
Cataract, characterized by the development of lenticular 
opacities, is a leading cause of blindness worldwide [1]. Cata-
ract-related blindness is a particularly important public health 
issue especially in developing countries due to illiteracy, lack 
of access to services, and the high cost of surgical manage-
ment [1,2]. The prevalence of cataract further increases in 
patients with underlying metabolic abnormalities such as 

diabetes mellitus, Lowe’s syndrome, hypoparathyroidism, 
abnormalities of lactose absorption, and galactosemia [3].

Among several pathophysiological mechanisms known 
to underlie cataractogenesis, increased lenticular oxidative 
stress has a central role [4-6]. Emerging evidence has also 
demonstrated the role of nitrosative stress in cataractogenesis 
[7-9]. Excessive production of nitric oxide (NO) secondary to 
induction of inducible nitric oxide synthase (iNOS) has been 
shown to be cytotoxic to lenticular cells [7-11].

Therefore, substances that possess potent antioxidant 
properties are of particular importance as potential anticata-
ract agents [12,13]. Vitamin E is known for its antioxidant 
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Purpose: Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been 
investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due 
to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this 
study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular 
oxidative and nitrosative stress in galactosemic rats.
Methods: In the first part of this study, we investigated the effects of topically applied microemulsion formulation of 
tocotrienol (TTE) using six concentrations ranging from 0.01% to 0.2%. Eight groups of Sprague-Dawley rats (n = 9) 
received distilled water, vehicle, or one of the six TTE concentrations as pretreatment topically twice daily for 3 weeks 
while on a normal diet. After pretreatment, animals in groups 2–8 received a 25% galactose diet whereas group 1 contin-
ued on the normal diet for 4 weeks. During this 4-week period, topical treatment continued as for pretreatment. Weekly 
slit-lamp examination was conducted to assess cataract progression. At the end of the experimental period, the animals 
were euthanized, and the proteins and oxidative stress parameters were estimated in the lenses. In the second part of the 
study, we compared the anticataract efficacy of the TTE with the liposomal formulation of tocotrienol (TTL) using five 
groups of Sprague-Dawley rats (n = 15) that received distilled water, TTE, TTL, or corresponding vehicle. The mode of 
administration and dosing schedule were the same as in study 1. Weekly ophthalmic examination and lens protein and 
oxidative stress estimates were performed as in study 1. Lens nitrosative stress was also estimated.
Results: During the 4-week treatment period, the groups treated with 0.03% and 0.02% tocotrienol showed slower 
progression of cataract compared to the vehicle-treated group (p<0.05), whereas the group treated with 0.2% tocotrienol 
showed faster progression of cataract compared to the vehicle-treated group (p<0.05). The lenticular protein content, 
malondialdehyde, superoxide dismutase, and catalase levels were normalized in the groups that received 0.03% and 
0.02% tocotrienol. The lenticular reduced glutathione also showed a trend toward normalization in these groups. In 
contrast, the group treated with 0.2% tocotrienol showed increased lenticular oxidative stress. When the microemulsion 
and liposomal formulations were compared, the effects on cataract progression, lens oxidative and nitrosative stress, 
and lens protein content did not show significant differences.
Conclusions: Topically applied tocotrienol within the concentration range of less than 0.05% and more than 0.01% tends 
to delay the onset and progression of cataract in galactose-fed rats by reducing lenticular oxidative and nitrosative stress. 
However, topical tocotrienol at a concentration of 0.2% and higher aggravates cataractogenesis in galactose-fed rats by 
increasing lens oxidative stress. The anticataract efficacy of 0.03% microemulsion of tocotrienol did not differ from its 
liposomal formulations at the same concentration.
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effects, and some of its analogs have been investigated for 
anticataract effects. Tocopherols were the first vitamin 
E analog to be discovered in 1922 [14] and were shown to 
possess anticataract properties in animal models [15-17]. 
However, clinical trials showed variable results [18-20]. 
Tocotrienols, the other vitamin E analogs, were discovered 
40 years later by Pennock and Whittle [21]. Tocotrienols 
differ from tocopherols in structure as well as properties. 
Tocotrienols exist as four isomers; α-, β-, γ-, and δ. Although 
tocotrienols and tocopherols have a chroman head and 
an isoprenoid tail, only tocotrienols possess three double 
trans bonds in the isoprenoid side chain and thus have an 
unsaturated tail. This unique molecular structure makes 
tocotrienols more f lexible and allows easy permeation 
through the cell membranes [22-24]. Tocotrienols are found 
in the seeds of endosperm of monocotyledon and dicotyledon 
plants, cereals, and edible oils such as rice bran and palm 
oil [25]. Annatto seeds predominantly contain δ-tocotrienol, 
minimal γ-tocotrienol, and no tocopherol [26,27]. This may 
be advantageous since α-tocopherol was reported to decrease 
the cellular uptake of tocotrienol [28,29]. Tocotrienols have 
distinct molecular targets and more potent antioxidant effects 
than tocopherols [30,31]. Tocotrienols also reduce nitrosative 
stress by reducing iNOS activity, which leads to decreased 
nitric oxide production [32,33].

In this study, for the first time we investigated the effects 
of topically applied tocotrienol on the onset and progression 
of cataract and lenticular oxidative and nitrosative stress. We 
used the galactose-induced model of experimental cataract in 
rats. Galactosemic animal models are widely used to study 
sugar-induced complications. Although this model is not an 
exact representation of human diabetic cataract and there are 
differences between the two, some of the common features 
include activation of aldose reductase, polyol accumulation, 
and oxidative stress [34-38]. Since galactose feeding can 
rapidly produce cataract and animal survival is better due to 
less severe systemic metabolic changes, the animal model is 
often favored over the diabetic model, particularly for initial 
screening of new investigational agents. In this study, first we 
studied the anticataract effect of Annatto tocotrienol using a 
wide concentration range in a microemulsion formulation. 
Subsequently, using the concentration that showed the best 
anticataract effect, we formulated a liposomal tocotrienol 
preparation and compared its anticataract efficacy with 
microemulsion.

METHODS

Animals: Three-week-old Sprague-Dawley rats were obtained 
from the Laboratory Animal Care Unit of Universiti Teknologi 
MARA. Animals were housed under standard laboratory 
conditions (12 h:12 h light-dark cycle) and were given food 
and water ad libitum. All animals were subjected to systemic 
and ophthalmic examination, and those found normal were 
included in the study. All experiments and animal handling 
were performed in compliance with the ARVO Statement for 
the Use of Animals in Ophthalmic and Vision Research as 
well as the local institutional ethical guidelines.

Microemulsion formulation of tocotrienol: Microemulsion 
of tocotrienol was formulated as described by Valdivia et 
al. [39]. Kolliphor P188 (Sigma Aldrich, St. Louis, MO) was 
added to double-distilled water to create an aqueous phase. 
Annatto tocotrienol, which contains 90% δ-tocotrienol and 
10% γ-tocotrienol with no tocopherol, was a gift from Amer-
ican River Nutrition (Hadley, MA). Tocotrienol was added 
to Miglyol 812 (AXO Industry, Wavre, Belgium) to create 
an oily phase. The oily phase was then added to the aqueous 
phase under moderate agitation. Subsequently, the particle 
size was reduced using an ultrasound sonicator (Fisher 
Scientific, FB120, Hampton, NH) for 40 min at the setting 
of 80% amplitude with cycles of 50 s on and 20 s off. After 
sonication, sorbitol and disodium edetate (EDTA; Fisher 
Chemical, Hampton, NH) were added as an isotonizing agent 
and stabilizer, respectively. The microemulsion was prepared 
once every 8 weeks.

Characterization of microemulsion formulation: Microemul-
sion formulation was characterized for particle size, zeta 
potential, and viscosity using an acoustic and electroacoustic 
spectrometer (Dispersion Technology – Acousto Phor Zeta 
Size DT-1201, Bedford Hill, NY). The size, zeta potential, 
and viscosity were measured again after 60 days of prepara-
tion to assess stability.

Liposomal formulation of tocotrienol: Cholesterol (5 µmol), 
phosphatidylcholine (20 µmol; Sigma Aldrich), and toco-
trienol were dissolved in a 5:1 solution of chloroform and 
methanol. The lipid solution was subjected to evaporation for 
2 h to obtain a thin lipid film. The lipid film was rehydrated 
with 2 ml of PBS (1X; 0.01 M Na2HPO4, 0.002 M KH2PO4, 
0.0027 M KCl, 0.137 M NaCl, pH 7.4), and after 30 min of 
shaking, another 2 ml of PBS was added. The multilamellar 
vesicle solution was obtained, which was then sonicated for 
10 min. The solution then underwent further reduction in 
particle size using a hand-held extruder ten times through 
each of the 400-nm, 200-nm, and 100-nm polycarbonate 
membranes. Fresh liposomes were prepared every other day.
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Characterization of liposome formulation: Liposome formu-
lation was characterized for particle size and zeta potential 
using a dynamic light scattering-based zetasizer (Malvern 
Zetasizer, Nano ZS, Worcestershire, UK). Entrapment effi-
ciency was determined with a modified minicolumn centrifu-
gation method using Sephadex G-25 minicolumns [40]. 
Sephadex G-25 gel in column was allowed to swell in PBS 
for 15 min, and then the column was centrifuged for 5 min 
at 1,000 ×g using a microcentrifuge to remove excess PBS. 
The dry column was loaded with empty liposomes to saturate 
the column and minimize adsorption of the actual sample. 
The loaded column was centrifuged for 15 min at 1,520 ×g 
to expel the liposomes. Subsequently, the tocotrienol-loaded 
liposomes were introduced into the column and centrifuged 
at 1,520 ×g for 15 min to separate untrapped tocotrienol 
from the liposome-entrapped drug. One hundred microliters 
of 20% Triton X (Sigma Aldrich) was added to the eluted 
sample to destroy the liposomes. The tocotrienol content 
was measured using a microplate reader at absorbance of 
297 nm. The entrapment efficiency was calculated using the 
following formula: Entrapment Efficiency (%) = (Entrapped 
drug/Total drug) × 100. Liposome stability was determined 
by measuring and comparing the entrapment efficiency at 
different time points: 0 min, 30 min, 60 min, 3 h, 6 h, 24 h, 
and 48 h.

Study design:

Study 1: Dose–response study using microemulsion 
formulation—The animals were divided into eight groups of 
nine animals each. All animals were pretreated for 3 weeks, 
topically, bilaterally, and twice daily in a volume of 10 µl 
using a micropipette. Group 1 received distilled water (normal 
group) while group 2 received vehicle (vehicle group). Groups 
3 to 8 received tocotrienol microemulsion (TTE) 0.2%, 0.1%, 
0.05%, 0.03%, 0.02%, and 0.01%, respectively. During this 
3-week pretreatment period, all animals were fed normal rat 
chow.

After the 3-week pretreatment period was completed, the 
treatment was continued over the next 4 weeks as outlined 
for pretreatment. However, during the treatment period, the 
normal group received a normal diet while the other groups 
received a 25% galactose diet.

Anterior segment imaging was performed at the begin-
ning of the experiment, at the end of the pretreatment, and, 
subsequently, weekly during the treatment period. After 4 
weeks of treatment, the animals were euthanized with over-
dose of ketamine (250 mg/kg) and xylazine (50 mg/kg) intra-
peritoneally. The lenses were carefully dissected out with the 

posterior approach to estimate the lens protein content and 
oxidative stress parameters.

Study 2: Anticataract efficacy of microemulsion 
versus liposome—The animals were divided into five 
groups of 15 animals each. As in the dose–response study, 
the animals were given a pretreatment for 3 weeks, topi-
cally, bilaterally, and twice daily in a volume of 10 µl using a 
micropipette. Group 1 received distilled water (normal group) 
while groups 2 and 3 received vehicle used for microemulsion 
(VE) and liposome (VL) formulation, respectively. Group 4 
received TTE at the most effective concentration based on 
the dose–response study, and group 5 received tocotrienol 
liposomal formulation (TTL) in a similar concentration as 
group 4. After the 3-week pretreatment was completed, the 
treatment was continued over the next 4 weeks as in the dose–
response study. During the treatment period, the normal 
group received a normal diet while all other groups received 
a 25% galactose diet.

Anterior segment imaging was performed as in study 1. 
At the end of experiment, the lens protein content and oxida-
tive and nitrosative stress parameters were estimated.

Anterior segment imaging: Anterior segment imaging was 
performed using a Hawkeye Portable Slit Lamp (Optotek 
Medical, Ljubljana, Slovenia) equipped with a digital camera 
(Pentax Optio, S60, Denver, CO). Topically applied 1% tropi-
camide (Alcon Laboratories, Fort Worth, TX) was used as 
the mydriatic. The lenticular changes observed were catego-
rized into eight stages as described previously [41]: Stage 0, 
normal lenses; Stage 1a, appearance of vacuoles as an equato-
rial ring; Stage 1b, vacuolization covering one-third of the 
anterior cortex; Stage 1c, vacuolization covering more than 
two-thirds of the anterior cortex; Stage 2a, early coalescence 
and liquefaction of vacuoles; Stage 2b, late coalescence and 
liquefaction of vacuoles and appearance of haziness; Stage 
3, uniform opalescence; Stage 4, nuclear opacity (Figure 
1). This semiquantitative method of assessing the severity 
of cataractous changes had insignificant intraobserver and 
interobserver variability [41]. Additionally, each cataract 
stage was given a score of 0 to 8, to calculate the opacity 
index as described by Vats et al. [42].

Estimate of lens protein levels and the parameters indicating 
oxidative stress: Each lens was homogenized in 0.5 ml of 
50 mM cold phosphate buffer, pH 7.4, containing 1 mM 
EDTA. The homogenate was centrifuged at 890 ×g for 15 
min. Supernatant was separated to quantify the proteins and 
antioxidant parameters. All estimates were done in duplicate.

Lens proteins: The lens protein level was determined using 
the Bradford method, which detects change in the color of 
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Coomassie dye from brown to blue as a result of binding 
to proteins in acidic medium. The total protein level was 
determined using 100 µl of the homogenized sample (before 
centrifugation) while soluble protein was quantified using 
100 µl of the supernatant.

Lens reduced glutathione estimation: Glutathione (GSH) esti-
mation was based on the enzymatic recycling method [43] and 
was done using a commercially available assay kit (Cayman 
Chemical, Ann Arbor, MI). Briefly, 100 µl of supernatant 
from lens homogenate was deproteinated by adding 100 µl 
metaphosphoric acid (MPA) reagent (5 g of MPA in 50 ml 
of high-performance liquid chromatography–grade water). 
Triethanolamine (TEAM) reagent (50 µl/ml, 4M) was then 
added to the solution and vortexed. Standards or samples (50 
µl) were pipetted into the designated wells. This was followed 
by adding 150 µl of freshly prepared assay cocktail consisting 
of 11.25 ml of MES Buffer (0.4 M 2-(N-morpholino) ethane-
sulphonic acid, 0.1 M phosphate, and 2 mM EDTA), 0.45 ml 
of reconstituted cofactor mixture (lyophilized powder of 
NADP+ and glucose-6-phosphate reconstituted with 0.5 ml 
water), 2.1 ml of reconstituted enzyme mixture (glutathione 
reductase and glucose-6-phosphate dehydrogenase reconsti-
tuted in 2 ml of MES buffer), 2.3 ml of water, and 0.45 ml of 
Ellman’s Reagent (5,50-dithio-bis-(2-nitrobenzoic acid)). The 
absorbance was read at 405 nm after 25 min of incubation.

Lens superoxide dismutase activity: Superoxide dismutase 
(SOD) activity was quantified using a commercially available 
assay kit (Cayman Chemical), which utilizes tetrazolium salt 
to detect superoxide radicals generated by xanthine oxidase 
and hypoxanthine. Two hundred microliters of diluted tetra-
zolium salt solution (50 µl tetrazolium salt solution added to 
19.95 ml diluted assay buffer containing 50 mM Tris-HCl, pH 
8.0), 1 mM diethylenetriaminepentaacetic acid, and 0.1 mM 

hypoxanthine were added to each well followed by 10 µl of 
the standard or sample to the designated wells. Reaction was 
initiated by adding 20 µl of reconstituted xanthine oxidase 
(50 µl xanthine oxidase added to 19.95 ml of 50 mM Tris-
HCl, pH 8.0). The plate was incubated for 20 min, and then 
the absorbance was read at 440–460 nm using a microplate 
reader.

Lens catalase activity: Lens catalase (CAT) activity was 
quantified using a commercially available assay kit (Cayman 
Chemical) based on the CAT reaction with methanol in the 
presence of the optimal H2O2 concentration. The production 
of formaldehyde was measured by adding 4-amino-3-hydra-
zino-5-mercapto-1, 2, 4-triazole, a chromagen (Purpald). 
Purpald forms a cyclic derivative with aldehyde, which upon 
oxidation turns from colorless to purple. One hundred micro-
liters of diluted assay buffer (100 mM potassium phosphate, 
pH 7.0) was added followed by 30 µl methanol and 20 µl 
standard or sample to the designated wells. The reaction was 
initiated by adding 20 µl diluted H2O2 (40 µl of 8.82 M H2O2 
with 9.96 ml water). The plate was incubated on a shaker for 
20 min. Reaction was terminated by adding 30 µl diluted 
potassium hydroxide (10 M), followed by 30 µl catalase 
Purpald. After 10 min of incubation, 10 µl catalase potassium 
periodate in 0.5 M potassium hydroxide was added. After 5 
min of incubation, absorbance was read at 540 nm using a 
microplate reader.

Lens malondialdehyde level: The extent of lens lipid peroxi-
dation was determined using a commercially available assay 
kit (Cayman Chemicals), which indirectly measures malo-
ndialdehyde (MDA), a byproduct of lipid peroxidation. MDA 
reacts with thiobarbituric acid (TBA) at high temperature in 
an acidic medium to produce a colored complex. For the assay, 
the lenses were homogenized with radioimmunoprecipitation 

Figure 1. Retroillumination anterior segment photographs showing progression of cataract from stage 0 to stage 4. A: Stage 0. B: Stage 1A. 
C: Stage 1B. D: Stage 1C. E: Stage 2A. F: Stage 2B. G: Stage 3. H: Stage 4.
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assay (RIPA) lysis buffer containing a protease inhibitor in 
a ratio of 1 mg lens weight:10 µl RIPA buffer. The samples 
were then centrifuged at 1,600 ×g at 4 °C for 10 min, and 
supernatant was used for analysis. One hundred microliters 
of samples or standards were added to 100 µl sodium dodecyl 
sulfate (SDS) solution followed by 4  ml color reagents 
(530 mg TBA with 50 ml diluted TBA acetic acid and 50 ml 
diluted TBA sodium hydroxide). Solutions were boiled for 
1 h and then incubated in an ice bath for 10 min to stop the 
reaction. This was followed by centrifugation of solutions at 
1,600 ×g and 4 °C for 10 min. Absorbance was then read at 
540 nm using a microplate reader.

Lens inducible nitric oxide synthase activity: Inducible nitric 
oxide synthase (iNOS) activity was determined using a 
commercially available iNOS  enzyme-linked immunosor-
bent assay (ELISA) kit (Uscn Life Science, Wuhan, China), 
which has a microtiter plate coated with monoclonal antibody 
specific to iNOS. One hundred microliters of standards, 
blank, or samples were added to the designated wells and 
incubated for 2 h at 37 °C. After incubation, the solution 
in the well plate was removed. One hundred microliters of 
detection reagent A (containing detection antibody, Tris 
buffer saline, 1% BSA, and 0.01% sodium azide) was added 
to each well and incubated for 1 h at 37 °C. The solution in 
the well plate was aspirated, and each well was washed with 
350 µl Tris buffer saline three times. One hundred microliters 
of detection reagent B (containing horseradish peroxidase-
linked avidin, Tris buffer saline, 1% BSA, and 0.01% sodium 
azide) was then added and incubated for 30 min at 37 °C. 
Then, the solution in the well plate was aspirated and washed 
five times. Ninety microliters of 3,3′,5,5′-tetramethylbenzi-
dine (0.05%) was added and incubated for 15 min at 37 °C. 
Fifty microliters of 1 M sulphuric acid were then added, and 
absorbance was read at 450 nm using a microplate reader.

Lens 3-nitrotyrosine content: Measuring 3-nitrotyrosine 
(3-NT) indirectly provides an estimate of peroxynitrite in the 
samples. 3-NT activity was determined using a commercially 
available 3-nitrotyrosine ELISA kit (Abcam, Cambridge, 
England), which has the microplates coated with a nitroty-
rosine containing antigen. Fifty microliters of standards and 
samples was added to the designated wells followed by 50 
µl horseradish peroxidase-conjugated anti 3-nitrotyrosine 
antibody. Plate was incubated on a shaker for 2 h at room 
temperature. The solution in each well was aspirated and 
washed with 300 µl Tris buffer saline four times. One hundred 
microliters of H2O2 was added, and the plate was read in the 
kinetic mode for 15 min at 1 min intervals at absorbance of 
600 nm using a microplate reader.

Statistical analysis: All values are expressed as mean ± stan-
dard deviation (SD). Statistical comparison was done using 
two-way ANOVA with the Bonferroni correction. p<0.05 was 
considered significant.

RESULTS

Characterization of microemulsion formulation: The mean 
particle size for microemulsion formulation was 147.93±22.90 
nm. The zeta potential recorded was 255.88±23.05 mV, and 
the viscosity was 3.96±0.10 cP. There was no significance 
difference in the parameters observed at day 0 and day 60 
(Table 1).

Characterization of liposomal formulation: The mean particle 
size for liposomal formulation was 315.57±68.58 nm while 
the zeta potential recorded was 2.43±0.5 mV. The entrapment 
efficiency of tocotrienol in the liposomal formulation was 
58.56±7.5% at 0 h and 44.39±9.6% at 48 h. There was no 
significant difference in the entrapment efficiency at two time 
points (Table 2).

Table 1. Particle size, zeta potential and viscosity of micro-
emulsion formulation at day 0 and day 60.

Parameters Day 0 Day 60
Particle size 147.93±22.90 nm 152.47±20.62 nm

Zeta potential 255.88±23.05 mV 244.81±41.43 mV
Viscosity 3.96±0.10 cP 4.08±0.04 cP

All values are mean ± SD (n=3).

Table 2. Entrapment efficiency of tocotrienol in liposomal formulation.

Hours 0 h 0.5 h 1 h 3 h 6 h 24 h 48 h
Entrapment 

efficiency (%) 58.57±7.5 52.78±3.3 46.46±7.1 45.98±13.4 42.70±3.0 43.27±3.4 44.39±9.6

All values are mean ± SD (n=3).
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Study 1:

Effect of tocotrienol on the onset and progression 
of cataract—Anterior segment imaging did not show any 
changes in the lens after 3 weeks of pretreatment with TTE 
in any of the groups. During the treatment period, after 
starting the galactose diet, all galactose-fed groups showed 
cataractous changes in the lens that progressed over 4 weeks. 
However, we observed slower progression of cataract in 
groups that received 0.03% and 0.02% TTE compared to 
vehicle group. The 0.03% TTE concentration had a signifi-
cantly lower opacity index compared to 0.02% TTE at weeks 
2, 3, and 4. Conversely, the group that received the 0.2% 
TTE concentration showed significantly greater cataractous 
changes than the vehicle-treated group. The groups that 
received 0.1%, 0.05%, and 0.01% did not show any differ-
ences compared to vehicle-treated group. This trend in the 
progression of cataract was observed throughout the 4-week 
experimental period (Figure 2).

Effect of tocotrienol on lens protein level: The ratio of lens 
soluble to insoluble protein was 3.97-fold lower in the vehicle-
treated groups compared to the normal group (p<0.001). The 
groups treated with 0.03% and 0.02% TTE showed a trend 
toward normalization of the lens soluble to insoluble protein 
ratio. The soluble to insoluble protein ratio in the 0.03% TTE 
group had a significantly higher value compared to the 0.02% 

TTE group (p<0.01). However, all other treatment groups 
showed significantly lower soluble to insoluble protein ratios 
with a maximum decrease of 1.87-fold in the group treated 
with 0.2% TTE compared to the vehicle-treated group (Table 
3).

Effect of tocotrienol on lens redox status: The lens GSH 
content remained significantly low in all galactose-fed groups 
including those that received 0.03% and 0.02% TTE compared 
to group 1. However, these two TTE-treated groups showed 
2.3-fold higher GSH content compared to the galactose-fed 
vehicle-treated group (p<0.05).

Quantification of the antioxidant enzyme activity in 
the lenses showed that CAT activity was restored to normal 
in groups treated with 0.03% and 0.02% TTE, whereas the 
vehicle-treated group and the groups treated with 0.2% and 
0.1% TTE showed a decrease in CAT activity by 2.30-, 1.91-, 
and 1.5-fold, respectively, compared to the normal group. 
SOD activity was restored to normal in the groups treated 
with 0.03% and 0.02% TTE. SOD activity was reduced by 
1.61-, 2.76-, 1.67-, 1.32-, and 1.25-fold in the vehicle-treated 
group and the groups treated with 0.2%, 0.1%, 0.05%, and 
0.01%, respectively, compared to the normal group (p<0.05). 
The lens MDA levels were normalized in the groups treated 
with 0.03% and 0.02% TTE whereas the other galactose-fed 

Figure 2. Effect of microemulsion formulation of tocotrienol (TTE) in various concentrations on the opacity index of galactose-fed rats 
during 4 weeks of treatment. All values are mean ± standard deviation (SD; n = 18). ap<0.001 versus normal; bp<0.01 versus vehicle; cp<0.05 
versus 0.2% tocotrienol (TTE); dp<0.05 versus 0.1% TTE; ep<0.05 versus 0.05% TTE, fp<0.05 versus 0.02% TTE, gp<0.05 versus 0.01% TTE.
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groups showed significantly higher lens MDA content 
compared to the normal group (Table 4).

Study 2:

Anticataract efficacy of microemulsion versus lipo-
some—In study 1, we observed higher anticataract efficacy 
of 0.03% TTE compared to 0.02% TTE in weeks 2, 3, and 4. 
Additionally, the soluble to insoluble protein ratio in 0.03% 
TTE showed a significantly higher value compared to the 
0.02% TTE concentration. Thus, we selected 0.03% TTE for 
study 2.

As in the dose–response study, anterior segment 
imaging did not show any changes in the lens after 3 weeks 

of pretreatment with tocotrienol in any of the groups. All 
galactose-fed groups showed significant cataractous changes 
in the lens that progressed over 4 weeks during the treatment 
period. As observed before, slower progression of cataract 
was seen in groups that received 0.03% TTE and 0.03% 
TTL compared to the corresponding vehicle-treated groups. 
However, there was no significance difference in the opacity 
index between the TTE- and TTL-treated groups at all time 
points, during the 4-week treatment period (Figure 3, Table 
5).

Effect of different formulation of tocotrienol on lens protein 
level: In this study, we also observed normalization of the 
soluble to insoluble protein ratio in the tocotrienol-treated 
groups (p<0.05). However, there was no significant difference 

Table 3. Effect of topical tocotrienol microemulsion (TTE) in different concentrations on 
lens proteins (Study 1: dose–response study using microemulsion formulation).

Groups Total protein (mg/g lens 
weight)

Soluble protein (mg/g lens 
weight)

Insoluble protein (mg/g 
lens weight)

Soluble: Insoluble protein 
(Ratio)

Normal 523.43±37.6 491.06±25.8 32.37±17.3 17.23±7.7
Vehicle 428.61±45.7 a 340.40±49.1 a 88.21±30.7 a,c 4.33±1.7 a, c

0.2% TTE 426.61±28.3 a 295.95±36.5 a 130.66±16.3 a 2.32±0.5 a, b

0.1% TTE 446.63±57.3 a 342.64±65.1 a 103.99±46.8 a 3.92±2.0 a

0.05% 
TTE 432.61±73.5 a 365.16±61.2 a, c 67.45±17.5 a, c 5.60±1.2 a, c

0.03% 
TTE 556.88±116.4 b, c, e 524.61±130.8 b, c, d, e, g 32.28±15.3 b, c, d, e, g 18.77±6.6 b, c, d, e, f, g

0.02% 
TTE 480.50±21.9 a, b, c, g 425.20±42.2 a, b, c, g 55.31±27.5 b, c, d, 9.22±3.8 a, b, c, d, g

0.01% TTE 433.93±34.5 a 361.97±41.5 a, c 71.95±14.5 a, c 5.30±1.7 a, c

All values are mean ± SD (n=6). ap<0.05 versus Normal; bp<0.05 versus Vehicle; cp<0.05 versus TTE 0.2%; dp<0.05 versus TTE 0.1%; 
ep<0.05 versus TTE 0.05%, fp<0.05 versus TTE 0.02%, gp<0.05 versus TTE 0.01% .

Table 4. Effect of topical tocotrienol microemulsion (TTE) in different concentrations on lens 
MDA, GSH, CAT and SOD. (Study 1: dose–response study using microemulsion formulation).

Groups Lens MDA (µmol/g lens 
weight)

Lens GSH (µmol/g lens 
weight)

Lens CAT (µmol/g lens 
protein)

Lens SOD (Units/mg 
lens protein)

Normal 60.26±7.1 5.00±1.4 86.63±26.9 9.41±1.8
Vehicle 81.24±12.8 a 0.48±0.1a 36.73±14.4a 5.86±0.5a, c

0.2% TTE 93.48±8.4 a 0.53±0.1a 45.44±22.1a 3.40±0.8a

0.1% TTE 82.65±8.3 a, c 0.65±0.3a 55.29±5.2a 5.63±1.6a, c

0.05% TTE 73.40±10.9 a, c 0.71±0.3a, b 71.89±26.0b,c,d 7.14±3.2c

0.03% TTE 53.04±15.2 b, c, d, e, f 1.02±0.5a, b, c 85.12±13.9b, c, d, f 10.13±3.0b, c, d

0.02% TTE 59.77±17.4b, c, d, f 1.00±0.5a, b, c 85.18±22.7b, c, d, f 10.0±1.5b, c, d

0.01% TTE 79.68±15.2a 0.85±0.3a, b. c 58.62±6.7 a, b, c 7.5±2.9b, c, d

All values are mean ± SD (n=6). ap<0.05 versus Normal; bp<0.05 versus Vehicle; cp<0.05 versus TTE 0.2%; dp<0.05 versus TTE 0.1%; 
ep<0.05 versus TTE 0.05%, fp<0.05 versus TTE 0.01%. MDA- malondialdehyde, GSH- reduced glutathione, CAT- catalase, SOD – su-
peroxide dismutase.
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Figure 3. Effect of tocotrienol (0.03%) in microemulsion (TTE) and liposomal (TTL) formulation of on the opacity index of galactose fed rats 
during 4 weeks period of treatment. VE - vehicle for microemulsion, VL - vehicle for liposomes. All values are mean ± standard deviation 
(SD; n = 6). ap<0.05 versus normal; bp<0.05 versus VE; cp<0.05 versus VL.

Table 5. Effect of microemulsion and liposomal formulation of tocotrienol (0.03%) on the progression of cata-
ract during 4 weeks period of treatment (Study 2: anticataract efficacy of microemulsion versus liposome).

Groups
Week 1 Week 2 Week 3 Week 4

Stage of 
cataract % of lenses Stage of 

cataract
% of 
lenses

Stage of 
cataract

% of 
lenses

Stage of 
cataract % of lenses

Normal 0 100 0 100 0 100 0 100

VE
1A 

1B

40 

60

2A 

2B 

3

66.67 

26.67 

6.67

2B 

3
10 90

3 

4

43.33 

56.67

VL
1A 

1B

46.67 

53.33

1B 

2A 

2B 

3

3.33 

60 

33.33 

3.33

2A 

2B 

3 

4

6.67 

40 

43.33 

10

3 

4

40 

60

0.03% 

TTE

0 

1A 

1B

6.67 

83.33 

10

1B 

1C 

2A

20 

3.33 

76.67

2A 

2B 

3

33.33 

40 

26.67

2B 

3 4

16.67 

63.33 

20

0.03% 

TTL

0 

1A 

1B

33.33 

30 

36.67

1A 

1B 

1C 

2A 

2B

13.33 

33.33 

10 

30 

13.33

1A 

1B 

2A 

2B 

3

6.67 

6.67 

26.67 

50 

10

1A 

2A 

2B 

3 4

6.67 

13.33 

36.67 

36.67 

6.67

VE – vehicle for microemulsion; VL – vehicle for liposomes; TTE – tocotrienol in microemulsion; TTL – tocotrienol in liposomal for-
mulation
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between the groups treated with microemulsion and liposome 
(Table 6).

Effect of different formulation of tocotrienol on lens redox 
status: Both formulations at the 0.03% concentration showed 
a tendency to restore the lenticular GSH content toward 
normal. The GSH content was 2.1- (p<0.05) and 2.4- (p<0.01) 
fold higher in the TTE- and TTL-treated groups, respectively, 

compared to the corresponding vehicle-treated groups. A 
similar observation was made for the lens CAT and SOD 
activity. CAT activity increased by 2.32- and 2.33-fold in 
the TTE- and TTL-treated groups, respectively, compared 
to the corresponding vehicle-treated groups (p<0.01). SOD 
activity increased by 2.0- and 2.3-fold in TTE- and TTL-
treated groups, respectively, compared to the corresponding 
vehicle-treated groups (p<0.01). The lenticular MDA content 

Table 6. Effect of microemulsion and liposomal formulation of tocotrienol (0.03%) on the lenticular protein 
during 4 weeks period of treatment (Study 2: anticataract efficacy of microemulsion versus liposome).

Groups Total protein (mg/g lens 
weight)

Soluble protein (mg/g lens 
weight)

Insoluble protein (mg/g 
lens weight)

Soluble: Insoluble 
protein (Ratio)

Normal 523.43±37.6 491.06±25.8 32.37±17.3 17.23±7.7
VE 428.61±45.7 a 340.40±49.1 a 88.21±30.7 a 4.33±1.7 a

VL 422.08±76.4 a 344.25±78.8 a 77.83±19.0 a 4.45±0.3 a

0.03% TTE 556.88±116.4 b 524.61±130.8 b 32.28±15.3 b 18.77±6.6 b

0.03% TTL 529.96±30.8 c 499.60±42.3 c 30.36±13.5 c 18.58±6.0 c

All values are mean ± SD (n=6). ap<0.05 versus normal; bp<0.05 versus VE; cp<0.05 versus VL. VE – vehicle for microemulsion; VL – 
vehicle for liposomes; TTE – tocotrienol in microemulsion; TTL – tocotrienol in liposomal formulation

Table 7. Effect of microemulsion and liposomal formulation of tocotrienol (0.03%) on the lenticular MDA, GSH, 
CAT and SOD during 4 weeks period of treatment (Study 2: anticataract efficacy of microemulsion versus liposome).

Groups Lens MDA (µmol/g lens 
weight)

Lens GSH (µmol/g lens 
weight)

Lens CAT (µmol/g lens 
protein)

Lens SOD (Units/mg 
lens protein)

Normal 60.26±7.1 5.00±1.4 86.63±29.9 9.41±1.8
VE 81.24±12.8 a 0.48±0.1 a 36.73±14.4 a 5.16±1.3 a

VL 95.28±19.3 a 0.48±0.1 a 35.29±6.9 a 5.23±1.2 a

0.03% TTE 53.04±15.2 b 1.02±0.5 a, b 85.12±13.9 b 10.13±3.0 b

0.03% TTL 61.94±7.0 c 1.16±0.2 a, c 82.33±26.5 c 11.98±5.8 c

All values are mean ± SD (n=6). ap<0.05 versus normal; bp<0.05 versus VE; cp<0.05 versus VL. MDA- malondialdehyde; GSH- reduced 
glutathione; CAT- catalase; SOD – superoxide dismutase; VE – vehicle for microemulsion; VL – vehicle for liposomes; TTE – tocotrienol 
in microemulsion; TTL – tocotrienol in liposomal formulation.

Figure 4. Effect of microemulsion and liposomal formulation of tocotrienol (0.03%) on lens iNOS and 3-NT during 4 weeks period of treat-
ment. iNOS- inducible nitric oxide synthase; NT- nitrotyrosine; VE – vehicle for microemulsion; VL – vehicle for liposomes. All values are 
mean ± SD (n=6). ap < 0.05 versus normal; bp < 0.05 versus VE; cp < 0.05 versus VL.
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was 1.53- and 1.54-fold lower in the TTE- and TTL-treated 
groups, respectively, compared to the corresponding vehicle-
treated groups (p<0.05; Table 7).

Effect of different formulation of tocotrienol on lens nitro-
sative stress: The TTE- and TTL-treated groups showed 
a tendency toward normalization of lens iNOS activity. 
Compared to the respective vehicle-treated groups, we 
observed 1.6- and 1.7-fold lower (p<0.01) iNOS activity in the 
TTE- and TTL-treated groups, respectively. Similar obser-
vations were made for 3-NT levels with 1.34- and 1.33-fold 
lower values (p<0.05) in the TTE- and TTL-treated groups, 
respectively, compared to the corresponding vehicle-treated 
groups (Figure 4).

DISCUSSION

In the present study, for the first time we demonstrated the 
anticataract effects of topically applied Annatto tocotrienol. 
Tocotrienol is a lipophilic substance, which makes it insoluble 
in tear film. This prevents its close contact with the cornea, 
thus causing poor ocular bioavailability. Therefore, in the 
first part of this study we used microemulsion and observed 
that TTE delayed the onset and progression of cataract in 
galactose-fed rats at 0.02% and 0.03% concentrations. The 
anticataract effect of the 0.03% concentration was higher than 
that of the 0.02% TTE concentration in weeks 2, 3 and 4. 
The 0.2% TTE concentration aggravated cataractogenesis, 
whereas the effects of the 0.1%, 0.05%, and 0.01% TTE 
concentrations were comparable to that of vehicle. Since 
the unique structure of liposomes allows them to entrap a 
significant amount of the lipophilic drug in particular, we also 
prepared the liposomal formulation of tocotrienol for topical 
application. In the second part of the study, we compared the 
efficacy of the microemulsion and liposomal formulations 
of tocotrienol in a 0.03% concentration. Between these two 
groups, we did not observe any significant difference in the 
rate of progression of cataract.

In the 0.03% and 0.02% TTE-treated groups, delayed 
cataractogenesis was associated with decreased lenticular 
oxidative stress. Previous studies have shown that tocotri-
enols act as potent antioxidants by donating their phenolic 
hydrogen to free radicals and neutralize them, thus sparing 
the endogenous antioxidants [44,45]. Experimental galacto-
semia as well as diabetes in rats have been shown to increase 
oxidative stress [46-48]. Similar observations were made in 
the Drosophila melanogaster model of classic galactosemia 
[49]. Increased oxidative stress resulting from excessive 
production of free radicals or reduced lenticular antioxidant 
defense has been shown to underlie the pathogenesis of 
cataract [50-52]. The lens antioxidant enzymes include SOD, 

CAT, and glutathione peroxidase. SOD eliminates super-
oxide ions by converting them to H2O2, while catalase and 
glutathione peroxidase detoxify H2O2 [53]. The lens contains 
an unusually high concentration of GSH, which protects 
against denaturation of thio-group-containing proteins in 
the presence of oxidative stress [54,55]. Increased oxida-
tive stress causes lipid peroxidation that results in increased 
MDA levels. Patients with cataract have been shown to have 
increased plasma levels of lipid peroxidation products and 
decreased levels of glutathione [56,57].

Significant quantities of peroxynitrite, a metabolite of 
nitric oxide and a prooxidant, have been detected in cata-
ractous lens. Örnek et al. showed that the nitric oxide level 
in the cataractous lens is higher than in the normal lens [10]. 
Ito et al. showed a high level of iNOS in selenite-induced 
cataracts [7]. Furthermore, aminoguanidine, a NOS inhibitor, 
was shown to have an inhibitory effect on the development 
of cataract [8]. These studies suggest that nitrosative stress, 
resulting from iNOS activation and overproduction of nitric 
oxide, has a role to play in cataractogenesis. In the current 
study, we demonstrated that tocotrienol at 0.03% concentra-
tion, in microemulsion and liposomal formulations, decreases 
lens iNOS activity and NT content compared to the corre-
sponding vehicle-treated groups. The effect of tocotrienol on 
iNOS and NT observed in our study is in line with other 
studies that showed the ability of tocotrienol to reduce the 
activity of iNOS in human monocytic cells [58] and the 
murine macrophage cell line [59].

Increased oxidative stress alters membrane perme-
ability, thus affecting the cellular ionic balance, particularly 
intracellular calcium [60]. Increased intracellular calcium 
results in activation of calpain, which causes degradation of 
soluble lens proteins, especially crystalline, into insoluble 
proteins. An increased ratio of insoluble to soluble proteins 
results in the loss of lens transparency and the development 
of cataract. Our study has shown that treatment with 0.03% 
and 0.02% TTE tends to restore the lens soluble to insoluble 
protein ratio; however, 0.03% TTE had a significantly greater 
effect compared to the 0.02%. Restoration of lens proteins 
could be attributed to preservation of lens redox status and 
thus reduced cataractogenesis. Significant differences in the 
ratio of the lens proteins between the 0.03% and 0.02% TTE-
treated groups despite comparable effects on lens oxidative 
stress is perhaps due to additional mechanisms underlying 
the anticataract effects of TTE. Similar changes in the lens 
protein ratio were also observed when tocotrienol was admin-
istered in the liposomal formulation without any significant 
difference from the microemulsion-treated group.
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Importantly, the current study showed that increasing 
the concentration of TTE beyond 0.03% caused, at first, the 
loss of anticataract effects and further increases enhanced 
cataractogenesis. TTE at the 0.1% and 0.2% concentrations 
had prooxidant effects. Previous studies have also shown 
that tocotrienols exert a prooxidant effect at high doses in 
vitro [61,62]. In vivo studies and clinical trials have also 
reported reversal of its cholesterol-lowering effects at high 
doses [63,64]. The prooxidant effect of TTE at higher doses 
might be attributed to its conversion to α-tocopherol in vivo, 
which has been shown to be a highly reactive prooxidant at a 
high concentration [65,66]. Furthermore, cell culture studies 
using osteoblasts [65], fibroblasts [67], myoblasts [68], and 
neuronal cells [69] have shown that γ-tocotrienol has cyto-
toxic activity at higher doses, which might be attributed to 
its prooxidant activity. In our study, the Annatto tocotrienol 
contained 10% γ-tocotrienol, and this might have contributed 
to the prooxidant effect. However, the exact mechanism of 
the prooxidant effect of γ-tocotrienol remains unknown. One 
limitation of this study was that we could not determine the 
major constituent contributing to prooxidant effects. Further 
studies using only the δ or γ isomer of tocotrienol would be 
beneficial in determining the same.

Another important observation made in this study was 
the lack of significant differences between the microemul-
sion- and liposome-treated groups for any of the parameters 
measured. Thus, the effectiveness of microemulsion in deliv-
ering tocotrienol to ocular tissue such as the lens seems to be 
comparable to that of liposomes. Previous studies have shown 
variable results in this regard. Hironaka et al. demonstrated 
that liposomes have better penetration in ocular tissues 
compared to microemulsion in vivo using a lipophilic dye 
as a marker [70]. However, Cortessi et al. showed that the 
formulations exerted similar effects [71]. In one study, micro-
emulsion, as a drug carrier, showed better tissue permeation 
for a lipophilic drug in mice skin compared to liposomes 
[72]. In the current study, however, we did not determine the 
relationship between the extent of ocular tissue penetration 
by tocotrienol and its anticataract effects. More elaborate 
ocular pharmacokinetic studies are needed to study the ocular 
bioavailability of tocotrienol.

In summary, this study demonstrated the anticataract 
effects of topically applied tocotrienol in the concentration 
range of less than 0.05% and more than 0.01% in galactose-
fed rats. At the 0.03% concentration, the microemulsion and 
liposomal formulations of tocotrienol showed comparable 
anticataract effects. The anticataract effect of tocotrienol 
could be attributed to reduced lenticular oxidative stress and 
attenuation of nitrosative stress. At a concentration of 0.2% 

and higher, TTE aggravates cataractogenesis in galactose-
fed rats by increasing lens oxidative stress. Precise molecular 
targets that lead to the prooxidant effects and mechanisms 
involved in decreasing the nitrosative or oxidative stress of 
tocotrienol remain to be determined.
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