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Since its first appearance in December 2019 in the Chinese province ofWuhan, COVID-19 has spread rapidly through-
out the world and poses a serious threat to public health. Acute respiratory failure due to widespread lung inflamma-
tion progress to acute respiratory distress syndrome (ARDS) with an altered pulmonary and alveolar function that can
lead to disability, prolong hospitalizations, and adverse outcomes.
While there is no specific treatment for severe acute lung injury (ALI) and ARDS due to the COVID-19 and themanage-
ment is mostly supportive, it is very important to better understand the pathophysiological processes activated by the
inflammatory mediators such as cytokines and metalloproteinases with the aim of their subsequent inhibition in the
course of the complex treatment.
Herein, we will discuss the pathophysiological mechanisms of ALI/ARDS, with a focus on the pivotal role played by
matrix metalloproteinases (MMP) and the kinin-kallikrein system (KKS), and the effects of the possible pharmacolog-
ical interventions.
Aprotinin is a nonspecific protease inhibitor especially of trypsin, chymotrypsin, plasmin, and kallikrein, and it ismany
years in clinical use. Aprotinin inhibits the release of pro-inflammatory cytokines and involved in the process of glyco-
protein homeostasis. Experimental data support that the use of aprotinin to inhibit MMPs and KKS may be a new po-
tential approach to the treatment of ALI / ARDS.
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1. Introduction

The current treatment of COVID-19 disease is mostly supportive, and re-
spiratory failure due to ALI/ARDS is the leading cause of death [1].
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critical cases [2]. Recently published studies from China regarding the epi-
demiological and clinical characteristics of patients with COVID-19 disease
revealed a wide difference (from 17 to 67%) in the incidence of ARDS with
a mortality rate of up to 52,4% [3–6].

According to the recent US Centre's for Disease Control and Preven-
tion (CDC) statistics since mid-March, the fatality rates in the US from
COVID-19 was highest in patients aged ≥85, ranging from 10% to
27%, followed by 3% to 11% among persons aged 65–84 years, 1% to
3% among those aged 55–64 years and < 1% among persons aged
20–54 years [7].

Significant progress has beenmade recently in understanding the epide-
miology, pathogenesis, and treatment of ALI and ARDS. However, more
efforts are needed to further reducemortality andmorbidity from these dis-
eases. Since ALI/ARDS are so common in the United States and around the
world and the rapid and widespread of the COVID-19 has only aggravated
the existing problem, ALI/ARDS is still an unresolved medical issue. In
other words, new treatment modalities should be developed to further
improve the clinical outcomes [8].

In this review, we will discuss the pathophysiological mechanisms of
ALI, with a focus on the pivotal role of matrix metalloproteinases and the
kinin-kallikrein system in this process. We will also review, whether
aprotinin, as a nonspecific protease inhibitor, be useful in treating ALI.
2. The pathophysiological mechanism of acute lung injury

In Covid-19 infection, epithelial damage is the initial event and hall-
mark of the acute lung injury that initiates a cascade of local and/or
systemic processes leading to diffuse lung parenchymal damage [9,10].
The focal airway inflammation produces an elevation of proinflammatory
cytokines and other inflammatory mediators and an over-expression of
nuclear factor kappa B [11,12]. These mediators activate alveolar macro-
phages and neutrophils, which release oxygen radicals and proteolytic
enzymes and produce further lung tissue damage. Indeed, increased pulmo-
nary vascular permeability caused by activated neutrophils, oxygen radi-
cals, and proteases seem the fundamental cause of ALI [13].

Neutrophils are the prototypic cells of the immune system with their
primary function of host defense and eradication of invading microbial
pathogens [14]. These functions are accomplished by activation of immune
receptors, such as toll-like receptors and other recognition receptors
[15,16]. An important component of this process is the differentiation
and activation of T helper lymphocytes of the Th1 and Th2 phenotypes
with overproduction of their cytokines including IL-3, IL-4, IL-5, IL-6,
IL-9, IL-10 and IL-13 [17].

Increased levels of cytokines are a usual finding in the sputum of pa-
tients with acute inflammatory lung processes [18–20]. IL- 13 and IL- 6
from activated mast cells play an important role in various inflammatory
lung diseases and induced matrix contraction [21–23]. IL-13, as well as a
vascular endothelial growth factor, are known as potent mediators of tissue
fibrosis and key regulators of the cellular matrix [24,25].

Mild cases of COVID-19 sometimes are rapidly turning into severe cases,
with lower respiratory tract infections. This may be due to the “cytokine
storm”. Cytokine storm is a group of disorders representing a variety of in-
flammatory etiologies known as systemic inflammatory response syn-
drome, cytokine release syndrome, macrophage activation syndrome, and
hemophagocytic lymphohistiocytosis [26].

A cytokine storm is the overproduction of immune cells and their acti-
vating compounds - cytokines, often associatedwith the release of activated
immune cells into the lungs. Resulting pneumonia and fluid accumulation
can lead to respiratory failure and may be contaminated with secondary
bacterial pneumonia. All of the above increase the risk of patient morbidity
and mortality [27–31].

Matrixmetalloproteinases (MMP) are part of a family of proteolytic zinc
enzymes. Till recently, more than twenty types of MMP have been recog-
nized. They play a pivotal role in normal physiological conditions such as
embryogenesis, proliferation, angiogenesis, cell motility, wound healing,
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degradation of the extracellular matrix, and in the different pathological
states [32].

Proinflammatory cytokines induce MMP over-expression and increase
their activity thereby participating in airway remodeling [33–36]. MMPs
secreted at sites of lung inflammation in the extracellular matrix that lead
to release bioactive chemokines with inflammatory properties [37]. Every
type of MMP, and fluctuation in their levels, play a specific role in different
lung disease [38]. For example, MMP-12 (macrophage elastase) can regu-
late the extracellular matrix component elastin and is involved in the tissue
remodeling process [39,40].

Studies on the involvement of MMP in the pathological processes
during ALI / ARDS have been found in the literature since the early
1990s. Nevertheless, research efforts failed to lead to effective pharma-
cotherapy. Previously published works are devoted to the role of MMP
in the destructive pathologies of the lungs without considering their
function in the process of tissue repair, which was demonstrated in
later studies [41–43].

Nonspecific inhibition of MMP has been shown to limit lung damage.
This suggests that there is a potential pharmacotherapeutic strategy for
treating early ALI / ARDS with drugs that are non-specific MMP inhibitors.
Nonspecific inhibition of MMPs can have multiple effects on other cellular
processes and inflammatory mediators involved in lung damage. In clinical
practice doxycycline and tetracyclines, such as COL3 and CMT, are themost
commonly used non-specific MMP inhibitors [44].

Further investigations are required to fully understand the role ofMMPs
in the pathogenesis of ALI/ARDS. These data are necessary to determine
what type of metalloproteinases should be inhibited, at which stage of the
disease, and what MMPs level may be optimal for the restoration of the ab-
normal collagen.
3. Involvement of the kinin- kallikrein system in the pathophysiology
of inflammation

Kinin-kallikrein system (KKS) plays an important and even critical
role in human physiology. Tissue kallikreins are a family of extracellular
serine proteases participating in complex proteolytic cascades, physio-
logical functions, and various pathological processes [45]. KKS is
responsible for the release of the vasoactive pro-inflammatory neuro-
transmitter bradykinin (BK). BK is a pro-inflammatory peptide, potent
vasodilator, leading to stable fluid accumulation in the interstitium.
KKS is involved in the pathogenesis of inflammation, hypertension,
endotoxemia, and coagulopathy. In all these cases the elevated level of
BK is a hallmark [46]. Schapira M. et al. reported the activation of
human plasma KKS in patients with ARDS [47].

The kinin's level in the inflammatory environment is markedly in-
creased. Thus, bradykinin (BK) can play an important role in initiating
and maintaining pathophysiological changes that occur in the lungs. Ex-
perimental trials on animals with ARDS demonstrated the beneficial ef-
fects of selective kinin receptor antagonists and provided convincing
evidence of the key role of kinins in the respiratory tract pathophysiol-
ogy [48].

COVID-19 may predispose to venous and arterial thromboembolism due
to the inflammatory process, hypoxia, immobilization, and diffuse intravas-
cular coagulation. In a recently published study, Klok et al. enrolled 184
ICU patients with COVID-19 to evaluate the incidence of the composite out-
come of symptomatic acute pulmonary embolism (PE), deep-vein thrombo-
sis, ischemic stroke, myocardial infarction or systemic arterial embolism.
They reported about 31% incidence of thrombotic complications [49].

Deep vein thrombosis (DVT) followed by pulmonary embolization
may result from increased thrombolysis and/or activation of KKS
in plasma. KKS activation leads to the generation of BK and tissue plas-
minogen activator (tPA), two factors involved in ensuring smooth blood
flow through the arterial system. Thus, inhibition of kallikrein may be a
possible therapeutic target, given the effect of kallikrein on the plasma
production of bradykinin [46].
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4. Aprotinin- possible therapeutic way to treat ALI/ARDS?

Aprotinin is a monomeric polypeptide and it is derived from bovine
lung tissue. It was initially named kallikrein inactivator and isolated from
the cow parotid gland in 1930. In 1964 it was purified from bovine lung
tissue. Aprotinin acts as a nonspecific serine protease inhibitor - especially
trypsin, chymotrypsin, plasmin, and kallikrein [50]. The antikallikrein
action of aprotinin leads to the inhibition of factor XIIa formation, inhibi-
tion of the intrinsic pathway of coagulation, fibrinolysis, thrombin genera-
tion, and to the attenuation of the pro-inflammatory response [51].

Aprotinin inhibits proinflammatory cytokine release and maintains
glycoprotein homeostasis. In platelets, aprotinin reduces glycoprotein
loss, while in granulocytes it prevents the expression of pro-inflammatory
adhesive glycoproteins [52].

The systemic inflammatory response is a common phenomenon that oc-
curs in most patients undergoing coronary artery bypass graft (CABG) sur-
gery. Acute activation of the complement system, as well as activation of
the coagulation and fibrinolytic systems lead to multiorgan inflammatory
damage. Using aprotinin, as a nonspecific serine protease inhibitor, not
only decreases the bleeding tendency but may also attenuate the systemic
inflammatory response as well [53].

In the study of Tain-Yen Hsia et al. aprotinin more effectively reduced
the levels of MMPs and cytokines than tranexamic acid in infants after car-
diac surgery [54].

Aprotinin is approved by the US Food and Drug Administration (FDA)
as an agent that effectively prevents blood loss and transfusion during cor-
onary artery bypass graft surgery [51].

In 2007 the drug use was temporarily discontinued due to increased
risk of complications and death after Bayer Health Care has published
the follow-up study [55]. Moreover, in a randomized controlled study,
Blood Conservation Using Antifibrinolytics in a Randomized Trial (BART)
Fergusson et al. reported a highermortality rate in the aprotinin-treated pa-
tients. However, the subsequent analysis identified methodological re-
search flaws making the findings of the cardiovascular risks from the
BART study controversial [56]. In 2012 the European Medicines Agency
(EMA) scientific committee reinstated its previous view regarding aprotinin
and has recommended it for further use [57]. Since that time the Nordic
Group became a distributor of aprotinin [58].

Nevertheless, we do not recommend to use aprotinin for treatment
COVID-19 induced ALI/ARDS in patients after CABG, acute coronary syn-
drome, cerebrovascular events, renal failure, or concomitant use of
aminoglycosides.

Since deep vein thrombosis (DVT) is a known complication in hospital-
ized patients with COVID-19 disease [59], we recommend using Clexane
(Enoxaparin sodium) twice daily injections of 100 IU/kg (1 mg/kg) simul-
taneously with the aprotinin treatment.

In a small experimental study of Svartholm et al., the authors used
aprotinin on laboratory pigs with septic shock. They concluded that
aprotinin attenuated the effects on coagulation, fibrinolytic systems, and
cardiopulmonary hemodynamic, seriously impaired due to septic shock
[60].

Anderson et al. used sulfur mustard to induce oxidative and inflamma-
tory lung injury in rats with further treatment with aprotinin, ilomastat,
or trolox. Aprotinin effectively prevented the increase in total protein and
IL-1 alfa levels in bronchial lavage fluid. Moreover, aprotininmaximally re-
duced histopathological findings. These results suggest that therapy with
aprotinin may reduce the inflammatory response during experimental
lung damage [61].

Currently, there is no clinical evidence supporting the use of aprotinin
in COVID-19 patients. Therefore, further clinical studies should be con-
ducted to verify it's effectiveness in patients with COVID 19.

5. Conclusion

The pathophysiological mechanism of ALI/ARDS includes a cascade of
local and systemic responses with activation of numerous proinflammatory
3

cytokines and mediators. Between them, matrix metalloproteinases and
kinin-kallikrein system play a pivotal role in the pathological process. Over-
expression of MMPs leads to destructive tissue injury and tissue remodel-
ing. Experimental data suggest that MMPs may be a new potential target
for therapy of ALI/ARDS. Aprotinin as a nonspecific protease inhibitor is
many years in clinical use. It does not only decrease the bleeding tendency
by inhibition of the kinin-kallikrein system but also attenuated systemic in-
flammatory response due to decreased level of inflammatory cytokines and
MMPs. Based on these data, we think that aprotininmay be a potential ther-
apeutic agent in the complex treatment of ALI and a good area for further
investigations and clinical trials.
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