemical structures of triapine (A), Dp44mT (B), DpC (C) and COTI-2 (D), four iron chelating agents designed and evaluated for cancer.
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iron chelator to be assessed for its anticancer properties. While
deferoxamine showed some useful anticancer activity, its clinical
efficacy has been limited, which relates to the fact that it was
not developed specifically for cancer therapy [111]. Nevertheless,
the promise of deferoxamine as anticancer agent has prompted
the design of more effective iron chelators, with a particular focus
on triapine.

Triapine is a tridentate chelator that has been assessed in phase
1, 2 and 3 clinical studies for cancer therapy. This iron chelator has
been assessed either as a single agent or combined with traditional
chemotherapy and/or radiation therapy in multiple phase 1 and
phase 2 studies for different types of cancer (see Tables S2 and
S3, SI). Triapine is a strong inhibitor of ribonucleotide reductase
(RR), an enzyme implicated in the reduction of the four ribonu-
cleotides to their related deoxyribonucleotides needed for DNA
synthesis and repair [112,113]. Increased RR activity has been
related to tumor cell formation and metastasis [114]. By inhibiting
the RR, DNA synthesis and cell proliferation are disrupted, causing
cell death [112,113]. Therefore, this enzyme has long been believed
to be a key target for cancer therapy. Early clinical data demon-
strated that the use of triapine as monotherapy may not generate
survival advantages in patients with cancer [115–117].

Nevertheless, when triapine was combined with additional
chemotherapeutic compounds great potential in controlling cer-
tain cancers was observed [44,45,118,119]. Interestingly, a phase
1 clinical trial developed by Kunos et al. [45] showed that triapine
was well-tolerated at a three times weekly (25 mg/m2 dose) in
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combination with cisplatin and pelvic radiation for the treatment
of advanced cervical cancer (see Table S4 A in SI for study details).
All patients presenting stage IB2 to IVB cervical cancer reached
complete clinical outcomes and persisted without disease relapse,
with a median of 18 months of follow-up (6–32 months). In line
with this data, a phase 2 clinical trial of daily pelvic radiation
and once-weekly cisplatin (40 mg/m2) plus three times weekly tri-
apine (25 mg/m2) for patients presenting cervical and vaginal can-
cer was performed (NCT00941070) [119]. It was observed that the
combination of triapine with cisplatin-radiotherapy enhanced the
metabolic complete outcome from 69% to 92, also raising the 3-
year progression-free survival estimation from 77% to 92% (see
Table S4 B in SI for study details). Moreover, a favorable safety pro-
file was observed and no significant symptomatic methe-
moglobinemia was reported after triapine administration.
Accordingly, a very recent phase 3 clinical study of triapine-
cisplatin-radiotherapy in patients with advanced-stage uterine
cervix or vaginal cancers, to assess progression-free and overall
survival, is being performed (NCT02466971).

Overall, all the clinical trials of triapine described above have
interesting clinical prospective and the results of the more recent
investigations should be of interest. Nevertheless, some off-target
side effects observed in the treatment of patients with triapine
such as gastrointestinal symptoms, neutropenia, myelosuppres-
sion, hypoxia, and methemoglobinemia have raised some concerns
regarding its clinical use [117,120–122]. Therefore, research has
also begun to focus in designing more effective and selective iron
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chelators for cancer therapy. New thiosemicarbazone iron chela-
tors with anticancer potential have been designed and synthesized,
including 2-benzoylpyridine thiosemicarbazones (BpT) and di-2-
pyridylketone thiosemicarbazones (DpT). One of the best described
chelators of the DpT is the di2-pyridylketone-4,4,-dimethyl-3-thio
semicarbazone (Dp44mT) (Fig. 6B), which has demonstrated evi-
dent and selective in vitro and in vivo antiproliferative effect in dif-
ferent types of cancer cells [123–125]. In addition, a
thiosemicarbazone of the second generation of DpT analogues,
known as di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemi
carbazone (DpC) (Fig. 6C), has shown marked and selective antitu-
mor activity as well as favorable pharmacological properties and
safety profile [126,127]. Importantly, despite the structural simi-
larities between this compound and Dp44mT, DpC has a number
of key advantages. It was found that DpC does not cause cardiac
fibrosis, even when used at significantly high doses [126,128], does
not generate oxyhemoglobin oxidation in vivo [129], and exhibits
marked in vivo activity after oral and intravenous administration
[128]. Moreover, DpC demonstrated greater efficacy than Dp44mT
in vivo against aggressive pancreatic tumor and neuroblastoma
xenografts [126,130].

Interestingly, an innovative small molecule that has also
recently entered a clinical trial (NCT02433626) is the third-
generation thiosemicarbazone known as COTI-2 (Fig. 6D), which
was found via in silico computer-aided drug design in a study per-
formed by Salim et al. [131]. COTI-2 was shown to be active against
a wide diversity of human cancer cell lines with different genetic
mutation backgrounds and xenografts that are usually difficult to
treat. In addition, most treated cancer cells lines showed suscepti-
bility to COTI-2 treatment at nanomolar concentrations. COTI-2
also demonstrated a favorable safety profile in mice and superior
activity against cancer cells, both in vitro and in vivo, when com-
pared to standard chemotherapy agents (cisplatin and carmustine)
and targeted-therapeutic drugs (cetuximab and erlotinib) [131]. In
another more recent work Vareki et al. [132] evaluated the effect of
combining COTI-2 with first-line therapeutic agents carrying dif-
ferent modes of action as well as whether cancer cells develop
acquired- and cross-resistance to COTI-2. The combination of
COTI-2 with multiple chemotherapeutic and targeted drugs
improved their activity in vitro and in vivo. For instance, COTI-2
when combined with paclitaxel or cisplatin enhanced the activity
of these drugs in small cell lung cancer cells. Moreover, COTI-2
was found to induce substantial tumor growth inhibition when
combined with paclitaxel in a human endometrial tumor model.
The combination of COTI-2 with cetuximab or erlotinib also syner-
gistically improved the efficacy of these targeted agents against
human colorectal cancer cells. Importantly, as it is well-known,
the emergence of resistance is a rising problem in oncology. While
cancer cells demonstrated higher levels of acquired resistance to
chemotherapeutic agents such as paclitaxel and cisplatin, after
each round of treatment, these cells remained sensitive to COCI-2
across multiple generations. Furthermore, chemo-resistant cancer
cell lines also showed no or little cross-resistance to COTI-2. Thus,
these findings suggest that COTI-2 may be useful in salvage treat-
ment after standard therapy failure as well as in combination treat-
ment [132]. Employing iron chelators in cancer treatment remains
challenging, however, to date none of them has obtained approval
for clinical use.

Conclusions and future perspectives

Siderophores, extremely versatile molecules capable to chelate
iron from the surrounding environment, provide a promising
source for discovering new and innovative antibiotics. MDR infec-
tions caused by Gram-negative bacterial pathogens have become
one of the critical reasons for the failure of clinical treatment with
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the existing antibiotics. The benefits presented by siderophores are
evident and include improved antibacterial efficacy, increased
selectivity for Gram-negative pathogens, and making MDR bacteria
more prone to killing, being further represented by cefiderocol. Its
distinctive structural characteristics were an asset to surpass ear-
lier problems faced in fighting Gram-negative pathogens. Such
molecules add substantial value and reinforce our current antibi-
otic arsenal in the clinic, namely for the treatment of urinary tract
infections and pneumonia instigated by MDR Gram-negative
bacteria.

The further development and use of iron chelating agents from
primordial siderophores like deferoxamine to new clinically
designed iron chelators, mostly for the treatment of diseases asso-
ciated with iron overload and cancer, has also been watched with
interest. Numerous sophisticated and versatile iron chelating
agents have been developed and characterized for their effective-
ness in various randomized clinical trials. However, despite the
approval and significant hopeful implications of some iron chela-
tors for the safety and life expectancy of patients with iron over-
load diseases, including deferoxamine, deferiprone and
deferasirox, they carry some adverse effect profiles. In this sense,
new iron chelators have been developed and undergoing clinical
evaluation, however, without reaching the clinical practice. In the
same way, although some iron chelators have been designed for
cancer therapy, none of them has attained approval for clinical
use. Thus, these iron chelating compounds still face great chal-
lenges, particularly associated with their translation to a clinical
real-word scenario. New siderophore-based antibiotics and iron
chelating compounds will likely continue to be discovered taking
advantage of the structurally diverse nature of siderophores, hav-
ing in mind that over 500 siderophores were already identified
[133].
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