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The phototropins (phots) are light-activated kinases that are
critical for plant physiology and the many diverse optogenetic
tools that they have inspired. Phototropins combine two blue-
light-sensing Light–Oxygen–Voltage (LOV) domains (LOV1
and LOV2) and a C-terminal serine/threonine kinase domain,
using the LOV domains to control the catalytic activity of the
kinase. While much is known about the structure and photo-
chemistry of the light-perceiving LOV domains, particularly in
how activation of the LOV2 domain triggers the unfolding of
alpha helices that communicate the light signal to the kinase
domain, many questions about phot structure and mechanism
remain. Recent studies have made progress addressing these
questions by utilizing small-angle X-ray scattering (SAXS) and
other biophysical approaches to study multidomain phots from
Chlamydomonas and Arabidopsis, leading to models where the
domains have an extended linear arrangement, with the regu-
latory LOV2 domain contacting the kinase domain N-lobe. We
discuss this and other advances that have improved structural
and mechanistic understanding of phot regulation in this re-
view, along with the challenges that will have to be overcome to
obtain high-resolution structural information on these exciting
photoreceptors. Such information will be essential to
advancing fundamental understanding of plant physiology
while enabling engineering efforts at both the whole plant and
molecular levels.

The phototropin blue light receptors (phots) are unique
proteins that have had an outsized impact in the radically
different fields of plant physiology and protein engineering. In
the former, they are key regulators of growth and photosyn-
thetic competence in plants. Their structure, combining small
light-perceiving domains with a catalytic output domain that
they control, has also inspired creative applications of the phot
light-sensing mechanism to artificially regulate unrelated
proteins with blue light via the development of novel geneti-
cally encoded optogenetic tools (OTs) (1). Both of these large
fields rely on and benefit from accurate information about
phototropin regulation and structure: rationally modifying
phots can both boost plant growth under low light, while the
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design and application of OTs rely on detailed knowledge of
aspects of phot regulation by blue light.

Phototropins are present in both algae and plants (2). In
algae, a single phot regulates photoprotection (3), eyespot
formation (4), and reproduction (5). Due to gene duplication
(2), higher plants have two phototropin isoforms, phot1 and
phot2, which indirectly influence photosynthesis by altering
leaf flatness (6, 7) and chloroplast positioning (6, 8), as well as
controlling CO2 uptake through stomatal opening (9). Though
phot function has diverged somewhat between these lineages,
the underlying structure and activation mechanism are
conserved (10, 11). The model algal phot from Chlamydo-
monas reinhardtii is somewhat more similar to higher plant
phot2 isoforms than phot1, bearing 38% protein sequence
identity with phot2 from the model flowering plant Arabi-
dopsis thaliana versus 35% identity with A. thaliana phot1.

At a domain level, phots are composed of two light-
perceiving Light, Oxygen, or Voltage-sensing (LOV) domains
(named LOV1 and LOV2 (12)), followed by a serine-threonine
kinase domain, which is responsible for propagating the light
signal within the cell (12, 13) (Fig. 1). It is important to note
that several classes of proteins with somewhat similar domain
structures have been identified outside of photosynthetic or-
ganisms, but it is unlikely they are evolutionarily related to the
phots. These include bacterial LOV-HK proteins with LOV
domains coupled to histidine kinases (14, 15) and the fungal
and mammalian PAS kinase, which utilizes two Per-ARNT-
Sim (PAS) domains (which are a superfamily of environ-
mental sensory domains that include LOV domains) to sense
metabolic changes in place of the LOV domains present in
phots (16). While these proteins all regulate kinase activity by
environmental changes sensed by LOV or PAS domains, there
are sufficient differences in structure, regulatory details, and
origin that we strongly discourage referring to the latter two
groups as “phototropin-like” proteins.

While the function of phot LOV1 domains remains some-
what unclear (see below), extensive biochemical and bio-
physical work shows that LOV2s repress kinase activity in
darkness, which is released by the light-induced disordering of
two alpha helices (“A0α” and “Jα”) that flank the LOV2 domain
(17–20). This process triggers autophosphorylation of the ki-
nase domain, which is the final step in potentiating phot
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Figure 1. Phototropin domain composition and nomenclature. Phots have two N-terminal LOV light-sensing domains followed by a serine/threonine
kinase output domain; the LOV2-kinase fragment is an artificially truncated construct of Arabidopsis phot1 that encompasses only the LOV2 and kinase
domains. The LOV domains bind an FMN chromophore to enable light perception. LOV2 has two alpha helices, shown in light green, which are critical for
kinase domain activation. Amino acid numbering and domain boundaries for the Chlamydomonas phot are shown in black, and for Arabidopsis phot1 in
purple; note that the LOV2 domain is considered to include both the core LOV domain and the N-terminal A0α and C-terminal Jα helices.

Figure 2. LOV domain photochemistry and structure. A, crystal structure
of the LOV2 domain from Avena sativa phot1 (PDB ID: 2V0W (90)). B, the
LOV domain photocycle. Following light stimulus, a covalent bond is
formed between FMN and a conserved cysteine within the LOV domain,
triggering the activation of the phot.
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signaling (13). Notably, this light-induced protein unfolding
event is not only the linchpin in initiating phot activity, but has
also been exploited in the design of a collection of OTs, which
regulate diverse cellular phenomena (1), including tracking the
animal cardiac pacemaker (21), regulating cellular mechano-
sensing (22), and controlling neuronal networks (23). LOV2-
based OTs, while extremely successful on many fronts, are
still somewhat limited by the equilibrium between the dark
and lit states: there is always residual activity in darkness, and
the combination of thermal reversion and inefficiency in
allosteric coupling ensures that some molecules spontaneously
deactivate in light (18, 24). Improving OTs thus benefits from a
detailed understanding of LOV2 light activation, particularly
regarding how phot LOV2 domains interact with their adja-
cent A0α and Jα helices and how, in turn, these interact with
the kinase domain.

While much progress has been made in understanding the
photochemistry and early light-induced conformational
changes of individual LOV domains, we still have an incom-
plete understanding of important aspects including structures
of the full-length phot proteins and mechanisms linking LOV2
helix release to kinase activation. While recent low-resolution
studies have made some inroads, extending these to high
resolution has been complicated for us and others in the field
by practical issues that likely stem from the multidomain/
multilinker architecture of phots and the presence of long
activation loops within phot kinase domains (e.g., Nakasako
et al. (25)). In this review, we will highlight what is known
about phot structure and activation, identify outstanding
questions in the field, and consider the factors that presently
challenge obtaining higher-resolution information on full-
length phototropins.

LOV domain structure and activation

LOV domains are members of the PAS domain superfamily
that specialize in blue light sensing (12, 26, 27). They share the
canonical PAS domain fold, composed of a five-stranded
antiparallel beta sheet with an extended helical connector
linking the second and third beta strands (Fig. 2) (18, 28, 29).
Many LOV domains contain important N- and C-terminal
helical extensions outside of the minimal domain core,
including the aforementioned A0α and Jα helices, which play a
2 J. Biol. Chem. (2021) 296 100594
critical role in phot LOV2 domains by disordering after light
excitation as an integral component of the photoactivation
process (18–20, 30).

In addition to the shared structure of LOV domains, their
underlying photochemistry is also well conserved across
diverse photoreceptors, including phots (31), and more
broadly diverse LOV-containing proteins from bacteria (32),
fungi (26), and plants (33). Central to this process is a flavin
chromophore, most commonly flavin mononucleotide (FMN)
but occasionally flavin adenine dinucleotide (FAD) (34, 35) or
riboflavin (36) in certain proteins. While the flavin chromo-
phore is noncovalently bound in darkness, blue light excitation
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triggers the formation of a covalent photoadduct between the
isoalloxazine C4(a) atom and a conserved cysteine residue
(C512 in Arabidopsis phot1 LOV2 “AtLOV2”; Fig. 2).
Concomitantly, the isoalloxazine N5 position becomes pro-
tonated, triggering hydrogen bonding changes to an adjacent
glutamine residue (Q575) (37, 38). This change is thought to
propagate from this glutamine within the flavin-binding
pocket to the LOV domain surface; while details of subse-
quent steps diverge among LOV proteins (1), for phot LOV2
domains this leads to unfolding of the A0α and Jα helices and
activation of kinase activity (37–39). After illumination ends,
the cysteinyl photoadduct decays on the timescale of seconds
to hours (e.g., t1/2=29 s for AsPhot1 (Avena sativa) LOV2 at
room temperature (33)), returning the domain to its original
noncovalent chromophore and folded structural state, thus
completing the photocycle that governs the activity of LOV-
based photoreceptors.

Interestingly, while the basic characteristics of the photo-
cycle itself are conserved, activated state lifetimes and quan-
tum efficiencies vary substantially among LOV domains in
different photoreceptors. Some LOV domains very slowly
recover to the dark state: the best-studied example is the
fungal photoreceptor VVD, which has a half-lifetime of dark
state reversion of 2.5 h (26). Phot LOV2 domains, by contrast,
recover to the dark state relatively quickly (33). This fast re-
covery can limit the light sensitivity and signaling efficiency of
both phots and LOV2-based optogenetic tools (1), although
this feature also allows such tools to be used in studies of
relatively short timescale biological phenomena. Turning to
quantum efficiency (QE), phot LOV2 domains tend to have
higher QEs than LOV1s although this varies by source: LOV2s
from higher plant phot1s are tenfold more efficient than
LOV1s (33, 40), dropping to twofold more efficient in the
Chlamydomonas phot and higher plant phot2s (33). Combined
with differences in photocycle length, phot1 dominates phot2
in most responses in higher plants (6, 12, 33). Though united
by the same overall structure and mechanism, these differ-
ences highlight the functional impact of differences in light
sensitivity and quantum efficiency between LOV-containing
photoreceptors.

Given this impact on photobiology coupled with engineered
applications with OTs, LOV domain photocycles have been
extensively studied and modified through random (41, 42) and
rational (26, 43, 44) mutagenesis to tune various features for
efficient signaling and on/off kinetics in target systems.
Mechanistically, slowing the photocycle to prolong the
signaling state generally involves either sterically stabilizing the
photoadduct or changing the electronic state around the flavin
to favor activation (26). While specific mutations are beyond
the scope of this review, we highlight the interested reader to
studies that have used structure-guided mutagenesis to tune
sensitivity in both optogenetic tools (45, 46) and plants (44). In
Arabidopsis, introducing mutations to tune the phot1 photo-
cycle appeared to increase light sensitivity and plant growth
under dim light conditions. However, one of the tested mu-
tations (AtLOV2 V478L) produced a phot1 variant that
exhibited autophosphorylation activity in vivo but appeared to
be unable to propagate the signal downstream of light acti-
vation, as its phenotype in transgenic plants mimicked a
phot1phot2 double mutant for most responses, including leaf
flattening and phototropism (44). This result, and others in the
broader LOV signaling field, underscores the need to evaluate
“tuning” mutations by a mix of assays assessing photocycle,
structural, and functional properties—ideally in full-length
proteins in both in vitro and cellular contexts to ensure that
mutations introduce only the anticipated changes.
The LOV1+2 light sensing unit

While many LOV-containing proteins contain only a single
LOV domain (31), phots contain a tandem LOV domain motif
(LOV1+LOV2) (12, 31, 47). Both LOV domains are required
for full light sensitivity in planta (48), and though both LOV1
and LOV2 share the same basic structure and photochemistry,
the two domains are not interchangeable (49) and appear to
serve different roles. Interestingly, the LOV1+LOV2 unit was
reported to show some activity when expressed by itself in
Chlamydomonas (4), suggesting that at least in this setting, the
LOV1+LOV2 unit can fulfill some functions in the absence of
the kinase domain. In any case, the preservation of both LOV1
and LOV2 in phots across large evolutionary distances sug-
gests that both domains are important for phot function.

As mentioned above, LOV1 and LOV2 seem to have slightly
different roles. Crucially, there is presently no experimental
validation of helices flanking LOV1 domains analogous to the
functionally-critical A0α and Jα helices adjacent to LOV2 do-
mains, and LOV2 alone is necessary and sufficient for activa-
tion of the kinase domain (12, 18, 48, 50). Though a “hinge”
region that undergoes light-induced conformational change
has been suggested to exist in the linker between LOV1 and
LOV2, this is presently supported by a combination of low-
resolution experimental information (transient grating, TG)
(51) and computational simulations (52, 53) without a clear
sense of the functional requirement for such a change. As
such, the function of LOV1 is not totally understood, though
we do know that its presence increases phot light sensitivity
relative to a single LOV2 domain (48). This is particularly
interesting because phot1 LOV1 has a tenfold lower QE than
LOV2 (33, 40) as mentioned above; indeed, it has been sug-
gested that the role of LOV1 in potentiating LOV2 sensitivity
may be through physically interacting with LOV2 rather than
through its inherent photosensitivity per se (54). Another key
difference between the domains is that isolated LOV1 domains
tend to have a much higher propensity to dimerize in solution
than LOV2s, leading to several literature models that LOV1
may mediate dimerization of full-length phot and/or in-
teractions with other proteins (51, 53, 55–57). As such, while
the exact role that LOV1 plays remains unclear, it is evident
that its presence is necessary for phot1 to be responsive to a
wide range of light intensities in Arabidopsis (48).

Because LOV2 domains most directly control phot kinase
activity, they have been the central focus of structural and
mechanistic studies, followed by engineering into OTs. In
particular, the oat A. sativa phot1 LOV2 domains (AsLOV2)
J. Biol. Chem. (2021) 296 100594 3
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have been applied to regulate outputs in wide range of opto-
genetic tools (1, 58). Such engineered proteins often have a
truncated A0α helix and tend to rely exclusively on the
unfolding of Jα to transmit photoregulation to effectors that
control outputs as diverse as relocalization, modulation of
protein–protein interactions, dimerization (45, 59–61), or
deactivation of an output domain through this induced dis-
order (62). However, while illumination generates a 70-fold
change in the dark/light conformational equilibrium of the
Jα helix conformation in AsLOV2, this switch is an imperfect
one and can limit the degree of activation in optogenetic tools
(63). Learning more about this switch, particularly regarding
the relationship between LOV2 activation and the physical
release of kinase activity in full-length phot1, will be key to
resolving some of these issues.

Kinase structure and activation

While studies investigating how LOV2 activates the phot
kinase domain will best be achieved using high-resolution
structural biology methods, a combination of currently avail-
able biochemical and biophysical studies of Arabidopsis phot1
and phot2 (64–66) suggest that the �50 residue linker region
between the LOV2 Jα helix and the kinase domain (Fig. 1) may
play a key role in kinase activation. In particular, SAXS (small-
angle X-ray scattering) data of a LOV2-linker-kinase construct
have led to a model where LOV2 sits on top of the kinase
domain N-lobe (54, 66, 67). Does the presence of LOV2
somehow perturb the conformation of the kinase N-lobe,
preventing activity in darkness that is later relieved after light-
induced conformational changes? Or is another mechanism at
play? At one point it was believed that LOV2 may occupy the
catalytic cleft of the kinase domain (68), though current SAXS-
based models of full-length phot structure do not support this
(25, 54, 67). More recent studies predict that the linker region
between LOV2 and the kinase domain may form two short
alpha helices C-terminal to Jα that communicate unfolding to
the kinase domain (64, 65). Though this hypothesis is enticing,
there has not been any direct evidence of such secondary
structure, and the only assay of how mutations in the region
affect function was by alteration of kinase activity in vitro.
More experiments testing this hypothesis will be necessary to
elucidate whether this proposed mechanism governs signal
transduction to the kinase domain. Key to doing so will be to
further explore the structure of the phot kinase domain itself.

While little is directly known about the structure of phot ki-
nase domains, much can be inferred from studies of related
mammalian kinases. Phototropin kinase domains belong to the
AGC kinase family, a large class containing mammalian, fungal,
and plant representatives (69, 70). Typical kinases such as the one
from phots have two subdomains: an N-lobe and a C-lobe,
separated by theATP-binding catalytic cleft. Kinases also have an
activation loop stemming from the C-lobe and often located
between the two lobes, generally present in an unstructured
conformation, and containing sites that must be phosphorylated
to initiate kinase activity (70). Consistent with this expectation,
autophosphorylation at two activation loop residues in the kinase
4 J. Biol. Chem. (2021) 296 100594
domains of Arabidopsis phot1 and phot2 is required for phot
function in plants (71, 72). Other common features of the kinase
domain include the so-called gatekeeper residue, which allows
for specific ATP binding within the catalytic cleft (73). Substi-
tution of this residue with a smaller one enabled Arabidopsis
phot1 to accommodate bulky ATP analogues using the “bump-
and-hole” approach (74) to facilitate a chemical biology route to
identify phot1 substrates (73). Taken together, this information
indicates that phots most likely have a standard kinase domain
such as those found in other AGC kinases.

While these common features among kinases seem to hold
for phots, one unusual feature complicates structure/function
studies: while activation loops are typically ca. 20–30 residues
in length (75), these are uncommonly long in phototropins (57
residues in Arabidopsis phot1), as for a handful of other AGC
kinases (e.g., 63 residues in NDR1/2 (76), 75 residues in
LATS1/2 (76), and 575 residues in MASTL/GREATWALL
(77, 78)). Modeling studies have suggested that the phot acti-
vation loop is unstructured (79), and this is supported by our
own secondary structure predictions using JPred (80), likely
due to a combination of loop length and sequence. We note
that a counter-hypothesis may be suggested by a recent crystal
structure of the NDR1 kinase domain (PDB:6BXI (76)) where
its long activation loop is ordered and coordinated with the
kinase domain to block the catalytic cleft, supporting an
autoinhibitory role for the segment in the unphosphorylated
state. Intriguingly, when we simply model the oat phot1 kinase
domain using the H. sapiens NDR1 (unpublished modeling for
illustration here), the activation loop is also modeled as or-
dered (Swiss Model (81), with 32% protein sequence identity
and 51% similarity between the Asphot1 and HsNDR1 kinase
domains); by contrast, comparably modeling with B. taurus
PKA, a mammalian AGC kinase with a shorter activation loop,
the activation loop is modeled as disordered (30% identity and
45% similarity between the kinase domains of Asphot1 and
BtPKA) (Fig. 3). Though no direct evidence of the conforma-
tion of the phototropin activation loop exists, Fourier Trans-
form Infrared (FTIR) spectroscopy on the full-length
Chlamydomonas phot suggested that the activation loop may
adopt an alpha helical structure that undergoes major
conformational changes upon light exposure (79). Later work
from another group contradicted the claim that the activation
loop of phototropin undergoes significant conformational
change using transient grating (65). However, given the order
found for the NDR1 activation loop, it is tempting to speculate
that phototropin may not have a totally disordered activation
loop and that the length and sequence of the loop may be
playing some functional role in phototropin activation.
Without more direct information on the structure of the phot
kinase domain, any light-induced conformational changes
within the domain as well as its interaction with LOV2 will
remain a substantial unknown variable.

Models of full-length phot structure and dimerization

While high-resolution structural studies remain to be re-
ported for multidomain phot fragments—of either LOV2-



Figure 3. Models of phototropin kinase domain structure show differential ordering of activation loop depending on template. The kinase domain
of phot1-1 from Avena sativa was modeled in-house using Swiss Model (81) with either bovine PKA (A; PDB ID: 1XH9 (91)) or human NDR1 (B; PDB ID: 6BXI
(76)) as the template. Nucleotides are shown in space-filling representation. The activation loop is highlighted in purple ribbon representation; note that it
does not adopt any stable secondary structure in the PKA-derived model in panel A, but partially adopts a helical conformation and is closer to the kinase
domain in the NDR1-derived model in panel B.
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kinase, which is a model light-regulated phot truncation, or
full-length phot protein—several published SAXS studies
examining such proteins have usefully contributed to the field
over the last few years (54, 66, 67). Studies of the full-length
Chlamydomonas phot suggest that it is a monomer with an
overall shape of a chair, where the kinase domain is the chair’s
base and LOV1 and LOV2 are the backrest, slightly offset from
the legs (54). Upon light activation, the LOV2 domain is
modeled to extend substantially away from the kinase domain,
accompanied by a rotation of the LOV1-LOV2-kinase angle
without adjusting the LOV1-LOV2 distance (Fig. 4A) (54). In
similar studies of phots from the higher plant Arabidopsis,
LOV2-kinase from phot1 and full-length phot2, ab initio
structural modeling from SAXS data supports a head-to-head
Figure 4. Current view of phot LOV/kinase interactions based on SAXS ana
(adapted with permission from Okajima et al. (54)). These models depict Crphot
particularly noticeable elongation occurring between the centers of mass for
LOV1-LOV2 distance has limited light effects (upper red and blue arrows). B, SA
Oide et al. (67)). These models indicate that Atphot2 forms a head-to-head dim
domain arrangement in the dark into a bent lit-state conformation.
dimer mediated by LOV1 (in the full-length example) (67) or
LOV2 (in LOV2-kinase) (66). Here, illumination seems to
convert a relatively linear full-length phot2 dimer into a more
bent arrangement, again with a pivot in the LOV1-LOV2-
kinase angle (Fig. 4B) (66). Significantly, in all models the
molecules returned to the dark state structure following illu-
mination (54, 66, 67). While noticeable, the magnitude of
changes from the dark state to the lit state is perhaps smaller
than that would have been expected from (a) studies on iso-
lated LOV2 domains, which exhibit unfolding of approxi-
mately 25 residues in the A0α and Jα helices and (b) anticipated
conformational changes in the kinase domain. We note some
caveats to this work: the domains are not completely fit within
the SAXS-derived scattering envelopes, and these results
lyses of full-length proteins. A, SAXS-derived models of dark and lit Crphot
as a monomer that extends and inclines in response to light treatment, with
the LOV2 and kinase domains (lower red and blue arrows). In contrast, the
XS-derived models of dark and lit Atphot2 (adapted with permission from

er through the LOV1 domains, with illumination converting a relatively linear
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disagree with a prior literature hypothesis indicating that
LOV2 may physically occlude the active site of the kinase
domain (30, 68). These points underscore that while present
models are useful for consideration at this time, additional
experimental evidence, likely via a combination of comple-
mentary biophysical and structural data plus in vitro and
cellular functional tests of point mutants, will be needed to
fully discriminate among alternative mechanisms of LOV
regulation of phot kinase activity.

These structural models obtained by SAXS highlight dif-
ferences in oligomeric state between the monomeric algal phot
from Chlamydomonas and the head-to-head dimer observed
in phot1 LOV2-kinase and full-length phot2 from the flow-
ering plant Arabidopsis. As noted earlier, these phots do not
play the same physiological roles. The Chlamydomonas phot
shares �47% protein sequence similarity with Arabidopsis
phot1, which may be different enough to account for differ-
ences in dimerization between them. However, as phots from
algae, including Chlamydomonas and Ostreococcus tauri, are
partly or fully functional for many phot-mediated responses in
Arabidopsis (10, 11), it is not clear how the observed differ-
ences in in vitro dimerization are functionally important.

From our perspective, the head-to-head dimerization model
proposed for the phots from Arabidopsis is a surprising
finding. Bimolecular Fluorescence Complementation (BiFC)
studies conducted in planta using Arabidopsis phot1 (heter-
ologously expressed in tobacco) reveal light-induced physical
association between phot1 molecules at the C-terminus that is
independent of kinase activity (49, 82). The differences be-
tween the light dependence of dimerization in planta versus
in vitro by SAXS is particularly striking. However, it is difficult
to compare BiFC, which does not provide direct structural
information and can capture transient events, to the SAXS
model. Another piece of information that is difficult to
reconcile with a head-to-head dimer model is that phot1 has
been reported to undergo autophosphorylation in trans (20,
49), as has been reported for mouse PDK1 (83), another AGC-
family kinase. In the SAXS model, the kinase domains are on
opposite sides of the dimer: phosphorylation between these
molecules in trans would likely require a higher-order oligo-
merization, which was not reported (66, 67). Investigation of
dimerization at different concentrations and illumination re-
gimes using a technique such as multiangle light scattering, as
well as attempting to rationally identify mutations that could
disrupt dimerization, would provide useful information that
could help dissect differences between experimental
approaches.
Conclusions and remaining challenges

From our perspective, three key questions remain very open
regarding phot structure and regulatory mechanism: the
function of LOV1 within the full-length photoreceptor, the
structure of the kinase domain, and what light-induced
conformational changes it may undergo, and most impor-
tantly, how the unfurling of the LOV2 A0α and Jα helices
communicates with the kinase domain to induce activation.
6 J. Biol. Chem. (2021) 296 100594
Progress on any of these questions would improve OT design
as well as provide clues as to how to engineer phots in plants
for increased productivity. Some of these questions may be
answered through continued investigation of fragments of
phots, such as using LOV1+2 to probe how those domains
relate to one another or LOV2-Kinase to study kinase activa-
tion, but full-length structures would provide much more in-
formation, such as whether full-length phots undergo light-
induced dimerization, as has been observed in vivo (49, 82)
and in other LOV-containing photoreceptors such as EL222
(84) and Aureochrome1a (85).

At present, several factors appear to be limiting in gener-
ating high-resolution information on phots. Some of these
issues are practical, particularly in difficulties with expressing
and purifying sufficient quantities of intact and functional
phototropins for structural interrogation, as observed in pub-
lished works in the field (25, 54) and supported by anecdotal
evidence from our lab and others. This seems to be particularly
relevant for phot1 from higher plants, where the best infor-
mation available is from SAXS on LOV2-kinase fragments (66)
rather than the full-length protein. Additional challenges
appear to be inherent to the long linkers either between or
within various phot domains, including LOV1-LOV2 (145
residues in Atphot1, with little predicted secondary structure),
LOV2-kinase (70 residues in Atphot1, with the Jα helix
included as roughly 20 residues of this sequence), and the
kinase activation loops (57 residues in Atphot1). Finally, the
“switchable” nature of the phots necessitates a relatively low
stability of regulatory protein/protein interactions to facilitate
changes upon illumination.

However, for the field to move forward and obtain mecha-
nistic information on phot activation and its conformational
changes, it will be necessary to find ways to obtain a structure
or generate a more comprehensive model of the full-length
protein. Techniques such as hydrogen–deuterium exchange
followed by mass spectrometry (HDX-MS) (86), which has
been applied in other LOV photoreceptors to localize light-
induced conformational changes to specific regions of the
protein (14), could be extremely informative in terms of
discovering more about the light activation mechanism,
particularly within the understudied phot kinase domain.
However, cryogenic electron microscopy (cryo-EM) may be
the key technique for bridging the information gap: it requires
smaller amounts of protein than many other structural ap-
proaches (87), is tolerant of conformational heterogeneity, and
has recently become amenable to applying to targets the size of
phots (e.g., Atphot1 is 110 kDa as a monomer). This technique
has been able to generate mechanistic information on activa-
tion in other proteins (88, 89), and ideally would be able to
capture dark and lit structures of the phots. Some negative
stain images of full-length phot2 were shared in Oide et al.
(67); while no further structural information emerged from
these images, it does highlight the potential of this technique
for elucidating a higher-resolution structure of a full-length
phot. Combining these advances with the rich biochemical
and biophysical history of phototropins, our path ahead ap-
pears to be well lit.
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