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1. Introduction

Designing and optimizing routes in chemical synthesis requires

knowledge of the thermochemistry involved in the targeted
compounds or reactions. The alkali metal cation affinity

(AMCA) is a thermochemical quantity that plays an important
role for predicting and understanding stability as well as reac-

tivity in structures and processes in which such ions bind to,
and/or dissociate from Lewis-basic nitrogen, oxygen, and other

atoms. Examples are lithium and sodium battery electrochem-

istry,[1] alkali metal cation transport in biological systems (e.g. ,
sodium or potassium cations in ion channels in cell mem-

branes),[2, 3] stabilization of nucleic acid structures (DNA, RNA
and PNA),[4] and the dissociation of salts.[5, 6] However, the

ACMA has received relatively little attention in the literature
and if compared with, for example, the proton affinity (PA).[7]

The thermochemical quantity ACMA is defined as the enthal-

py change associated with heterolytic dissociation of the com-
plex between the alkali metal cation (X+) and the anionic (B¢)
or neutral base (B):

BX! B¢ þ Xþ DH ¼ AMCA ð1Þ

BXþ ! Bþ Xþ DH ¼ AMCA ð2Þ

The purpose of the present study is twofold. The main ob-

jective is to obtain a better understanding of the physical fac-
tors behind the AMCA. To this end, we have carried out a de-

tailed analysis of the bonding mechanism behind the intrinsic

(i.e. , in the absence of interfering solvent effects) ACMA of
a negative and a neutral model base, namely, chloride and hy-

drogen chloride, for both the lithium and the sodium cation
(B¢= Cl¢ , B = HCl, X+ = Li+ , Na+ in [Equations (1)–(2)] . Our

analysis has been carried out in the conceptual framework of
Kohn–Sham molecular orbital (KS-MO) theory in combination

with a quantitative energy decomposition analyses (EDA).

In the second place, we wish to compare the nature of

ACMA with that of the corresponding PA[7a,b,c] and methyl
cation affinities (MCA).[8] Thus, X+ = H+ and CH3

+ are included
in our discussion of the bonding mechanism. In addition to
the ACMA values of all bases (DH298

AMCA), we also report the

corresponding 298 K reaction entropies (DS298
AMCA, provided as

¢T DS298
AMCA) and 298 K reaction Gibbs-free energies

(DG298
AMCA).

2. Computational Methods

2.1. Basis sets

All calculations were performed with the Amsterdam Density

functional (ADF) program developed by Baerends and

others.[9, 10] Molecular orbitals (MOs) were expanded using two
large, uncontracted sets of Slater-type orbitals (STO): TZ2P for

geometry optimization and vibrational analysis, and QZ4P for
single-point energy calculations.[11] The TZ2P basis set is of

triple-z quality, augmented by two sets of polarization func-
tions (d and f on heavy atoms; 2p and 3d sets on H). The QZ4P
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basis, which contains additional diffuse functions, is of quadru-
ple-z quality, augmented by four sets of polarization functions

(two 3d and two 4f sets on C, N, O; two 2p and two 3d sets on
H). Core electrons (e.g. , 1s for second-period, 1s2s2p for third-

period, 1s2s2p3s3p for fourth-period, 1s2s2p3s3p3d4s4p for
fifth-period, and 1s2s2p3s3p3d4s4p4d for sixth-period atoms)

were treated by the frozen core approximation.[10] An auxiliary
set of s, p, d, f, and g slater-type orbitals was used to fit the
molecular density and to represent the coulomb and exchange

potentials accurately in each self-consistent field (SCF) cycle.

2.2. Density functional

Energies and gradients were calculated using the local density

approximation (LDA: Slater[12] exchange and VWN[13] correla-
tion) with gradient corrections[14, 15] due to Becke (exchange)

and Perdew (correlation) added self-consistently. This is the
BP86 density functional, which is one of the three best DFT

functionals for the accuracy of geometries[7a–b, 16] with an esti-
mated unsigned error of 0.009 æ in combination with the TZ2P

basis set. In a previous study[7a–c] on the proton affinities of

anionic species, we compared the energies of a range of other
DFT functionals, to estimate the influence of the choice of DFT

functional. These functionals included the Local Density Ap-
proximation (LDA), Generalized Gradient Approximation

(GGAs), meta-GGA and hybrid functionals. Scalar relativistic cor-
rections were included self-consistently using the zeroth order

regular approximation (ZORA).[17] Spin-orbit coupling effects

were neglected because they are small for closed-shell systems
as they occur in this investigation.

Geometries, vibrational frequencies, and thermodynamic
corrections have been computed using the TZ2P basis set:

ZORA-BP86/TZ2P level. All electronic energies have been com-
puted in a single-point fashion using the QZ4P basis set, based

on the ZORA-BP86/TZ2P geometries: ZORA-BP86/QZ4P//ZORA-

BP86/TZ2P. For comparison, we have also computed the
above-mentioned quantities using the B3LYP hybrid function-

al[18] in combination with TZ2P basis set for the geometries
and frequencies calculations, and with QZ4P for the single-
point energies, that is, ZORA-B3LYP/QZ4P//ZORA-B3LYP/TZ2P.
Note that bonding analyses have been carried out at the

ZORA-BP86/TZ2P level of theory.

2.3. Thermochemistry

Enthalpies at 298.15 K and 1 atmosphere (DH298) were calculat-

ed from electronic bond energies (DE) at ZORA-BP86/QZ4P//
ZORA-BP86/TZ2P and vibrational frequencies at ZORA-BP86/

TZ2P using standard thermochemistry relations for an ideal

gas, according to [Eq. (3)]:[19]

DH298 ¼ DE þ DEtrans,298 þ DErot,298 þ DEvib,0 þ DðDEvib,0Þ298 þ DðpVÞ
ð3Þ

Here, DEtrans,298, DErot,298 and DEvib,0 are the differences be-
tween the reactant (i.e. , BX(++), the base-cation complex) and

products (i.e. , B(¢) + X+ , the neutral or anionic base and the
cation) in translational, rotational and zero point vibrational

energy, respectively. D(DEvib,0)298 is the change in the vibrational
energy difference as one goes from 0 to 298.15 K. The vibra-

tional energy corrections are based on our frequency calcula-
tions. The molar work term D(pV) is (Dn)RT; Dn = + 1 for one

reactant BX dissociating into two products B¢ and X+ . Thermal
corrections for the electronic energy are neglected.

2.4. Bond-energy decomposition

As mentioned above, bonding analyses have been carried out
at the ZORA-BP86/TZ2P level of theory. The overall bond
energy DEbond (which corresponds to ¢DE in [Eq. (3)]) between

base B(¢) and cation X+ is made up of two major compo-
nents:[20]

DEbond ¼ DEstrain þ DE int ð4Þ

Here, the strain energy, DEstrain, is the amount of energy re-

quired to deform the separate base and cation from their equi-

librium structure to the geometry that they acquire in the
overall complex BX(++). The interaction energy DEint corresponds

to the actual energy change when the geometrically deformed
base and cation are combined to form the overall complex.

The interaction DEint can be further analyzed, in the frame-
work of the Kohn–Sham molecular orbital (MO) model, using

an energy decomposition into electrostatic interaction attrac-
tion, Pauli repulsion, and (attractive) orbital interactions:[9, 20]

DE int ¼ DVelstat þ DEPauli þ DEoi ð5Þ

The term DVelstat corresponds to the classical electrostatic in-

teraction between the unperturbed charge distributions of the
prepared (i.e. , deformed) base and cation. This term is usually

attractive. The Pauli-repulsion DEPauli comprises the destabiliz-
ing interactions between occupied orbitals and is responsible
for the steric repulsion. The orbital interaction DEoi in any MO
model, and therefore also in Kohn–Sham theory, accounts for

charge transfer (i.e. , donor–acceptor interactions between oc-
cupied orbitals on one moiety with unoccupied orbitals of the
other, including the HOMO–LUMO interactions) and polariza-
tion (empty/occupied orbital mixing on one fragment due to
the presence of another fragment).

2.5. Analysis of the charge distribution

The electron density distribution is analyzed at ZORA-BP86/
TZ2P using the Voronoi deformation density (VDD)
method[21, 22] for computing atomic charges. The VDD atomic

charge QA
VDD is computed as the (numerical) integral[23] of the

deformation density D1(r) =1(r) ¢ SB 1B(r) in the volume of
the Voronoi cell of atom A [Eq. (6)] . The Voronoi cell of atom A

is defined as the compartment of space bound by the bond
midplanes on and perpendicular to all bond axes between nu-

cleus A and its neighboring nuclei (cf. the Wigner–Seitz cells in
crystals).[22c]
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QVDD
A ¼ ¢

Z
Voronoi cell

atom A

1 rð Þ ¢
X

B
1B rð Þ

h i
dr ð6Þ

In [Eq. (6)] , 1(r) is the electron density of the molecule and
SB 1B(r) the superposition of atomic densities 1B of a fictitious

promolecule without chemical interactions that is associated

with the situation in which all atoms are neutral. The interpre-
tation of the VDD charge QA

VDD is rather straightforward and

transparent. Instead of measuring the amount of charge asso-
ciated with a particular atom A, QA

VDD directly monitors how

much charge flows, due to chemical interactions, out of
(QA

VDD>0) or into (QA
VDD<0) the Voronoi cell of atom A, that is,

the region of space that is closer to nucleus A than to any

other nucleus.

3. Results and Discussion

3.1. Structures and energies

Our computed ZORA-BP86/QZ4P//BP86/TZ2P geometries and
affinities at 298 K (DH), the corresponding entropies DS (pro-
vided as ¢TDS values) and free energies DG are summarized
in Tables 1 and 2 for the chloride and hydrogen chloride bases,

respectively. In both tables we compare the results for ZORA-
BP86/QZ4P//BP86/TZ2P with ZORA-B3LYP/QZ4P//B3LYP/TZ2P

and MP2 calculations as well as with the experiment. As ex-
pected,[7a,b] both functionals BP86 and B3LYP emerge as good

functionals (vide infra), they agree for both ClX and [HCl¢X]+

complexes within a few hundredths of an æ (Cl¢X distances)

and a few kcal mol¢1 (298 K heterolytic bonds dissociation en-

thalpies DH) with the available experimental and/or other
computational reference data.[24–33] Both functionals show

mean absolute deviation (MAD) values of 2.0 kcal mol¢1 with
respect to the experimental values, while MP2 achieves a slight-

ly worse MAD value of 2.5 kcal mol¢1. Based on the results of
previous studies[7a,b] on the proton affinities, where BP86 func-

tional emerges slightly more accurate than B3LYP, we have
chosen to continue our calculation using BP86.

In the neutral complexes ClX, between chloride and the vari-

ous cations, the X¢Cl bond distance increases systematically
from 1.292 to 1.801 to 2.030 to 2.377 æ along X+ = H+ , CH3

+ ,

Li+ , and Na+ , respectively (see Table 1). At the same time, the
cation affinity of the chloride anion, that is, DH for reaction 1

(with B¢ = Cl¢), decreases if one goes from 333.6 (H+) to 231.4
(CH3

+) to 152.9 (Li+) to 132.0 kcal mol¢1 (Na+ ; see Table 1). The

corresponding Gibbs free energies DacidG298 show the same

trends because entropy corrections ¢TDacid S298 are relatively
small, between ¢5.1 and ¢7.9 kcal mol¢1.

Likewise, in the cationic complexes [HCl¢X]+ between hy-
drogen chloride and the various cations, the X¢Cl bond dis-

tance increases again systematically from 1.324 to 1.876 to
2.351 to 2.755 æ along X+ = H+ , CH3

+ , Li+ and Na+ , respec-

tively (see Table 2). At the same time, as the X¢Cl bond be-

comes longer, the H¢Cl bond contracts, although only very
slightly so (from 1.324 to 1.315 to 1.302 to 1.299 æ) and the
H¢Cl¢X angle adopts a substantially less bent configuration
(varying from 93.68 to 99.58 to 103.68 to 106.18). The cation af-

finity of the hydrogen chloride molecule, that is, DH for reac-
tion 2 (with B = HCl), decreases along the same series from

136.2 (H+) to 54.8 (CH3
+) to 15.7 (Li+) to 9.9 kcal mol¢1 (Na+ ;

see Table 2). Again, the corresponding Gibbs free energies DG
show the same trends as DH.

3.2. Bonding mechanism: Cl¢ cation affinities

Our heterolytic Cl¢X bonding analyses have been carried out

at ZORA-BP86/TZ2P and comprise three complementary ap-

proaches: 1) quantitative analysis of the Kohn–Sham orbital in-
teraction mechanism; 2) the associated bond energy decom-

position; and 3) analysis of the electron-density distribution
(see Table 3 and Figure 1). The trend in cation affinity DH, an

enthalpic quantity, is determined by that in the electronic
cation affinity energy DE associated with reaction 1. Note that,

Table 1. Cation affinity data (in kcal mol¢1, æ) for the chloride anion.

Cation H+ CH3
+ Li+ Na+

¢T DS[a] ¢5.4 ¢7.9 ¢5.2 ¢5.1
DG[a] 328.2 223.5 147.7 126.9
DH BP86

[a] 333.6 231.4 152.9 132.0
DH B3LYP

[b] 332.7 224.1 155.2 133.9
DHMP2

[c] 331.3 228.6 153.9 134.5
DHexp

[d] 333.5�0.002 227.3�0.6 152.0 132.6

d(X¢Cl)[a] 1.292 1.801 2.030 2.377
d(X¢Cl)Exp

[d] 1.275 1.785 2.021 2.361

[a] This work. Computed at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P for
298.15 K and 1 atm. In parentheses: enthalpies computed at ZORA-BP86/
TZ2P. [b] This work. Computed at ZORA-B3LYP/QZ4P//ZORA-B3LYP/TZ2P
for 298.15 K and 1 atm. [c] MP2 values from Refs. [24] , [25] and [26].
[d] Experimental values from Refs. [24] , [27] and [28].

Table 2. Cation affinity data (in kcal mol¢1, æ, degrees) for hydrogen chlo-
ride.

Cation H+ CH3
+ Li+ Na+

¢T DS[a] ¢5.9 ¢8.7 ¢5.4 ¢5.0
DG[a] 130.2 46.1 10.3 4.8
DH BP86

[a] 136.2 54.8 15.7 9.9
DH B3LYP

[b] 135.0 49.2 16.9 10.9
DHMP2

[c] 134.2 45.7 15.7 8.9
DHexp

[d] 133.1 51.6 n.a. 12.1�1.5

d(X¢Cl)[a] 1.324 1.876 2.351 2.755
d(Cl¢H)[a] 1.324 1.315 1.302 1.299

(X¢Cl¢H)[a] 93.6 99.5 103.6 106.1

[a] This work Computed at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P for
298.15 K and 1 atm. In parentheses: enthalpies computed at ZORA-BP86/
TZ2P. [b] This work. Computed at ZORA-B3LYP/QZ4P//ZORA-B3LYP/TZ2P
for 298.15 K and 1 atm. [c] MP2 values from Refs. [29] , [30] and [31].
[d] Experimental values from Refs. [28] , [32] and [33] (n.a. = not available).
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for the bonding analysis, we use the bond energy DEbond =

¢DE, that is, the energy change associated with bond forma-
tion Cl¢+ X+ ! ClX (see Table 3). The main contributor to

DEbond =DEstrain +DEint, in turn, is the interaction energy DEint

between the two fragments which determines the overall

trend in stability. DEint weakens strongly from ¢339.5 to
¢261.6 to ¢155.5 to ¢134.0 along H+ , CH3

+ , Li+ and Na+ . The

strain energy DEstrain does not affect this trend in interaction.
DEstrain is exactly zero kcal mol¢1 for all monoatomic fragments
(chloride, proton, alkali metal cations). Only in the case of the
methyl cation, there is a destabilizing strain energy of 24.7 kcal
mol¢1 which originates from the fact that planar CH3

+ must

deform into a pyramidal geometry as it binds to Cl¢ . This
strain effect is too small to change the overall trend in relative
stability DEbond.

The trend in DEint originates from a combination of two phe-

nomena in the bonding mechanism (see Table 3): 1) the orbital
interactions DEoi and electrostatic attraction DVelstat are stron-

gest for CH3
+ (¢206.2 and ¢211.9 kcal mol¢1) and become sys-

tematically weaker as we further proceed to H+ , Li+ and Na+ ;
2) a sizeable Pauli repulsion DEPauli of 156.4 kcal mol¢1 causes

the methyl cation affinity (MCA) to become smaller than the
proton affinity (PA). The strong Pauli repulsion in the case of

CH3
+ results from the overlap of the Cl¢ 3s and especially 3ps

AOs with the C¢H bonding valence 1a1 orbital of CH3
+ .[8] Such

Pauli repulsion was shown to play an even more important

role in complexes between sterically more demanding bases
and alkyl cations.[37, 38] The chloride anion has zero Pauli repul-

sion with the proton (the latter has no electrons at all) and
only little Pauli repulsion (26-30 kcal mol¢1) with the alkali

metal cations which have electrons only in very compact core
AOs.

The weakening in DEoi along CH3
+ , H+ , Li+ , and Na+ can be

traced directly to covalent features in the bonding mechanism,
in particular, the HOMO–LUMO interactions in the s-electron

system (see Figure 1 and Table 3). First, the energy of the
cation LUMO increases drastically as we go from the methyl

cation and proton (¢15.4 eV and ¢13.6 eV) to the alkali metal
cations (¢6.9 and ¢7.1 eV). Second, the HOMO–LUMO bond

overlap decreases systematically when the LUMO, as can be

seen in Figure 2, contains more nodal surfaces and becomes

more diffuse along H+ (0.52), CH3
+ (0.35), Li+ (0.29) and Na+

(0.26). The combined result of these two factors of HOMO–

LUMO gap and overlap results in the steady decrease of the s-
orbital interactions DEs from ¢184.6 to ¢157.5 to ¢13.6 to

¢8.1 kcal mol¢1 along CH3
+ , H+ , Li+ and Na+ . This trend is re-

flected by the orbital-interaction diagram in Figure 1 which

Table 3. Analysis of the X¢Cl bonding mechanism between Cl¢ and X+ .[a]

Cation X+

H+ CH3
+ Li+ Na+

Bond energy decomposition (in kcal mol¢1)
DEs ¢157.5 ¢184.6 ¢13.6 ¢8.1
DEp ¢22.1 ¢21.6 ¢12.5 ¢6.9
DEoi ¢179.6 ¢206.2 ¢26.1 ¢14.9
DEPauli 0.0 156.4 30.2 26.0
DVelstat ¢159.9 ¢211.9 ¢159.6 ¢145.1
DEint ¢339.5 ¢261.6 ¢155.5 ¢134.0
DEstrain 0.0 24.7 0.0 0.0
DEbond ¢339.5 ¢236.9 ¢155.5 ¢134.0
DHbond =¢DHTZ2P ¢336.3 ¢234.4 ¢155.4 ¢134.2

X+ Fragment orbital energy (in eV)
eLUMO ¢13.6 ¢15.4[b] ¢6.9 ¢7.1

hCl¢ jX+i Fragment orbi-
tal overlap

h3ps j1si h3ps j2a1i h3ps j2si h3ps j3si

hHOMO jLUMOi 0.52 0.35 0.29 0.26

Fragment orbital populations (in e)[c]

Cl¢ HOMO¢1 1.89 (3s) 1.96 (3s) 1.96 (3s) 1.98 (3s)
HOMO 1.27 (3ps) 1.22 (3ps) 1.82 (3ps) 1.84 (3ps)

X+ LUMO 0.74 (1s) 0.81 (2a1) 0.08 (2s) 0.12 (3s)
LUMO + 1 0.02 (2s)[d] 0.01 (3a1) 0.08 (2ps) 0.03 (3ps)

VDD atomic charges (in a.u.)
Q(X in XCl) + 0.098 + 0.131[e] + 0.475 + 0.567

[a] Computed at ZORA-BP86/TZ2P. See also Methods section. [b] Orbital
energy of CH3

+ in the geometry it adopts in ClCH3. [c] Pertinent orbital
indicated in parentheses. [d] P(2ps) = 0.04 e. [e] Sum of atomic charges on
CH3 moiety.

Figure 1. Orbital interaction diagram for XCl composed of Cl¢ and X+ ,
emerging from our Kohn–Sham orbital analyses at ZORA-BP86/TZ2P (X+ =

H+ , CH3
+ , Li+ , Na+). In bold: Gross Mulliken frontier molecular orbital (FMO)

contributions to the molecular orbital (MO). Parentheses indicate no Pauli
repulsion for X+ = H+ .

Figure 2. Contour plots of cation LUMOs (scan values: �0.0, �0.02, �0.05,
�0.1, �0.2, �0.5).
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shows that the bonding HOMO + LUMO combination in the
overall complex is increasingly polarized towards the chloride

fragment if one goes from ClCH3 to ClH to ClLi to ClNa. In line
with the trend in orbital interactions, the VDD charges of the

cation-group show that the polarity of the chloride-cation
bond increases if we go from hydrogen in ClH (+ 0.098 au) and

methyl in ClCH3 (+ 0.131 au), on one hand, to the alkali metals
in ClLi and ClNa (0.475 and 0.567 au; see Table 3).

The weakening in DEs from ClLi to ClNa is reinforced by the

fact that the former complex gains stabilization from the in-
volvement of a low-lying lithium 2ps AO which accepts
0.08 electrons from the chloride lone pair. The corresponding
sodium 3ps AO accepts much less, only 0.03 electrons (see

Table 3; cf. 6, 36).
The p-orbital interactions DEp are in all model complexes

smaller than the DEs term, only slightly so for lithium and

sodium cations and even significantly in the case of the proton
and methyl cation. Still they follow approximately the same

trend which therefore comes out even more pronouncedly in
the overall orbital interactions DEoi. The origin of the p stabili-

zation DEp is that the chloride 3pp orbitals are stabilized in the
presence of the cation. This stabilizing effect diminishes as the

chloride-cation distance increases along Cl¢H, Cl¢Li and Cl¢Na.

In Cl¢CH3, these DEp do not only consist of a stabilization of
the chloride 3pp orbitals in the electrostatic field of the cation

but they also gain stabilization due to p-donor-acceptor inter-
actions with the empty C¢H antibonding 2 e orbitals of CH3

+ .

Finally, the electrostatic attraction DVelstat is in all case larger
than the orbital interactions DEoi, especially in the case of the

alkali metal cation complexes. The latter have a relatively weak

DEoi term and are predominantly electrostatically bound. The
relatively strong electrostatic attraction in all four model sys-

tems results from the charge separation associated with disso-
ciation of a neutral complex into two oppositely charged frag-

ments [Eq. (1)] . The exact trend in electrostatic attraction de-
pends in an intricate manner on the shape and mutual pene-

tration of the fragment charge distributions. Therefore, signifi-

cant deviations of Coulombs law q1·q2/r12 for two point
charges occur. Still, one can observe a slight weakening in
DVelstat from ¢159.9 to ¢159.6 to ¢145.1 kcal mol¢1 as the
equilibrium bond length increases along ClH to ClLi and ClNa

(see Table 1 and 3).

3.3. Bonding mechanism: HCl cation affinities

The ZORA-BP86/TZ2P results of our heterolytic HCl¢X+ bond-

ing analyses have been collected in Table 4. The cation affinity
DH for the neutral base HCl (9 to 136 kcal mol¢1) are substan-

tially smaller than those for the anionic base Cl¢ (134 to
336 kcal mol¢1) but the trend along the four cations is the

same for both bases (compare Tables 3 and 4).

The decrease in cation affinities from anionic to neutral base
by 125–200 kcal mol¢1 mainly stems from a similar weakening,

that is, by 138–187 kcal mol¢1, in the electrostatic attraction
DVelstat. The latter is even 21 kcal mol¢1 repulsive in the case of

the proton affinity.[39] This is a direct consequence of the fact
that, upon heterolytic dissociation of HCl¢X+ , no charge sepa-

ration occurs [Eq. (2)] while charge separation does occur for

Cl¢X [Eq. (1)] . Likewise, also the orbital interactions DEoi of the
neutral base HCl with the various cations (see Table 4) are

weaker than the corresponding one for the anionic base (see
Table 3) which has orbitals that are effectively at higher energy

due to the much more negative electrostatic potential. Alto-

gether, the weaker DVelstat and DEoi terms in the case of the
HCl¢X+ systems lead to substantially longer Cl¢X equilibrium

distances (compare Tables 1 and 2) and smaller Pauli repulsion
DEPauli (compare Tables 3 and 4). Note also the somewhat
smaller deformation strain for the more weakly bound methyl
cation complex HClCH3

+ as compared with ClCH3.

The trend in DEint stems directly from the orbital interactions
DEoi and not from the rather weak electrostatic attraction
DVelstat anymore. The orbital interactions DEoi become weaker

from ¢161 to ¢138 to ¢14 to ¢7 kcal mol¢1 along H+ , CH3
+ ,

Li+ , and Na+ . The trend in orbital interactions correlates direct-

ly with the HOMO–LUMO bond overlap (0.48, 0.32, 0.24, and
0.19) and is reflected by the population of the LUMO (0.66,

0.61, 0.05, and 0.04 e), both of which decrease along the series

(see Table 4). In line with this, the polarity of the HCl¢X+ bond
increases along the series, as indicated by the cation’s VDD

atomic charge (+ 0.3, + 0.4, + 0.7, and + 0.8 a.u.).
A sizeable Pauli repulsion DEPauli of 103.9 kcal mol¢1 of the

HCl HOMO and HOMO¢1 with the C¢H bonding valence 1a1 or-
bital of CH3

+ significantly weakens the MCA but does not

Table 4. Analysis of the Cl¢X Bonding Mechanism between HCl and X+ .[a]

Cation X+

H+ CH3
+ Li+ Na+

Bond energy decomposition (in kcal mol¢1)
DEA’ ¢151.6 ¢131.3 ¢11.3 ¢5.9
DEA’’ ¢9.4 ¢6.7 ¢2.3 ¢1.2
DEoi ¢161.0 ¢138.0 ¢13.7 ¢7.1
DEPauli 0.0 103.9 6.8 4.7
DVelstat 21.0 ¢39.0 ¢8.5 ¢6.9
DEint ¢140.0 ¢73.1 ¢15.3 ¢9.4
DEstrain 0.3 15.2 0.0 0.0
DEbond ¢139.7 ¢57.9 ¢15.3 ¢9.4
DHbond =¢DHTZ2P ¢135.8 ¢54.5 ¢15.0 ¢9.3

X+ Fragment orbital energy (in eV)
eLUMO ¢13.6 ¢15.1[b] ¢6.9 ¢7.1

hClH jX+i Fragment or-
bital overlap

h2 p j1si h2 p j2a1i h2 p j2si h2 p j3si

hHOMO jLUMOi 0.48 0.32 0.24 0.19

Fragment orbital populations (in e)[c]

HCl HOMO¢1 1.95 (5 s) 1.96 (5 s) 1.98 (5 s) 1.98 (5 s)
HOMO 1.34 (2 p) 1.41 (2 p) 1.87 (2 p) 1.92 (2 p)

X+ LUMO 0.66 (1s) 0.61 (2a1) 0.05 (2s) 0.04 (3s)
LUMO + 1 0.03 (2s)[d] 0.00 (3a1) 0.04 (2ps) 0.02 (3ps)

VDD atomic charges (in a.u.)
Q(X in [X¢ClH]+) + 0.311 + 0.412[e] + 0.702 + 0.777

[a] Computed at ZORA-BP86/TZ2P. See also Methods section. [b] Orbital
energy of CH3

+ in the geometry it adopts in ClCH3. [c] Pertinent orbital
indicated in parentheses. [d] P(2ps) = 0.03 e. [e] Sum of atomic charges on
CH3 moiety.
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change the trend.[8] Hydrogen chloride has zero Pauli repulsion
with the proton (the latter has no electrons at all) and only

little Pauli repulsion (4.7–6.8 kcal mol¢1) with the alkali metal
cations which have electrons only in very compact core AOs.

4. Conclusion

Alkali metal cation affinities (AMCA) of both the anionic and

neutral Lewis bases Cl¢ and HCl are smaller than the corre-
sponding proton (PA) and methyl cation affinities (MCA).
Besides, all cation affinities of the neutral base HCl are weaker
than those of Cl¢ . This follows from our quantum chemical
analyses using relativistic density functional theory.

The reason for the smaller AMCAs is mainly a weaker
HOMO–LUMO interaction between the base and the alkali

metal cations if compared with the proton. The AMCA there-

fore has a relatively large electrostatic component. The weaker
HOMO–LUMO interaction originates from a higher energy (and

thus a larger HOMO–LUMO gap) and more diffuse character
(and thus a smaller bond overlap) of the alkali metal cation 2s

(Li) or 3s (Na) LUMO. Pauli repulsion with the alkali metal
cation core orbitals is relatively unimportant (although not

negligible) for the weaker AMCA. At variance, Pauli repulsion is

the main responsible factor for the weaker MCA as compared
with PA.

The weakening of all cation affinities, if we go from anionic
to the neutral base, is mainly (although not only) caused by

the loss in electrostatic attraction in the latter case. In the com-
plexes of Cl¢ , there is a strong Coulomb attraction that goes

with the charge separation upon heterolytic dissociation ClX!
Cl¢+ X+ . Such charge separation does not occur for heterolytic
dissociation HClX+!HCl + X+ in the case of the neutral base

HCl.
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