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Simple Summary: In metastasis, cancer cells migrate away from the tissue where they first were
generated and spread in other body compartments. During this process, stationary epithelial cells
undergo multiple biochemical changes to become mesenchymal cells that present enhanced migratory
abilities. Among numerous factors controlling the mesenchymal phenotype, TGFβ is one of the most
important. Nevertheless, little is known about the mechanisms inhibiting the TGFβ biochemical
pathways and metastasis remain the main reason of cancer mortality. We discovered that the protein
called Kv11.1 potassium channel plays a major role in motility of colon cancer cells. We found that
stimulating Kv11.1 activity with specific activator molecules produces a shutdown of the TGFβ
pathway at its early stages. Consequently, cancer cell motility is suppressed by a reprogramming
of the mesenchymal into epithelial phenotype. This research opens the possibility of using Kv11.1
activator molecules as a potential therapeutic strategy against metastatic colon cancer.

Abstract: Control of ionic gradients is critical to maintain cellular homeostasis in both physiological
and pathological conditions, but the role of ion channels in cancer cells has not been studied thor-
oughly. In this work we demonstrated that activity of the Kv11.1 potassium channel plays a vital role
in controlling the migration of colon cancer cells by reversing the epithelial-to-mesenchymal transi-
tion (EMT) into the mesenchymal-to-epithelial transition (MET). We discovered that pharmacological
stimulation of the Kv11.1 channel with the activator molecule NS1643 produces a strong inhibition of
colon cancer cell motility. In agreement with the reversal of EMT, NS1643 treatment leads to a deple-
tion of mesenchymal markers such as SNAIL1, SLUG, TWIST, ZEB, N-cadherin, and c-Myc, while
the epithelial marker E-cadherin was strongly upregulated. Investigating the mechanism linking
Kv11.1 activity to reversal of EMT into MET revealed that stimulation of Kv11.1 produced a strong
and fast inhibition of the TGFβ signaling. Application of NS1643 resulted in de-phosphorylation of
the TGFβ downstream effectors R-SMADs by activation of the serine/threonine phosphatase PP2B
(calcineurin). Consistent with the role of TGFβ in controlling cancer stemness, NS1643 also produced
a strong inhibition of NANOG, SOX2, and OCT4 while arresting the cell cycle in G0/G1. Our data
demonstrate that activation of the Kv11.1 channel reprograms EMT into MET by inhibiting TGFβ
signaling, which results in inhibition of motility in colon cancer cells.
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1. Introduction

Targeted therapy is a novel and successful strategy in the treatment of colon cancer [1].
Ion channels belong to a large group of proteins that control a variety of biochemical
signaling. Therefore, characterizing the role of a specific ion channel in cancer biology
could help to develop a novel targeted approach against cancer. The Kv11.1 potassium
channel is a surface membrane protein that is normally expressed in the human brain, heart,
and colon tissues. In these organs, Kv11.1 activity plays a vital role in controlling electrical
excitability. Recently, several studies have demonstrated that Kv11.1 can be aberrantly
regulated in a variety of cancers, including carcinoma of the breast, pancreas, colon, and
leukemia [2–5]. In these cells, changes in the Kv11.1 current activity relate to alteration of
a variety of hallmarks of cancer, ranging from proliferation to metastasis; therefore, this
channel could be considered as a potential target for cancer therapeutics [6–9]. Although
blockade of the Kv11.1 channel negatively affects cancer growth [10], the use of Kv11.1
blocker molecules is discouraged for cancer therapy due to the high risk of severe side
effects linked to Kv11.1 function loss, including ventricular fibrillation [11]. In contrast, in
our previous work, we have demonstrated that stimulation of Kv11.1 activity with activator
molecules did not produce significant side effects while altering biochemical pathways in
cancer cells [12].

Stationary epithelial cells undergo multiple biochemical changes that enable the
epithelial-to-mesenchymal (EMT) transition, which enhances the migratory abilities of
cells [13]. EMT is finely tuned by a variety of components, including membrane recep-
tors and transcription factors, that control the expression and/or repression of adhesive
molecules. In physiological conditions, the EMT process can be eventually reversed into
mesenchymal-to-epithelial (EMT→MET) transition and cells reacquire an epithelial phe-
notype to conclude critical processes during embryonic development or tissue regeneration.
In contrast, in cancer cells EMT is not complete and cells maintain an enhanced migratory
behavior, which, in turn, contributes to metastasis [14].

The cytokine transforming growth factor beta (TGFβ) is a major inducer of EMT in a
variety of cancers, including carcinomas of the colon [15]. The TGFβ response starts when
the surface membrane TGFβ receptor I (TFGBRI) and the TGFβ receptor II (TGFBRII) form
a complex upon TGFβ ligand binding (TGFβ1, TGFβ2, TGFβ3) [16]. Consequently, acti-
vated TGFBRI phosphorylates the cytoplasmic receptors SMAD2 and SMAD3 (R-SMADs)
on the conserved carboxy-terminal SSXS motif, which promotes R-SMADs to bind the
transcription factor SMAD4. Then, the complex translocates into the nucleus and induces
expression of several mesenchymal markers, including the SNAILs (SNAIL1 and SLUG)
and ZEB families of transcription factors that transcribe for N-cadherin and suppress ex-
pression of the epithelial marker E-cadherin [17,18]. In addition, TGFβ is a potent regulator
of cancer cell stemness [19]. Thus, TGFβ signaling is considered one of the most potent fac-
tors in tumor progression. In contrast, little is known about the pathways that inhibit TGFβ
signaling and developing therapeutic approaches aiming to suppress TGFβ-dependent
metastasis is very challenging.

TGFβ signaling strongly relies on reversible phosphorylation. Therefore, identification
of a ser/thr phosphatase that controls TGFβ signaling offers the opportunity to better un-
derstand EMT and the metastatic cascade. Human cells present at least 11 genes encoding
for protein phosphatase (PP) targeting phosphorylated serine or threonine (ser/thr) [20].
These enzymes can be organized into classes according to their specific role and/or to the
activation pathway. For example, PP1 appears to be the most prevalent protein ser/thr
phosphatase in mammalian cells and its abundant nuclear localization confers to this
protein an important role in controlling transcription factors activity. In contrast, PP2B
(calcineurin) and PP2C are mostly cytoplasmic and are rapidly activated by Ca2+ or Mg2+,
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respectively. It is clear that phosphatases can play a critical role in cancer [21,22] but the
biochemical signaling in which they could be involved has not been studied thoroughly.

Interestingly, Kv11.1 has been found transiently expressed during development in
the neural crest cells [23], suggesting that this channel might play a role in the EMT/MET
cellular processes. In this work, we show that Kv11.1 activity controls colon cancer cell
motility by affecting TGFβ-dependent signaling through activation of calcineurin. This
event results in dephosphorylation of R-SMADs, inhibition of mesenchymal and stemness
markers, and activation of epithelial factors. We conclude that stimulation of the Kv11.1
channel arrests migration of colon cancer cells by reversing EMT into MET.

2. Materials and Methods
2.1. Cell Culture, Antibodies, and Reagents

HT29 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (4.5 g/L
glucose) (Corning, Manassas, VA, USA) with 1% GlutaMax (Gibco, Waltham, MA, USA),
FET cells in DMEM/F12 (50:50) media (Corning, Manassas, VA, USA), and SW480 cells
in DMEM media, supplemented with 10% fetal bovine serum (FBS) (Gemini Bio, West
Sacramento, CA, USA) and 1% penicillin (10,000 units/mL)/streptomycin (10,000 µg/mL)
(Gibco, Waltham, MA, USA) at 37 ◦C and 5% CO2. All antibodies were purchased from Cell
Signaling Technologies, Inc (Boston, MA, USA). An anti-KCNH2 antibody was purchased
from Santa Cruz (Dallas, Texas, USA) or Alomone Lab (Islrael). Recombinant human TGF-
β1 and anti-hTGF-β RII FITC conjugated were purchased from R&D Systems (Minneapolis,
MN, USA). E4031 and NS1643 were purchased from Alomone Labs (Jerusalem, Israel).
Sanguinarine chloride was purchased from Tocris (Bristol, UK). Cyclosporine A was
purchased from LC Laboratories (Woburn, MA, USA).

2.2. Electrophysiology

Potassium tail currents were recorded utilizing the gramicidin-perforated configura-
tion of the patch clamp technique in voltage clamp mode (Appendix A.1).

2.3. RT-PCR Analysis and si-RNA

Total RNAs were extracted from cells using Ambion Trizol (by Life technologies,
Carlsbad, CA, USA) (Appendix A.2).

2.4. Wound-Healing Assay

Images were taken prior to addition of the drug (time 0), as well as after 24 h of the
treatment using an inverted microscope (EVOS XL Core Imaging system, Life Technologies,
USA) with 10×magnification (Appendix A.3).

2.5. Video Microscopy and Single Cell Tracking

Cells were seeded in glass bottom culture dishes at low density. Single cells were
imaged an overnight (10-min interval) using the Vivaview auto imaging system (VivaView
Incubator/Fluorescence Microscope, Olympus, Shinjuku City, Tokyo, Japan) at multiple
positions per dish with 40×magnification. Manual cell tracking was performed for selected
cells by using the Manual Tracking plugin in ImageJ. Wind-rose plots were produced with
Chemotaxis and Migration Tool 2.0 (Ibidi GmbH, Gräfelfing, Bavaria, Germany).

2.6. Flow Cytometry Analysis

After incubation, cells were washed and resuspended in the FACS buffer, and then
they were sorted and analyzed on a flow cytometer (LSR Fortessa with HTS, BD Biosciences,
San Jose, CA, USA) to determine the expression of TGFβ RII on the surface of the membrane
(Appendix A.5).
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2.7. Cell Cycle Assay

Cells were harvested and washed twice with cold PBS. The pellets were resuspended
in PBS with 1% formaldehyde and 0.2% Trition X-100. Then, the cells were incubated
in PBS with DAPI for 2 h. The samples were analyzed with a flow cytometer (LSR
Fortessa with HTS, BD Biosciences, San Jose, CA, USA) and Summit (Beckman Coulter Inc.;
Fullerton, Brea, CA, USA).

2.8. Cell Spheroid Formation and Drug Treatment on Agarose-Microwells

Cell spheroids were formed after a 2-day incubation and separated into the treatment
and control groups. Following treatment, cell spheroids in both groups were immunoflu-
orescently stained with E-cadherin antibody (primary antibody from Cell Signaling; sec-
ondary IgG antibody with AlexaFluor 488 from Abcam, Waltham, MA, USA). Fluorescent
images were taken using a Zeiss 710 Laser Scanning Confocal Microscope (Zeiss, White
Plains, NY, USA) (Appendix A.6).

2.9. Cell Apoptosis Assay

Cell apoptosis was determined by using a BD Pharmingen FITC Annexin V Apoptosis
Detection Kit I (Appendix A.7).

2.10. Statistical Analysis

Data were expressed as the mean values ± standard error, and a p-value less than 0.05
was considered statistically significant (t-test). Representative experiments were replicated
at least three times.

3. Results
3.1. Activation of the Kv11.1 Channel Inhibits Colon Cancer Cells Motility

To investigate the role of the Kv11.1 channel in colon cancer cell motility, we selected
a panel of cells expressing the Kv11.1 channel (Figure 1A–C) and performed a wound-
healing assay before and after treatment with Kv11.1 activator molecule NS1643 for 16 h
(Figure 1D,E). Since motility in colon cancer cells has been associated with the activation
of transforming growth factor TGFβ signaling, we used the SW480 colon cancer cell
line, which lacks SMAD4 expression [24] as negative control. These experiments show
that NS1643 significantly decreases the migratory ability of HT29 and FET cells, but no
significant change was observed in SW480.

To study cancer cell migration in a quantitative manner at the single-cell level, we took
advantage of a single-cell tracking method. Tracking analysis of HT29 or FET cells exposed
to a Kv11.1 channel activator for up to 16 h demonstrated that NS1643 can significantly
inhibit both the velocity and directionality of the cells (Figure 1F,G). The quantitative
analysis showed that cells exposed to NS1643 presented a reduced velocity (HT29 median
value of 0.23 µm/min in control cells versus 0.15 µm/min in NS1643-treated cells; FET
median value of 0.19 µm/min in control cells versus 0.11 µm/min in NS1643-treated cells
control cells) and shorter distance (HT29 median value of 224.2 µm in control cells versus
151.7 µm in NS1643-treated cells; FET median value of 191.2 µm in control cells versus
111 µm in NS1643-treated cells control cells).

Similar to the results from the wound-healing assay, activation of the Kv11.1 channel
in SW480 presented a non-significant change in velocity (median value of 0.187 µm/min
in control cells versus 0.13 µm/min in NS1643-treated cells) or distance (median value of
0.179.6 µm in control cells versus 144 µm/min in NS1643-treated cells control cells). These
data demonstrate that pharmacological stimulation of the Kv11.1 channel activity produces
a significant inhibition of colon cancer cell migration behavior and suggests that this effect
could be mediated by inhibition of the TGFβ signaling.



Cancers 2021, 13, 6025 5 of 20

Cancers 2021, 13  5  of  22 
 

 

in control cells versus 0.13 μm/min in NS1643‐treated cells) or distance (median value of 

0.179.6 μm in control cells versus 144 μm/min in NS1643‐treated cells control cells). These 

data demonstrate  that pharmacological stimulation of  the Kv11.1 channel activity pro‐

duces a significant  inhibition of colon cancer cell migration behavior and suggests that 

this effect could be mediated by inhibition of the TGFβ signaling. 
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Figure 1. NS1643 inhibits migration. (A) Western blot analysis showing expression of Kv11.1 in HT29, SW480, and FET colon
cancer cell lines. For the original Western blots, see Supplementary Figure S1. (B) Representative Kv11.1 current in control
HT29 cells in the presence of DMSO (control), NS1643 (activator; 50 µM) alone, or NS1643 + E4031 (blocker; 5 µM), with the
voltage protocol shown. (C) Representative diary plot depicting the Kv11.1 peak currents (at −100 mV) as a function of
time in HT29 cells before and after application of NS1643 alone or in combination with E4031. (D) Wound-healing assay
with HT29, SW480, or FET cells treated with DMSO or 50 µM NS1643 for 16 h. (E) Quantification of the experiments in (D).
Error bars indicate the standard error of the mean (n = 3; * p < 0.01). (F) Wind-rose plots for single-cell tracking experiments
in HT29, SW480, and FET colon cancer cell lines treated with DMSO or 50 µM NS1643 for 16 h. (G) Box–whisker plots of the
migration velocity and distance of the experiments in (F). n = 3; error bars indicate the minimum and the maximum values
for the dataset; * p < 0.05.
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3.2. Kv11.1 Activity Inhibits Mesenchymal and Stemness Phenotype in Colon Cancer Cells

Epithelial-to-mesenchymal transition (EMT) plays a key role in the acquisition of the
migratory properties in cancer cells. The suppressing effects of Kv11.1 activator on colon
cancer cell motility suggests that Kv11.1 activity may inhibit EMT in these cells. To evaluate
this hypothesis, we monitored the expression level of several mesenchymal markers,
including SNAIL1, SLUG, ZEB, TWIST, and c-Myc in HT29, FET, and SW480 cancer cells
after treatment with NS1643. We found that NS1643 produced a significant reduction in all
mesenchymal factors (Figure 2A,B). The proto-oncogene c-Myc is considered a central factor
in determining the mesenchymal phenotype as well as in maintaining cancer stemness [25].
We monitored the effects of NS1643 on c-Myc activity, and we found that the treated
cells, HT29 and FET, presented a strong reduction in c-Myc protein density (Figure 2B).
In addition, the CDKNA, FASN, and GAD genes are normally repressed by c-Myc while
cyclin D is activated. We found that cells treated with NS1643 presented a strong increased
transcription of the CDKNA, FASN, and GAD genes (Figure 2C) and a down-regulation of
cyclin D (Supplementary Figure S2A). In addition, NS1643 treatment produced a significant
reduction in the expression of stemness indicators such as NANOG, OCT4, and SOX2
(Figure 2D) in HT29 and FET. Nevertheless, none of the mesenchymal or stemness markers
was affected by NS1643 in the SW480 cell line.

Furthermore, consistent with the role of SNAIL1 and SLUG transcription factors
in promoting expression of N-cadherin (another key factor in the mesenchymal pheno-
type), we found that N-cadherin was significantly suppressed in the NS1643-treated cells
(Figure 3A).

3.3. Kv11.1 Activator Stimulates Expression of the Epithelial Marker E-Cadherin in Colon
Cancer Cells

The transcription factor ZEB is known to contribute to maintaining the mesenchymal
phenotype by repressing the expression level of the epithelial marker E-cadherin. Based
on the data showing that NS1643 inhibits ZEB expression we monitored the effect of the
Kv11.1 channel activator on E-cadherin. We found that NS1643 treatments produced a
significant increase in E-cadherin synthesis, as indicated by the augmentation at the mRNA
(Figure 3B) and protein level (Figure 3C,D) in both HT29 and FET cells. However, no
changes in E-cadherin expression were detected in the SW480 cell line.

Furthermore, we took advantage of a method of culturing cells in 3D by creating
spheroids in which we tested the effect of NS1643 on E-cadherin expression. We found that
these cell clusters strongly upregulated E-cadherin expression at the surface membrane
after application of NS1643 (Figure 3E; Video S1). The increase in E-cadherin occurred
independently from the size of the spheroids and throughout the entire cell clusters,
suggesting that NS1643 permeates the spheroids efficiently.

Furthermore, as the increase in E-cadherin associates with cell–cell contact-dependent
inhibition of proliferation, we monitored the effect of NS1643 on the cell cycle. We found
that NS1643 treatment is associated with a strong inhibition of colon cancer cell proliferation
as the cells arrested the cell cycle in the G0/G1 phase (Supplementary Figure S2B) without
causing cell death (Supplementary Figure S2C).
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Figure 2. NS1643 inhibits expression of EMT markers. (A) Relative expression level of mRNA encoding for the EMT markers
(SNAIL, SLUG, TWIST, and ZEB1) by RT-PCR in HT29, SW480, and FET cells treated with or without NS1643 (50 µM) for
48 h. Data = mean ± SEM; n = 3; * p < 0.01, ** p < 0.001. (B) Western blot analysis of c-Myc in HT29, SW480, and FET cells
treated with or without NS1643 (50 µM) for 24 h. Data = mean ± SEM; n = 3; * p < 0.01. For the original Western blots, see
Supplementary Figure S1. (C) Expression level of mRNA encoding for CDKNA, FASN, and GAD (repressed by c-Myc) by
RT-PCR in cells treated with or without NS1643 (50 µM) for 30 min in HT29 and 2 h in FET cells. Data = mean ± SEM; n = 3;
* p < 0.001. (D) Expression level of mRNA encoding for the stemness indicators NANOG, OCT4, and SOX2 by RT-PCR in
HT29, SW480, and FET cells treated with or without NS1643 (50 µM) for 48 h. Data = mean ± SEM; n = 3; * p < 0.001.
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(20 cells/well, 50 cells/well, and 100 cells/well) treated with DMSO (control) and NS1643 (50 µM) for 48 h.
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3.4. Kv11.1 Activity Inhibits TGFβ Signaling

The TGFβ signaling is a major factor determining the mesenchymal characteristics in
several cancers, including colon cancer. To examine whether the Kv11.1 activator affects
TGFβ signaling we monitored phosphorylation of SMAD2/3 on the conserved carboxy-
terminal SSXS motif in colon cancer cells that were incubated with NS1643 for different time
periods. We found that these cells presented a significant and rapid decrease in SMAD2
phosphorylation in all three cell lines (Figure 4A–C). Nevertheless, suppression of Kv11.1 ex-
pression by si-RNA (Figure 4D) or pharmacologically induced (Supplementary Figure S3B)
significantly abolished the NS1643-dependent dephosphorylation of SMADs and the re-
lated changes in EMT markers (Figure 4E), indicating that Kv11.1 is the direct target and
mediator of NS1643.
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Figure 4. NS1643 inhibits R-SMADs phosphorylation (A) Western blot showing expression of phosphorylated SMAD2
(P-Smad2) in HT29, (B) SW480, or (C) FET colon cancer cell lines treated for different times, as indicated with NS1643
(50 µM). Cells were kept in full medium. Bar graph indicates quantification. Data = mean ± SEM; n = 3; * p < 0.05.
(D) Western blots (Kv11.1 Ab Alomone Lab APC-109) showing the effect of NS1643 on SMADs phosphorylation in naïve
HT29 cells or in cells in which Kv11.1 has been suppressed by si-RNA. ns: non-significant. Bar graph indicates quantification.
Data = mean ± SEM; n = 3; * p < 0.01. (E) Relative expression level of mRNA encoding for the EMT markers (SNAIL, SLUG,
TWIST, and ZEB1) by RT-PCR in naïve HT29 cells (light grey) or in cells in which Kv11.1 has been suppressed by si-RNA
treated with or without NS1643 (50 µM) for 48 h. Bar graph indicates quantification. Data = mean ± SEM; n = 3; * p < 0.05,
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To evaluate the specific action of TGFβ in our system, we serum-starved the cells and
then added TGFβ1 alone or in combination with NS1643. Since all three TGFβ ligands
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present equal strength in activating the SMAD signaling we used only TGFβ1. Furthermore,
to better understand the potency of TGFβ1, we tested its ability to phosphorylate R-SMADs
as a function of time and dose (Supplementary Figure S3A). As expected, exposure to
TGFβ1 produced significant and rapid phosphorylation of R-SMADs (Figure 5A). This
event was followed by increased expression of the mesenchymal marker N-cadherin
(Figure 5B). Nevertheless, application of NS1643 completely abolished the TGFβ1 effects
on R-SMADs phosphorylation (Figure 5A) and inhibited expression of N-cadherin while
augmenting E-cadherin (Figure 5B).

These data indicate that activation of the Kv11.1 channel rapidly and strongly inhibits
TGFβ-dependent EMT by inhibiting R-SMADs phosphorylation.

3.5. Kv11.1 Activation Inhibits TGFβ Signaling Via Calcineurin

To better understand the effects of NS1643 on TGFβ signaling we wanted to inves-
tigate the link between Kv11.1 activity and dephosphorylation of R-SMADs. Our data
indicate that Kv11.1 activation produces a dephosphorylation of the SSXS domain in the
R-SMADs carboxy-terminus. The expression level of TGFβR2, which presents the highest
affinity for TGFβ1 ligand, or TGFBR1 also did not change in cells treated with NS1643
(Supplementary Figure S3C,D). These data suggest that NS1643-dependent dephosphory-
lation of R-SMADs is not determined by a lack of TGFβ receptors. Therefore, we tested the
hypothesis that activation of Kv11.1 produces activation of a Ser/Thr protein phosphatase,
which, in turn, dephosphorylates R-SMADs.

Remarkably, we found that application of NS1643 in combination with the Ca2+

and Mg2+ chelator EDTA strongly inhibited the NS1643-dependent dephosphorylation of
R-SMADs (Figure 6A), suggesting that a divalent cation-dependent phosphatase (PP2B
(calcineurin) that is activated by Ca2+ or PP2C that is activated by Mg2+) could control the
Kv11.1-dependent dephosphorylation of R-SMADs.

To discriminate between calcineurin and PP2C, we took advantage of the alkaloid
sanguinarine that has been characterized as a potent PP2C [26] inhibitor as well as pro-
motes Ca2+ entry [27]. Remarkably, application of sanguinarine did not inhibit the abil-
ity of NS1643 to produce R-SMADs dephosphorylation (Figure 6B), suggesting that the
Mg2+-dependent PP2C does not mediate this event. Application of sanguinarine alone
or in combination with TGFβ1 also produced a strong dephosphorylation of R-SMADs
(Supplementary Figure S3E,F), and application of EDTA inhibited the effect of sanguinar-
ine on R-SMADs dephosphorylation (Supplementary Figure S2E). These data suggest a
role for the Ca2+-dependent phosphatase calcineurin in mediating the inhibitory effects
of NS1643 on TGFβ signaling. To further test the role of calcineurin in mediating the
NS1643 effect on R-SMADs phosphorylation, we first treated the cells with the generic
calcineurin inhibitor, cyclosporine A (CSA), alone or in combination with NS1643. Remark-
ably, we found that CSA alone produced a strong and rapid (5 min) increase in R-SMADs
phosphorylation (Figure 6C), suggesting that inhibition of calcineurin reveals the basic
activity of TGFbRII. Application of CSA also rescued the NS1643-dependent dephosphory-
lation of R-SMADs (Figure 6C; NS1643+CSA @ 15 min). Furthermore, while application of
NS1643 produced the expected strong and rapid inhibition of TGFβ1-dependent SMAD2/3
phosphorylation (Figure 6C; NS1643 + TGFβ1), this event was completely abolished by
inhibiting calcineurin (Figure 6C; NS1643 + TGFβ1 + CSA).
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Figure 5. NS1643 abolishes the TGFβ1 effects on R-SMADs phosphorylation and EMT markers (A) Western blot showing
expression of phosphorylated smad2/3 (P-Smad2/3) in HT29 cells treated for different times as indicated with NS1643
(50 µM) alone, TGFβ1 (2 ng/mL), or NS1643 and TGFβ1. Cells were in a serum-deprived medium for 16 h before application
of drugs. Bar graphs indicate quantification of the experiments in (A) at the time point of 2 h. Data = mean ± SEM; n = 3;
* p < 0.05; ** p < 0.01; *** p < 0.001. (B) Western blot analysis showing expression of phosphorylated SMAD2/3, E-cadherin,
or N-cadherin in the HT29 cell line treated with NS1643 (50 µM; after serum starvation) for 48 h. Bar graphs indicate
quantification of the experiments in (B). Data = mean ± SEM; n = 3; * p < 0.05, ** p < 0.01, *** p < 0.001. For the original
Western blots, see Supplementary Figure S1.



Cancers 2021, 13, 6025 12 of 20

Cancers 2021, 13  13  of  22 
 

 

 

 

Figure 6. NS1643 inhibits TGFβ signaling via activation of calcineurin. (A) Western blots showing the expression level of 

phosphorylated smad2/3 and  total smad2/3  in HT29 cells  treated with DMSO, NS1643  (50 μM) alone, EDTA  (10 mM) 

alone, or NS1643 + EDTA for 2 h. Bar graphs indicate quantification of the experiments in (A). Data = mean ± SEM; n = 3; 

Figure 6. NS1643 inhibits TGFβ signaling via activation of calcineurin. (A) Western blots showing the expression level
of phosphorylated smad2/3 and total smad2/3 in HT29 cells treated with DMSO, NS1643 (50 µM) alone, EDTA (10 mM)
alone, or NS1643 + EDTA for 2 h. Bar graphs indicate quantification of the experiments in (A). Data = mean ± SEM; n = 3;
** p < 0.01; *** p < 0.001. (B) Western blot analysis showing expression of phosphorylated smad2/3 in HT29 cell line treated
with DMSO, NS1643 (50 µM) alone, Sanguinarine (1 µM) alone, or NS1643 + Sanguinarine for 2 h. Bar graphs indicate
quantification of the experiments in (B). Data = mean ± SEM; n = 3; * p < 0.05. (C) Western blot showing expression of
phosphorylated smad2/3 in HT29 cells (serum-starved for 16 h) treated for different times, as indicated with NS1643
(50 µM) alone, Cyclosporine A (1 µM), TGFβ1 (2 ng/mL) alone, NS1643 + Cyclosporine A, NS1643 + TGFβ1, or NS1643
+ Cyclosporine A + TGFβ1. Bar graphs indicate quantification of the experiments in (C). Data = mean ± SEM; n = 3;
* p < 0.05, ** p < 0.01, *** p < 0.001). For the original Western blots, see Supplementary Figure S1.
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3.6. PP2B-γ Catalytic Isoform Mediates the Inhibitory Effect of Kv11.1 Activation on TGFβ
Signaling

Calcineurin is a heterodimer complex between a regulatory and catalytic subunit.
Mammalian cells present three genes, PPP3CA, PPP3CB, and PPP3CC, that encode, respec-
tively, for calcineurin catalytic subunits, PP2Bα, PP2Bβ, and PP2Bγ [28]. To explore the
clinical relevance of our findings, we conducted in silico analysis with the Human Protein
Atlas database (www.proteinatlas.org, accessed on 9 October 2021) [29], which is a curated
gene/protein expression database of publicly available microarray datasets that performs
survival analyses based on selected biomarker expression levels. Analysis of the Kaplan–
Meier plots for PPP3CA, PPP3CB, and PPP3CC genes revealed that high expression of
PPP3CC associates with a better overall survival (OS) when compared with the cohort
of patients with low expression (Figure 7A–D). In contrast, no significant difference was
found for the PPP3CA or PPP3CB genes. These results suggested that PP2Bγ (encoded by
PPP3CC) could be the relevant isoform that mediates the effects of Kv11.1 activation of
TGFβ signaling. To test this hypothesis, we first suppressed PPP3CC gene expression in
HT29 cells by si-RNA (Figure 7E). Western blot analysis using a pan-Calcineurin antibody
revealed a significant reduction in the total PP2B protein density. Then we monitored the
expression level of E-cadherin in these cells. We found that both R-SMADs phosphorylation
and E-cadherin were strongly downregulated, suggesting that cells lacking PP2Bγ present
an upregulated TGFβ signaling.
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4. Discussion

Cancer metastasis is the spread of cancer cells to tissues and organs distant from the
primary tumor and is the leading cause of cancer-related morbidity and lethality. The
metastatic process is composed of a variety of progressive events among which the cellular
biochemical pathways that control cell motility play a major role [30].

Alteration of several ion channels expression has been related to different aspects
of cancer of different histogenesis but the role of a specific channel in cancer biology is
still understudied. In this work, we discovered that the Kv11.1 channel can control colon
cancer cell motility. By using qualitative and quantitative live cell imaging techniques
we discovered that treatment of human-derived colon cancer cells with the small Kv11.1
activator molecule NS1643 strongly inhibited cell migration. This event is associated with
downregulation of a variety of factors controlling the mesenchymal phenotype. Concur-
rently, these cells presented a strong upregulation of the epithelial marker E-cadherin.
It has been well established that formation of the β-catenin/E-cadherin complex at the
surface membrane are major factors of the stationary epithelial phenotype [31,32]. We have
previously discovered that stimulation of the Kv11.1 channel in breast cancer suppresses
the transcriptional activity of β-catenin by inhibiting its AKT-dependent nuclear translo-
cation Wnt signaling [9]. Consequently, NS1643 promoted accumulation of β-catenin at
the surface membrane. In the same work, we also discovered that NS1643 produced an
increase in the E-cadherin protein (and membrane accumulation), but at the time, we did
not understand the mechanism linking Kv11.1 activity to this event. In the current work
we discovered that the NS1643-dependent increase in E-cadherin can be associated with a
significant inhibition of the transcriptional activity of ZEB, TWIST, and SNAIL, which are
known to suppress E-cadherin synthesis [33] and to be controlled by TGFβ signaling [34].
Therefore, by inhibiting the inhibitor (ZEB, TWIST, and SNAIL), NS1643 produces an
increase in E-cadherin protein synthesis.

Acquisition of stemness behavior is a major contributor to cancer development [35].
Several EMT indicators are known to induce transcription of stemness markers. It has been
demonstrated that TGFβ signaling can control cancer stemness via the ZEB1 transcription
factor [36]. Our findings indicate that NS1643 produces downregulation of both EMT
and stemness factors and arrests the cell cycle in the G0/G1 phase. These data indicate
that Kv11.1 activity can control a potent anticancer mechanism that suppresses stemness
behavior and the mesenchymal phenotype of cancer cells while promoting the stationary
feature of the epithelial phenotype; a reversing process from EMT into MET.

As TGFβ plays a major role in controlling EMT, we focused our attention on whether
the Kv11.1 activity-dependent MET was mediated by an alteration in TGFβ signaling
specifically. Remarkably, application of NS1643 effectively limited the ability of the TGFβ1
ligand to induce phosphorylation of the serine residues in the c-terminus of R-SMADs.
Interestingly, the NS1643 reprogramming of cancer cells occurred only in HT29 and FET
but not in SW480 cells, which are known to lack SMAD4, a major component of the TGFβ
signaling, even though these cells express a functional Kv11.1 channel.

The inhibitory effects of NS1643 on TGFβ signaling could be potentially attributed to a
variety of causes, including transcriptional, posttranslational events, or potential unspecific
targets (e.g., the BK channel [37]).

The reduction in R-SMADs phosphorylation level after NS1643 application occurred
already 10 min after the stimulation of Kv11.1 activity. Therefore, the rapidity of the
NS1643-dependent effects suggests a significant change at the post-translational level
rather than transcriptional. Protein phosphorylation is regulated by the competing activity
of the protein kinase and phosphatases. We found that cells did not present any significant
changes in the TGFβ receptor (kinase) expression even after 24 h of NS1643 treatment.
This suggested that the potential candidate mediator of NS1643 effects on R-SMADs
dephosphorylation was a ser/thr phosphatase. Remarkably, Kv11.1 silencing rescued the
effects of NS1643 on both R-SMAD dephosphorylation and on inhibition of EMT markers
synthesis, indicating that in the context of our colon cancer cell line system, the effects
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of NS1643 on TGFβ signaling was mainly mediated by Kv11.1. Nevertheless, we cannot
completely exclude that other biochemical pathways controlling cancer cell motility could
be affected by other possible targets of NS1643.

Interestingly, exposing cells to the divalent cation chelator EDTA, which makes Ca2+

and Mg2+ unavailable to cross the membrane, inhibited the NS1643-dependent dephospho-
rylation of the carboxy-terminal SSXS motif R-SMADs. This suggested a possible role for
the divalent cation-dependent ser/thr phosphatases calcineurin (PP2B) or PP2C activity in
mediating the effect of NS1643 on TGFβ signaling. To discriminate between the two ser/thr
phosphatases, we took advantage of the dual nature of the natural alkaloid sanguinarine,
which is a potent inhibitor of PP2C [26] and activator of Ca2+ entry [27]. Application of
sanguinarine alone determined a reduction in the SMADs phosphorylation level. In addi-
tion, use of sanguinarine in combination with NS1643 did not rescue the effect of NS1643
alone on SMADs phosphorylation. These data suggested that the effects of NS1643 could
be mediated by activation of Ca2+ entry rather than inhibition of PP2C. This hypothesis is
sustained by our previous works in which we showed that stimulation of Kv11.1 activity
produces Ca2+ entry into cancer cells [33]. This event can be explained by the fact that loss
of K+ ions produces hyperpolarization, which provides a driving force for Ca2+ to enter
the cell. Furthermore, long treatments with NS1643 (24 h) determined activation of Nuclear
Factors of Activated T cells (NFATs)-dependent transcription, which was suppressed by
inhibition of PP2B [34]. Therefore, in the current work we tested whether the Ca2+-activated
phosphatase calcineurin would be the mediator of the rapid NS1643-dependnet effects on
SMADs. In contrast with sanguinarine, application of the well-known calcineurin inhibitor,
the immunosuppressant cyclosporine A alone, produced a significant increase in SMADs
phosphorylation. This event can be explained by the basal TGFβRII kinase activity that
prevails against the inhibited calcineurin. CSA in combination with NS1643 also strongly
inhibited the ability of NS1643 to produce R-SMADS dephosphorylation, indicating that
calcineurin mediates the inhibitory effects of NS1643 on TGFβ signaling. Therefore, we con-
cluded that stimulation of the Kv11.1 channel activity produces hyperpolarization, which,
in turn, drives Ca2+ entry through a not-yet identified Ca2+ channel. This Kv11.1 activity-
dependent increase in intracellular Ca2+ can activate calcineurin rapidly (minutes), which
produces dephosphorylation of R-SMADs. Consequently, transcription of mesenchymal
markers is severely inhibited and cell motility is suppressed while expression of epithelial
factor is activated and cell–cell contact is promoted. Nevertheless, we cannot exclude at
this time that NFAT could participate to the described events; however, to address this
topic properly, more specific experiments need to be performed, which will be the focus of
another investigation.

Recently, increasing amounts of evidence have demonstrated that suppression of
calcineurin activity is associated with carcinogenesis [38]. For example, use of cyclosporine
A to prevent transplant rejection is often associated with increased risk of cancer [39].
However, to the best of our knowledge, this event has been only investigated prevalently
in the context of NFAT signaling and the association between CSA and tumor growth has
been explained by the lack of immune system activity to attack cancer cells. Our data show
that cells in which the expression level of the PP2Bγ has been suppressed (si-RNA) present
a reduced level of E-cadherin, suggesting that the PP2Bγ catalytic isoform of calcineurin
controls the TGFβ signaling in colon cancer. Furthermore, patients expressing a high level
of PPP3CC present a significantly better OS compared with patients with low expression
of this subunit. These data endorse the clinical relevance of Kv11.1 activator molecules as
potential therapeutic approach against cancer.

It has been understood that while Kv11.1 channel expression is deregulated in cancers
of a different histology, its expression in a healthy human body is limited to few organs.
Unfortunately, due to the high risk of severe side effects linked to Kv11.1 function loss,
including ventricular fibrillation, the use of Kv11.1 blocker molecules is discouraged for
cancer therapy. In contrast, in our previous work, we have demonstrated that stimulation
of potassium channels with activator molecules did not produce significant side effects in
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mice [9,12], while altering the biochemical pathways to change metabolism inhibits tumor
growth and metastasis in cancer cells [9,12,40–43]. Therefore, the use of a Kv11.1 activator as
a means to stimulate calcineurin could be considered as a potential anticancer mechanism.

Metastasis is an extraordinarily multifaceted process in which a variety of biochemical
cascades underlying specific cellular events, including separation from the primary tumor,
invasion through surrounding tissues, adhesion to basement membranes, and arrest in
a distant target organ, must occur. Our work has demonstrated that pharmacological
activation of Kv11.1 severely affects TGFβ signaling, which plays a critical role in cell
motility. Interestingly, however, it also has been demonstrated that blockade (rather than
activation) of Kv11.1 in colon cancer cells can inhibit metastasis [44]. Although it is not yet
clear whether this event could be related to the Kv11.1 blocker-dependent inhibition of
tumor growth [45], the study reveals the important finding that Kv11.1 can form macro
complexes with proteins such as PI3K, AKT, and β-integrin, which play a major role in cell-
matrix adhesion. Binding of β-integrin to the complex augmented the Kv11.1 current and,
seemingly in contrast with our data [9], it favored tumor colonization to the liver. Although
there is not yet evidence that this event produces changes in TGFβ signaling, it is clear
that Kv11.1 (and probably other ion channels) appears to play a cross-cutting role as it can
contribute to a variety of biochemical pathways that are not necessarily mutually exclusive
or irreversible in controlling metastasis. Therefore, although more extended and specific
investigations are needed to fully understand the role of Kv11.1 in metastasis, it is possible
to speculate that each of these pathways rely on a specific electrochemical gradient and
that changes in Kv11.1 activity (stimulation/inhibition) can determine dramatic alteration
of these biochemical cascades, which can affect the metastatic process.

5. Conclusions

Our work indicates that stimulation of Kv11.1 activity produces Ca2+ entry, which, in
turn, activates the ser/thr phosphatase calcineurin. Consequently, calcineurin dephospho-
rylates R-SMADs, resulting in inhibition of the TGFβ-dependent EMT, reversal of EMT
into MET, and inhibition of migration.
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10.3390/cancers13236025/s1, Figure S1: Original Western blots, Figure S2: Western blot analysis
showing expression of cyclin D in HT29, SW480 and FET cells treated with NS1643 (50 µM) for
24 h, Figure S3: Western blot showing the effect of different concentrations of TGFβ1 at different
time points as indicated on Smad2/3 phosphorylation level in HT29 cells, Video S1: Movie file of
spheroids derived from HT29 cells treated with DMSO or NS1643 (50 µM) for 48 h.
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Appendix A

Appendix A.1. Electrophysiology

Forty-eight to 72 h after subculturing the cells, heat-polished 2 MΩ glass pipettes filled
with 110 mM K+-gluconate, 35 mM KCl, 2 mM MgCl2, 1 mM CaCl2, 10 mM Hepes, pH 7.4,
and 100 µg/mL gramicidin was used to obtain electrical access on cells that were bathed
in 140 mM KCl, 0.1 mM CaCl2, 2 mM MgCl2, 10 mM Hepes, and 10 mM glucose (pH 7.3).
The bath solution was perused via gravity at a rate of 1 mL/min and controlled through
an ALA-VC3-4xG series 4 channel regulator (ALA Scientific Instruments, Farmingdale
NY). Patch clamp recordings were carried out at ~22 ◦C. Patch electrodes were pulled
using a P-1000 Flamimg/Brown Micropipette Puller (Sutter Instrument, Sacramento, CA,
USA) from 1.5 mm × 0.86 mm borosilicate glass (Sutter) and were fire polished with a
CPM-2 Coating and Polishing Microforge (ALA Scientific Instruments, Farmingdale, NY,
USA), which yielded an access resistance of 2–3 MΩ while in solution. The pulse protocol
was run a minimum of 10 times before the addition of NS1643 to ensure that the currents
were stable. Potassium tail currents were recorded utilizing the whole cell configuration
of the patch clamp technique in voltage clamp mode using a HEKA EPC10 Amplifer
(Hardvard Bioscience, Holliston, MA, USA). Currents were analyzed in Patchmaster (Har-
vard Bioscience, Holliston, MA, USA). Successful isolation was confirmed with the class
III antiarrhythmic methane-sulfonanilide, E-4031 (5 µM, Biomol, Plymouth Meeting, PA,
USA). Only patches with stable currents at −100 mV, between 50 and 400 pA at the peak,
no response to perfusion with the control bath solution, and leak currents in E-4031 at the
end of the experiment <10% of the control were analyzed further.

Appendix A.2. RT-PCR Analysis and si-RNA

Total RNAs were extracted from cells using Trizol (Life technologies, NY, USA). For
cells harvested with Trizol, 1 mL Trizol were added to each plate and the suspension
transferred to a fresh tube. For Trizol extraction, 200 µL chloroform was added to the tube
and shaken for 15 s. Samples were incubated at room temperature (RT) for 2–3 min and
then centrifuged at 12,000× g for 15 min at 4 ◦C. The upper clear phase was transferred
to a fresh tube. Prior to precipitating the RNA with isopropanol, 2 µL glycogen as carrier
was added to the clear phase. Then after addition of 500 µL isopropanol, samples were
incubated for 10 min at RT and centrifuged at 12,000× g for 10 min at 4 ◦C. The RNA
pellet was washed with 1 mL of 75% cold ethanol, mixed, and centrifuged at 7600× g
for 5 min at 4 ◦C. Then the RNA pellet was resuspended in 100 µL of RNase-free water.
For the synthesis of complementary DNA (cDNA), 1 µg of RNA was used according to
the SuperScript™ III First-Strand Synthesis SuperMix (Invitrogen, Waltham, MA, USA).
Relative expression of each gene was normalized to Beta-actin (ACTB).

Primers:
FASN For: 5′-TACGACTACGGCCCTCATTT-3′

FASN Rev: 5′-CCATGAAGCTCACCCAGTTATC-3′

CDKNA1 For: 5′-GTCACTGTCTTGTACCCTTGTG-3′

CDKNA1 Rev: 5′-GGCGTTTGGSGTGGTAGAAA-3′

GADD45A For: 5′-AGGACGACGACAGAGATG-3′

GADD45A Rev: 5′-CTGACGCGCAGGATGTT-3′

SNAIL For 5′-TTCTCTAGGCCCTGGCTGCTACAA-3′

SNAIL Rev 5′-TCTCTGACATCTGAGTGGGTCTGGA-3′;
SLUG For 5′-CTGGTCAAGAAGCATTTCAACGCC-3′

SLUG Rev 5′-AAAGAGGAGAGAGGCCATTGGGTA-3′;
TWIST For 5′-GGAGTCCGCAGTCTTACGAG-3′

TWIST Rev 5′-TCTGGAGGACCTGGTAGAGG-3′;
ZEB1 For 5′-CTCCAGAATGTAATCGCATGTG-3′

ZEB1 Rev 3′-TGAGAAAACCTTATAGAACAGTGTG-5′;
B-ACTIN For 5′-CTACGTCGCCCTGGACTTCGAGC-3′
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B-ACTIN Rev 5′-GATGGAGCCGCCGATCCACACGG-3′.
E-CAD For: 5′-AAGGTGACAGAGCCTCTGGAT-3′

E-CAD Rev: 5′-CGTCTGTGGCTGTGACCT-3′

N-CAD For: 5′-CGAGCCGCCTGCGCTGCCAC-3′

N-CAD Rev: 5′-CGCTGCTCTCCGCTCCCCGC-3′

Primers for Oct4, Sox2, and Nanog were purchased from Santa Cruz Biotechnology. si-
RNA targeting Kv11.1 and was purchased from Origene (Cat. SR302526). si-RNA targeting
PP2B purchased from Darmacon (Cat. LQ-010005-00-0010). The transfection reagent was
purchased from Origene (Cat. TT320001).

Appendix A.3. Wound-Healing Assay

Cells were grown to form a monolayer and then a scratch was created using a sterile
micropipette tip. Medium was removed and cells were washed with phosphate-buffered
saline (PBS) to remove floating cells. Then, cells were treated with NS1643 or DMSO.
Images were taken prior to addition of the drug (time 0), as well as after 24 h of the
treatment using an inverted microscope (EVOS XL Core Imaging system, Life Technologies,
USA) with 10× magnification. The gaps were measured by ImageJ, and the extents of
closure at time 16 h were calculated by subtracting the area at time 0. The percentage of
wound closure was calculated by normalizing the difference to area at time 0.

Appendix A.4. Protein Extraction and Western Blotting

After RNA extraction from Trizol, 300 µL of 95% ethanol was added to the phenol-
ethanol phase, mixed and let the mixture stand at RT for 2-3 min. Samples were then
centrifuged at 2000× g for 5 min at 4 ◦C. The upper phase was removed, 750 µL of
isopropanol was added to 400 µL of the lower phase, and the samples were incubated
10 min at RT. After incubation, samples were centrifuged at 12,000× g for 10 min at 4 ◦C.
The supernatant was removed and the pellets were washed 3 times with cold acetone.
The protein pellets were dissolved in 75 µL water and mixed with 25 µL Laemmli sample
buffer containing β-mercaptoethanol. Finally, samples were heated for 10 min at 95 ◦C
and centrifuged at 13,000× g for 5 min. The same amount of protein samples was loaded
onto SDS-polyacrylamide gel and transferred onto a PVDF membrane. Membranes were
incubated for 1 h in 5% nonfat milk in Tris-Buffered Saline (TBS) containing 0.1% Tween
20 (TBST) and then overnight with primary antibodies at 4 ◦C. Membranes were washed
with TBST three times and then incubated with secondary antibody for 1 h at RT, followed
by washing with TBST. Proteins were visualized by the Imager (ChemiDoc MP Imaging
System, Bio-Rad, Hercules, CA, USA). Histone H3 was evaluated for normalization of
protein expression.

Appendix A.5. Flow Cytometry Analysis

HT29 cells were collected and resuspended in an appropriate volume of cold FACS
buffer (PBS, 2% FBS). Cell suspensions were then filtered to obtain a single cell suspension.
Cells were labelled with anti-TGFβ RII monoclonal antibody for 25 min at 4 ◦C in the dark.
After incubation, cells were washed and resuspended in the FACS buffer and then they
were sorted and analyzed on a flow cytometer (LSR Fortessa with HTS, BD Biosciences, San
Jose, CA, USA) to determine the expression of TGFβ RII on the surface of the membrane.

Appendix A.6. Cell Spheroid Formation and Drug Treatment on Agarose-Microwells

HT29 cell suspensions were loaded into agarose-microwells at the seeding densities of
20, 50, and 100 cells/microwell. The agarose-microwells with 200 µm diameter and 75µm
depth were formed using 2% agarose (Sigma-Aldrich) against 3D printed template (Form2,
FormLabs). Seeded cells were then cultured in DMEM medium supplemented with 10%
FBS, 1% Penicillin/Streptomycin, and 1% GlutaMAX. Cell spheroids were formed after
a 2-day incubation and separated into the treatment and control groups. The treatment



Cancers 2021, 13, 6025 19 of 20

group was treated with 50 µM NS1643 for 48 h; no drug was added to the control group.
Following treatment, cell spheroids in both groups were immunofluorescently stained
with E-cadherin antibody (primary antibody from Cell Signaling; secondary IgG antibody
with AlexaFluor 488 from Abcam). Fluorescent images were taken using a Zeiss 710 Laser
Scanning Confocal Microscope.

Appendix A.7. Cell Apoptosis Assay

Cell apoptosis was determined by using a BD Pharmingen FITC Annexin V Apoptosis
Detection Kit I. Briefly, cells were harvested and washed with PBS twice. The pellets were
resuspended in 1× Binding Buffer and incubated for 15 min at room temperature with
3 µL of FITC Annexin V and 3 µL of Propidium Iodide in the dark. Then, 400 µL of 1×
Binding Buffer was added to each tube prior to analysis. Samples were analyzed with a
flow cytometer (LSR Fortessa with HTS, BD Biosciences, San Jose, CA, USA) and Summit
(Beckman Coulter Inc.; Fullerton, CA, USA).
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