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Abstract

Shiga toxin (Stx) is implicated in the development of hemorrhagic colitis and hemolytic-uremic 

syndrome, but early symptoms of enterohemorrhagic Escherichia coli (EHEC) infection such as 

non-bloody diarrhea may be Stx-independent. In this study, we defined the effects of EHEC, in the 

absence of Stx, on the intestinal epithelium using a murine model. EHEC colonization of 

intestines from two groups of antibiotic-free and streptomycin-treated C57Bl/6J mice were 

characterized and compared. EHEC colonized the cecum and colon more efficiently than the 

ileum in both groups; however, greater amounts of tissue-associated EHEC were detected in 

streptomycin-pretreated mice. Imaging of intestinal tissues of mice infected with bioluminescent 

EHEC further confirmed tight association of the bacteria to the cecum and colon. Greater numbers 

of EHEC were also cultured from stool of streptomycin-pretreated mice, as compared to those that 

received no antibiotic. Transmission electron microscopy demonstrated that EHEC infection leads 

to microvillous effacement of mouse colonocytes. Hematoxylin and eosin staining of colonic 

tissues of infected mice revealed a slight increase in the number of lamina propria 

polymorphonuclear leukocytes. Transmucosal electrical resistance, a measure of epithelial barrier 

function, was reduced in colonic tissues of infected animals. Increased mucosal permeability to 

4KDa FITC-Dextran was also observed in colonic tissues of infected mice. Immunofluorescence 

microscopy revealed that EHEC infection resulted in redistribution of the tight junction proteins 

occludin and claudin-3 and increased expression of claudin-2 while ZO-1 localization remained 

unaltered. Quantitative real-time PCR revealed that EHEC altered mRNA transcription of Ocln, 

Cldn2 and Cldn3. Most notably, claudin-2 expression was significantly increased and correlated 

with increased intestinal permeability. Our data indicate that C57Bl/6J mice serve as an in vivo 

model to study the physiological effects of EHEC infection on the intestinal epithelium and 
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suggest that altered transcription of tight junction proteins plays a role in the increase in intestinal 

permeability.
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Enterohemorrhagic Escherichia coli (EHEC) belongs to a family of pathogenic bacteria that 

produce attaching and effacing (A/E) lesions used to colonize host intestinal mucosa [1]. 

Attachment of EHEC to the apical epithelial surface leads to recruitment of cytoskeletal 

proteins and injection of effector molecules directly into the host cell through the type III 

secretion system. The A/E phenotype results from expression of virulence genes housed in 

the locus of enterocyte effacement pathogenicity island that encode proteins for the type III 

secretion system, intimin, and secreted effector proteins [2].

Shiga-toxin (Stx) is one of the major virulence factors produced by EHEC, and can cause 

microvascular endothelial injury. Stxs are released by EHEC in the intestine, translocated 

across the gut epithelium into the circulation, and transported to microvascular endothelial 

cells. They presumably damage host cells by inhibiting protein synthesis, stimulating pro-

thrombotic messages, or inducing apoptosis [3]. Stx has been identified as a critical 

requirement for the development of hemorrhagic colitis and hemolytic-uremic syndrome, 

but we hypothesize that in addition, EHEC organisms, in the absence of Stx, have direct 

effects on the intestinal epithelium that contribute to diarrhea. Early diarrhea caused by 

EHEC is non-bloody, and is not likely due to Stx. EHEC infection of cultured intestinal 

epithelial cells induces A/E lesions, alters intestinal epithelial barrier function, modulates ion 

transport and stimulates inflammation, suggesting that the mechanisms underlying diarrhea 

associated with infection by this pathogen are complex and multi-factorial [4–6].

Although several experimental animal models have been developed to elucidate EHEC 

pathogenesis [7–14], the lack of a simple, small murine model has posed a great challenge in 

understanding EHEC-induced physiological and pathological changes. Moreover, many of 

the in vivo studies focused on the effect of toxin-producing strains. Nagano et al. have 

demonstrated that intragastric inoculation of a Stx-producing EHEC 0157:H7 strain leads to 

EHEC adherence to intestinal epithelial cells of ICR mice resulting in epithelial cell actin 

accumulation (characteristic of A/E lesions) [15]. The same group has also reported that 

fecal shedding of EHEC organisms was observed in ICR mice up to 3 weeks, and the cecum 

was a frequent site of adhesion and colonization for these pathogenic bacteria. In addition to 

ICR mice, C57Bl/6J strains have also been used to study the effects of EHEC infection on 

ion transport [6]. While colonization of EHEC in mice has been demonstrated previously, 

EHEC-induced pathologic changes have not been fully assessed in mouse models.

Therefore, our goal in this study was to define the effects of EHEC, in the absence of Stx, on 

the intestinal epithelium using a murine model. We chose to use a Stx-negative derivative of 

EHEC in order to assess the contribution of virulence factors other than Stx.
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Materials and Methods

Bacterial Strains

EHEC O157:H7 strain 85–170, an isogenic Stx-negative derivative [16], (generous gift from 

James Kaper, Center for Vaccine Development, University of Maryland, Baltimore, MD) 

was used to infect mice in this study. For permeability experiments, a control group of mice 

was also orally gavaged with a nonpathogenic human fecal isolate HS-4 [17]. For 

bioluminescence imaging experiments, EHEC O157:H7 strain 85–170 was transformed with 

pCM17 plasmid (generous gift from James Kaper, University of Maryland in Baltimore) 

containing the luxCDABE operon driven by the OmpC promoter, which allows constitutive 

expression of luciferase [18]. Bacteria were grown overnight at 37°C in Luria-Bertani broth, 

then diluted in serum- and antibiotic-free medium (1:1 (vol/vol) mixture of Dulbecco’s 

modified Eagle’s medium and Ham’s F12 medium containing 25 mM glucose, 15 mM 

HEPES and 0.5% (wt/vol) mannose) and grown at 37°C to mid-log growth phase 

(OD600nm= 0.4).

Infection

Six-week old C57Bl/6J male mice were obtained from Jackson Laboratory (Maine, USA). 

All animal procedures were approved by the University of Illinois at Chicago Animal Care 

and Use Committee. Mice were allowed to equilibrate in the Biological Resources 

Laboratory animal housing facility at the University of Illinois at Chicago for approximately 

7 days. Two groups of mice were used in this study: antibiotic-free mice and streptomycin-

pretreated mice. The antibiotic-free mice were directly gavaged with EHEC after the 7-day 

equilibration period. The second group of mice was given water containing 5 g/L 

streptomycin for 24 hours on the fifth day of their arrival in the facility. The water supply 

was then replaced with sterile distilled water for another 24 hours prior to infection. Both 

groups of mice were gavaged with 200 μl of sterile PBS (control, uninfected) or 2 × 108 Stx-

negative EHEC organisms suspended in 200 μl sterile PBS.

Attachment Assays

To determine the number of EHEC organisms adherent to the intestinal epithelium, at least 

four EHEC-infected and uninfected C57Bl/6J mice were sacrificed at days 1, 3, 5, 8, and 10 

post-infection. The ileum, cecum, and colon were dissected. Stool contents were removed 

and tissues were washed with PBS. Tissues were weighed and homogenized in PBS using a 

Dounce tissue grinder. Homogenized tissues were serially diluted in PBS and plated on 

MacConkey-Sorbitol agar (BD Biosciences, New Jersey, USA) supplemented with 50 μg/L 

cefixime and 2.5 mg/L potassium tellurite (Sigma-Aldrich, Missouri, USA), which is a 

selective and differential media for the detection of sorbitol-nonfermenting Escherichia coli 

0157:H7. After 18–24 hours of incubation at 37°C, white colonies were counted and colony-

forming units (CFU) were determined per gram of tissue. White colonies were confirmed as 

EHEC by PCR using espF-specific primers.
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Fecal Shedding of EHEC

Stool samples from at least four uninfected and infected mice were collected daily for a 

period of 10 days post-infection. Stool samples were weighed and homogenized in PBS by 

vortexing. Homogenized stool samples were serially diluted and plated on MacConkey-

Sorbitol agar supplemented with 50 mg/L cefixime and 2.5 mg/L potassium tellurite. After 

18–24 hours of incubation at 37°C, white colonies were counted and CFU were determined 

per gram of stool.

Bioluminescent EHEC infection and imaging

The protocol for imaging of bioluminescent EHEC was adapted from a previously described 

in vivo bioluminescence imaging of Citrobacter rodentium in infected mice [19]. 

Bioluminescent EHEC was cultured overnight as described above and orally gavaged into 

streptomycin pre-treated C57Bl/6J mice. Three days after infection, mice were euthanized 

and entire intestines were excised. The rectum and stomach were tied off and and air 

injected into the lumen of the intestine to activate the bioluminescence signal. 

Bioluminescence was determined by IVIS system (Xenogen Corporation, Hopkinton, MA) 

and expressed as (photons s−1 cm−2 sr−1). To detect adherent EHEC, cecum and colon 

tissues were washed extensively with PBS prior to imaging with IVIS.

Transmission Electron Microscopy

The distal small intestine and the proximal colonic tissues were retrieved from uninfected 

and EHEC- infected C57Bl/6J mice and cut into ~2–3 mm-long pieces and fixed in 4% 

glutaraldehyde with cacodylate 0.1M buffer. Further routine processing for transmission 

electron microscopy (TEM) was performed in the Electron Microscopy Facility at the 

University of Illinois at Chicago.

Histological Staining

Proximal colonic tissues retrieved from uninfected and EHEC-infected C57Bl/6J mice were 

cut into ~2–3 mm-long pieces and fixed in 10% neutral buffered formalin. Further routine 

processing for hematoxylin and eosin staining was performed in the Research Resource 

Center at the University of Illinois at Chicago.

Electrophysiology

At days 1, 3, 5, 8, and 10 post-infection, mice were sacrificed via CO2 asphyxiation and 

intestinal tissues were resected. Tissue sections of the proximal colon were mounted in an 

Üssing chamber for measurement of transmucosal electrical resistance (TER), a previously 

described indicator of barrier function [20]. Full thickness, unstripped mucosa was bathed 

on both mucosal and serosal surfaces with 5 ml of oxygenated (95% O2/CO2) Ringer’s 

solution containing 109.8 mM NaCl, 5.3 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 25 mM 

NaHCO3, 2.4 mM Na2HPO4, and 0.4 mM NaH2PO4. To maintain tissue viability, 5 mM 

glucose was added on the mucosal side of the tissue and 5 mM mannitol was added on the 

serosal side of the tissue.
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Permeability Measurements

At day 8 post-infection, mice were sacrificed via CO2 asphyxiation and intestinal tissues 

were resected. Upon equilibration of the tissue and measurement of electrical parameters, 4-

kD FITC-dextran was added to the mucosal side to achieve a final concentration of 0.01 

mM. Permeability (flux) was determined after removal of medium from serosal 

compartment at the end of a 90 minute experimental period. The medium was then assessed 

for flourescence using a microplate fluorescence reader (FL-500, BIO-TEK, Vermont, USA) 

at an excitation wavelength of 485 nm and an emission wavelength of 530 nm.

Immunofluorescence Microscopy

Tissue samples of the proximal colon from all mice sacrificed for Üssing chamber analysis 

were snap-frozen in optimal cutting temperature embedding medium (Tissue-Tek O.C.T. 

compound, Sakura Finetek USA, Inc., California, USA) and stored at −80°C. For 

immunostaining, 5 μm frozen sections were fixed with 1% paraformaldehyde in PBS for 10 

min at room temperature. After washing with PBS, permeabilization with 0.5% NP-40, and 

blocking of nonspecific binding sites with 5% normal goat serum (NGS), tissues were 

incubated with monoclonal mouse anti-occludin, rabbit anti-ZO-1, rabbit anti-claudin-2, or 

rabbit anti-claudin-3 (at 0.5 μg/mL, Invitrogen, California, USA) in PBS with 1% NGS for 

90 min at room temperature. After washing, sections were incubated with 8 μg/mL Alexa 

594-conjugated goat anti-mouse IgG or 8 μg/mL goat anti-rabbit IgG antisera, 5 U/mL 

Alexa 488-conjugated phalloidin, and Hoechst 33342 (Invitrogen) for 60 min. Sections were 

then washed and mounted under coverslips using ProLong Gold antifade reagent 

(Invitrogen). Sections were imaged using a Leica Dm4000B epifluorescence microscope and 

Slide Book 4.2 software (Intelligent Imaging Innovations, Colorado, USA).

Quantitative Real-time PCR

Four colonic samples for each group of uninfected and infected mice at days 1, 3, 5, 8 and 

10 post-infection were analyzed for quantitative real-time PCR (qRT-PCR) using mRNA-

specific primers for Ocln, Cldn2, Cldn3 and Gapdh. Tissue samples previously preserved in 

OCT and stored at −80 °C were microdissected. Nine sections of 10-micron thickness were 

collected per sample and total RNA was extracted using RNeasy microkit (Quiagen, 

California, USA). Total mRNA was prepared using First Strand cDNA Synthesis Kit 

(Fermentas Inc., Maryland, USA). cDNA targets were cloned in pCR®4-TOPO® vector 

(Invitrogen). Known amounts of serially diluted recombinant plasmids were prepared and 

served as standards for qRT-PCR. Test samples and plasmid standards were used as 

templates for qRT-PCR using mRNA-specific primers for Ocln, Cldn2, Cldn3 and Gapdh 

and Fast Sybr® Green PCR Master Mix (Applied Biosystems, Texas, USA). qRT-PCR 

reactions were carried out at 50°C for 2 minutes, 95°C for 10 minutes, followed by 40 cycles 

of 95°C for 15 seconds and 60°C for 1 minute, and a dissociation step at 95°C for 15 

seconds, 60°C for 15 seconds and 95°C for 15 seconds using an ABI 7900HT Sequence 

Detection System (Applied Biosystems). Sequences of primers used are: Ocln forward (5′-

agaggctatgggacagggctctttgg-3′), Ocln reverse (5′-ccaacaggaagcctttggctgctcttgg-3′), Cldn2 

forward (5′-cctcgctggcttgtattatctctg-3′), Cldn2 reverse (5′-gagtagaagtcccgaaggatg-3′), Cldn3 

forward (5′-ccggttcaagtccagcagccatgtc-3′), Cldn3 reverse (5′-gctctgcaccacgcagttcatcc-3′), 
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Gapdh forward (5′-gaagggctcatgaccacagt-3′) and Gapdh reverse (5′-

ggatgcagggatgatgttct-3′). Absolute mRNA copies of the targets were determined per 

absolute mRNA copies of Gapdh for each sample.

Statistical Analysis

All data are reported as the mean and standard error of the mean. Data comparisons were 

made with Student’s t test. Differences were considered significant when the P value was 

≤0.05.

Results

E. coli O157:H7 colonization of mouse intestines

We tested the ability of E. coli O157:H7 to colonize and adhere to the intestines of C57Bl/6J 

mice after oral gavage of 2×108 bacteria with or without streptomycin pre-treatment. EHEC 

infection of antibiotic-free mice resulted in the colonization of the ileum, cecum and colon 

(Figure 1A, B, & C). There was a significant (2.2 to 3 log) growth expansion of EHEC 

attached to ileum, cecum and colon observed at 5 days post-infection in the absence of 

antibiotics. By 10 days post-infection, EHEC was no longer detected in the intestinal tissue 

samples of antibiotic-free mice. Greater amounts of tissue-associated EHEC were observed 

at days 1 and 3 in mice treated with streptomycin prior to infection. In the streptomycin pre-

treated mice, growth expansion of EHEC associated with the ileum, cecum and colon also 

occurred but at 8 days post-infection. In contrast to the antibiotic-free mouse model of 

infection, EHEC remained detectable (>2 logs/gm of tissue) in the tissue samples even at 10 

days post-infection. In both models, EHEC colonizes the cecum and colon more efficiently 

than the ileum.

Bioluminescence imaging of EHEC in intestinal tissues of infected mice was used to 

confirm that the bacteria localize and adhere to the cecum and colon (Figure 2). While 

bioluminescence imaging technique offers easier localization of bacteria in host tissues, it is 

not as sensitive as culturing tissues or stool from infected animals. Bioluminescence was not 

able to detect EHEC in tissue sections, such as the ileum, where lower amounts (< 105cfu/

gram of tissue) of colonizing bacteria are found. In order to determine if EHEC intimately 

adhered to the intestinal epithelium, the intestine from infected animals was opened and 

washed multiple times in a vigorous fashion in order to remove non-adherent organisms and 

reimaged. Significant bioluminescent signal was still detected primarily in the cecum and 

proximal colon, indicating that EHEC tightly adheres to the intestinal epithelium (Figure 

2B).

The amount of EHEC shed in the feces was also monitored daily for 10 days. Consistently 

greater numbers of EHEC were cultured from the feces of mice pre-treated with 

streptomycin, as compared to those that received no antibiotics (Figure 3). We also observed 

small (0.5 to 1.5 log), but significant, growth expansion of EHEC in the stool at 8 days post-

infection in both infection models. Despite the fact that EHEC was not recovered from 

intestinal tissues at day 10 in mice that had not received antibiotics, >103 organisms were 

cultured per gram of stool.
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Alteration of intestinal microvilli following E. coli O157:H7 infection

To evaluate the effect of EHEC infection on mouse intestinal epithelial cells, TEM was 

performed on small and large intestinal segments obtained from uninfected and infected 

antibiotic-free mice at 1 and 5 days post-infection (Figure 4A & B). While the small 

intestine and colon of uninfected mice displayed normal microvillous architecture, localized 

effacement of the microvilli was detected in EHEC-infected mice predominantly in the 

colon at both 1 and 5 days post-infection. Effacement appeared more extensive and 

remarkable at 1 day post-infection. Microvillous architecture of the ileum of EHEC infected 

mice appeared well preserved. Although effacement was evident in the colon, intimately 

attached bacteria and the well-characterized A/E lesions with pedestals were not readily 

found by TEM. However, the distortion and effacement of microvilli observed in the colon 

of EHEC infected mice is consistent with changes induced by enteropathogenic E. coli [20]. 

We also analyzed via TEM the effect of EHEC on the colonic epithelial cells of mice pre-

treated with streptomycin (Figure 5). Distortion and localized effacement of the microvilli in 

the colon was easily identified at 3, 5, 8 and 10 days post-infection. In the colon of infected 

mice pre-treated with streptomycin, microvillous effacement was most extensive at 3 days 

post-infection, but was still detectable at day 10 post-infection.

Mild colonic inflammation of mice infected with EHEC O157:H7

To further assess histological changes due to EHEC infection, colonic segments from 

uninfected and infected mice pre-treated with streptomycin were stained with hematoxylin 

and eosin. Modest increase in the number of polymorphonuclear leukocytes was found at the 

lamina propria of mouse colonic tissues at day 3 post-infection as compared to uninfected 

control (Figure 6), but not at days 1, 5, 8, and 10 post-infection (data not shown).

Disruption of intestinal barrier function in mice infected with EHEC O157:H7

To evaluate the effect of EHEC infection on intestinal epithelial cell barrier function, 

colonic segments from uninfected and infected mice were mounted in Üssing chambers and 

electrophysiological parameters were measured. In the antibiotic-free mouse model of 

EHEC infection, electrical resistance of the colon of infected mice was reduced significantly 

at days 3 and 5 post-infection when compared to values obtained from tissues of uninfected 

control mice, suggesting disruption of tight junctions (Figure 7A). In the colon of infected 

mice pre-treated with streptomycin, resistance values decreased progressively over time, 

with the maximum reduction detected at 8 days post-infection (Figure 7B). Disruption of 

intestinal epithelial barrier function was also evaluated by measuring flux of 4-KDa FITC-

dextran across colonic segments. Colonic samples were obtained from streptomycin-

pretreated mice at day 8 post-infection, where maximum TER reduction was previously 

observed. A significant increase in mucosal permeability of colonic samples to 4-KDa 

FITC-Dextran was detected in the colon of EHEC-infected mice (Figure 8A). Colonic 

samples from a control group of mice orally gavaged with a nonpathogenic human fecal 

isolate HS-4 had permeability and TER measurements similar to values from uninfected 

control mice (Figure 8A & 8B).
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EHEC infection modifies occludin, claudin-2 and claudin-3 localization in the colon, but 
not ZO-1

To determine if the physiological changes in the tight junction barrier were accompanied by 

alterations in the distribution of tight junction proteins, colonic tissues of EHEC-infected 

and uninfected mice were analyzed using immunofluorescence staining of ZO-1, occludin, 

claudin-2, and claudin-3. At 1 day post-infection, neither the ileum nor the colon of infected 

mice showed redistribution of tight junction proteins (data not shown) correlating with the 

normal electrical resistance measurements. No difference in the distribution or intensity of 

staining of the intracellular scaffolding protein ZO-1 was seen in the colons of uninfected 

mice compared to those infected with EHEC (Figure 9) over the course of infection. The 

transmembrane tight junction protein occludin was also examined in colonic tissues from 

EHEC-infected and uninfected mice. Occludin was redistributed, specifically internalized, in 

colonic epithelial cells from animals infected with EHEC (Figure 10), similar to changes 

reported in mice infected with enteropathogenic E. coli [21]. Immunofluorescent staining for 

claudin-3 revealed staining primarily localized to the lateral membranes, but some 

intracellular localization was also observed. At 3 days post-infection, claudin-3 staining was 

clearly diminished (Figure 11). The most interesting results regarded changes in claudin-2. 

At 1 day post-infection, a slight increase in the amount of claudin-2 within the cytoplasm 

was noted. However, a more significant and progressive increase in claudin-2 expression, 

both at the tight junctions and within the cytoplasm, was seen at days 3, 5, 8, and 10 post-

infection (Figure 12).

EHEC regulates mRNA transcription of Ocln, Cldn2, and Cldn3

To determine if EHEC-induced perturbation of intestinal epithelial barrier function was 

associated with altered transcription of genes encoding tight junction proteins, we performed 

qRT-PCR on colonic samples using specific primers for Ocln, Cldn2, Cldn3 and Gapdh. 

Total RNA was extracted from microdissected colonic samples of uninfected control and 

EHEC-infected mice pre-treated with streptomycin. cDNA was synthesized from the total 

RNA extract, and the product served as template for qRT-PCR. Absolute mRNA copies of 

Ocln, Cldn2, and Cldn3 per mRNA copies of Gapdh were determined for each sample 

(Figure 13). Ocln transcription was altered by EHEC infection with a 1- to 1.4-fold decrease 

occurring at days 3, 5, and 8 post-infection. By 10 days post-infection, there was a 

significant 1.5-fold increase in the Ocln mRNA transcript levels in the colon of EHEC-

infected mice, as compared to uninfected control. EHEC also altered the transcription of 

Cldn3. At 1 day post-infection, a significant 2-fold increase in transcription occurred. 

However, thereafter, a progressive decrease in Cldn3 transcription, reaching its lowest level 

of a 2-fold decrease at 8 days post-infection, was seen. By day 10, Cldn3 mRNA transcripts 

increased to levels similar to that of uninfected controls. Interestingly, a 1.5- to 2-fold 

increase in the mRNA transcription of Cldn2 in the colon of EHEC-infected mice compared 

to uninfected control mice was demonstrated. The maximum increase in Cldn2 transcription 

occurred at 3 days post-infection but remained above baseline for up to 10 days. The 

increased Cldn2 transcription correlates with the increased claudin-2 expression in colonic 

samples as determined by immunofluorescence staining.
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Discussion

EHEC can cause a wide spectrum of clinical outcomes ranging from non-bloody diarrhea to 

hemorrhagic colitis to life-threatening hemolytic-uremic syndrome. Stx is implicated in the 

development of hemorrhagic colitis and hemolytic-uremic syndrome. However, early 

symptoms of EHEC infection such as non-bloody diarrhea [22] are likely Stx-independent. 

Although previous in vivo models have been used to investigate the effects of EHEC 

infection [7, 12], most studies utilized germ-free or antibiotic-treated mice to optimize 

colonization of Stx-producing EHEC [13, 23, 24]. We were interested in examining the 

effects of EHEC organisms in the absence of Stx in a mouse model. We showed in this 

study that Stx-negative EHEC attach and colonize the intestinal tissue of C57Bl/6J mice 

resulting in structural and pathophysiological changes in the epithelium.

Previous mouse studies which utilized Stx-negative EHEC strains have suggested that the 

bacteria do not effectively colonize host intestines. Mundy et al compared the colonization 

potential of EHEC O157:H7 (strain Sakai), EPEC (strain E2348/69), Citrobacter rodentium 

(strain ICC169), and commensal E. coli (strain Nissle 1917) in C3H/Hej mice [25]. For the 

first 2 days post-infection, all strains were shed in stools at comparable numbers, but at day 

3 post-infection fecal shedding of C. rodentium increased by 1.5-log and about 108 bacteria 

per gram stool was detected on days 3, 6, and 8. In contrast, no growth expansion phase of 

EHEC, EPEC and commensal E. coli was detected in the stool and only about 103–104 

bacteria per gram stool were found at days 3, 6, and 8. Significantly lower levels of EHEC, 

EPEC and commensal E. coli were recovered from the intestinal tissues at day 8 post-

infection, as compared to the levels of tissue-associated C. rodentium. They concluded that 

the EHEC and EPEC strains associated with the mouse intestine similar to the commensal E. 

coli strain.

For infected C57Bl/6J mice that did not receive antibiotics, the amounts of EHEC shed in 

the stool and associated with the different intestinal tissues at day 8 post-infection were 

comparable to those reported by Mundy and coworkers. However, in contrast with their 

results, we found growth expansions of EHEC in stools at day 8 post-infection and of tissue-

associated EHEC at day 5 post-infection. In order for EHEC to colonize the host intestinal 

epithelium, the bacteria must first evade the host’s innate immune system. The delayed 

growth of the colonizing EHEC in our model may be attributed to host’s immune response, 

as well as to the adaptation of the bacteria to its new environment. For antibiotic-treated 

animals, growth expansion of colonizing EHEC was further delayed to day 8 post-infection. 

Since the EHEC strain we employed in this study is sensitive to streptomycin, the shift in 

bacterial growth expansion may be due to residual effects of the antibiotics.

Although EHEC colonize the intestine of C57Bl/6J mice that are not treated with antibiotics, 

improved bacterial colonization was attained by pre-treatment with streptomycin. 

Streptomycin disrupts the normal microflora of mouse intestines and enhances colonization 

of nonindigenous bacteria. Previously established mouse models utilizing streptomycin prior 

to and during infection have been shown to increase colonization of other pathogens such as 

Salmonella typhimurium, Pseudomonas aeruginosa and Aeromonas isolates [26–28]. 

Several mechanisms explaining enhanced colonization of nonindigenous bacteria in 
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streptomycin-treated animals include: (1) decreased competition between resident and 

nonindigenous bacteria for nutrients and attachment sites, and (2) environmental changes in 

the gut favoring colonization and growth of pathogens such increase in pH and decrease in 

short chain volatile fatty acids [27, 29, 30]. One limitation in the use of streptomycin in in 

vivo models of infection is that the pathogen being studied should be resistant to the 

antibiotics. In our study, the EHEC O157:H7 strain used was susceptible to streptomycin. In 

order to allow excretion of residual streptomycin, mice were allowed to recover for another 

24 hours after antibiotic treatment before infecting with EHEC.

We demonstrated in this study that EHEC adhere to and colonize the cecum and colon more 

efficiently than the small intestine. While the mechanism of adherence was not assessed in 

this study, in vitro and some in vivo data suggests that fimbriae [31], outer membrane 

proteins [32], iha-encoded surface protein [33], and the TTSS [15] play a role in this 

process. Previous studies have shown that intimin contributes to the colonization of EHEC 

O157:H7 in mice. Female BALB/c mice immunized with a plant cell-based intimin vaccine 

prior to infection exhibited reduced duration of EHEC O157:H7 shedding in the stool [34]. 

In another study by O’Brien’s group [35], infection of female BALB/c mice with intimin-

deletion mutant of EHEC O157:H7 resulted to decreased colonization as compared to 

infection with the intimin-positive EHEC strain. In addition to the multiple factors involved 

in adherence, colonization in mouse models is also dependent on the mouse strain as 

demonstrated in a study by Nagano et al [15], wherein EHEC organisms were shown to 

effectively colonize ICR mice but not BALBc, C3H/HeN, C3H/HjN and A/J mice,

We also demonstrated that EHEC infection results in the distortion and effacement of 

microvilli. This correlates with actin rearrangement as observed in in vitro and in vivo 

studies [1, 15]. The effacement of microvilli and disruption of tight junctions by EHEC as 

demonstrated in C57Bl/6J mice has important clinical implications. Normally, intact 

microvilli structure and non-porous tight junctions help maintain the structural and 

physiological integrity of the gastrointestinal tract. Disruption of these homeostatic 

mechanisms of intestinal stability may contribute to the clinical effects of diarrhea as a 

consequence of EHEC infection.

Although EHEC induced localized effacement of microvilli, it was difficult to capture 

images of intimately attached bacteria and the well-characterized A/E lesions with pedestals 

due to modest levels of tissue-associated bacteria. Whole tissue imaging of infected 

bioluminescent EHEC, however, indicates that the bacteria associate tightly to the cecum 

and colon. At present, it is not clear if EHEC is able to induce microvilli effacement in the 

absence of intimately attached bacteria in the C57Bl/6J mice. Savkovic et al. [20] observed a 

similar phenotype in the enteropathogenic E. coli infection of C57Bl/6J mice. In contrast, 

previous studies on C. rodentium infection of mice [36, 37] and EHEC infection of rabbits 

and piglets [9, 38, 39] demonstrated intimately attached bacteria and A/E lesions with 

pedestals. The phenotypic differences between our model and those published for C. 

rodentium infection of mice and EHEC infection of rabbits and piglets may be due to 

differences in the bacteria, levels of colonizing bacteria and hosts used.
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Once colonization and adherence to the intestines of C57Bl/6J mice occurs, EHEC infection 

results in physiological and structural changes of intestinal epithelial cells. Our study 

demonstrated alterations in these parameters by measuring TER and permeability to 

macromolecules and performing microscopic analysis of intestinal tissues. EHEC infection 

significantly reduced TER of the colon at 3 and 5 days post-infection in the absence of 

antibiotics and at days 8 and 10 post-infection in mice receiving streptomycin-pretreatment. 

We also verified that the decrease in TER detected in infected mice was accompanied by an 

increase in mucosal permeability to macromolecules. We further showed that the 

electrophysiological changes in the colon correlates with alterations in TJ architecture. 

Although ZO-1 was not altered as a result of EHEC infection, the redistribution of occludin 

and claudin-3 and increased expression of claudin-2 observed by immunohistochemistry 

correlate with the reduced TER observed in the colon.

Most interestingly, we showed, for the first time, that EHEC infection induces changes in 

claudin-2 expression in the crypts of mouse colon. Claudin-2 has been previously identified 

as the electrically ‘leaky’ claudin [40, 41] and its elevated expression has been implicated in 

inflammatory bowel disease [42, 43]. Expression of claudin-2 in CMT-93 and in MDCK cell 

lines was also shown to decrease TER [44, 45]. These previous studies corroborate our 

findings that elevated claudin-2 levels in the colon of EHEC-infected mice correlate with 

decreased TER.

We further showed that increased claudin-2 protein levels can be attributed to elevated 

amounts of mRNA transcripts. The half-life of claudin-2 protein expressed in MDCK cells 

is about 12 hours [46]. Hence, the increased claudin-2 protein levels we observed in our 

study are likely due to enhanced gene expression rather than protein accumulation.

Human CLDN2 and mouse Cldn2 gene promoters harbor binding sites for caudal-related 

homeobox (Cdx1 and Cdx2), hepatocyte-nuclear factor-1 alpha isoform (Hnf1α) and Gata4 

transcription factors [47]. Mutagenesis and DNA-binding assays provided evidence that 

human CLDN2 promoter activity is positively regulated by Cdx2, as well as by Hnf1α[47, 

48]. Forced expression of GATA4 in Caco-2 results in an increased claudin-2 expression 

[49]. In addition, the human CLDN2 gene promoter has an NFκB-binding site and deletion 

of this site decreased promoter activity in transfected Caco-2 cells [47]. NFκB is activated 

by TNFα, and high levels of TNFα are associated with the development of intestinal 

inflammation in Crohn’s disease. Interestingly, claudin-2 protein levels in human intestinal 

cell line HT-29 have been shown to increase in response to TNFα, and this was found to be 

due to elevated CLDN2-specific mRNA and enhanced promoter activity [50]. As EHEC 

also increases secretion of inflammatory cytokines, including TNFα, the increased Cldn2 

gene expression we observed could either be a direct response to EHEC organisms or a 

secondary response to EHEC-induced TNFα secretion.

Claudin-3 is also upregulated in ulcerative colitis-associated colon carcinomas and in 

colorectal cancer [51, 52]. Increased expression of CLDN1, CLDN3 and CLDN4 in 

colorectal tumor tissues resulted in increased paracellular permeability and significant 

disorganization of tight junction strands observed via freeze fracture replicas [52]. CLDN3 

knockdown by siRNA of human gastric adenocarcinoma cell line MKN28 decreased TER 
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[53]. In our study, low Cldn3 mRNA transcripts levels, combined with increased Cldn2 

mRNA transcript levels, correlates with decreased TER at day 8 post-infection.

In addition to eletrophysiological changes and alterations in the distribution and expression 

of tight junction proteins, EHEC also induced mild inflammation as indicated by the 

increase in polymorphonuclear leukocytes at the lamina propria of colonic tissues at day 3 

post-infection. It has been published previously that both EHEC and enteropathogenic E. 

coli attenuate the host immune response to infection [54–56]. Stx is also known to be pro-

inflammatory [57, 58] but in our model system, we employed a Stx-negative strain. Hence, 

the lack of robust inflammatory phenotype in our study is not surprising.

In conclusion, our data demonstrates that C57Bl/6J mice are susceptible to infection by 

EHEC and serve as an appropriate in vivo model to establish the consequences of EHEC 

infection and define the role of specific EHEC effector molecules in pathogenesis.
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Figure 1. 
Localization of E. coli O157:H7 in mouse intestines. The presence of E. coli O157:H7 in the 

ileum (A), cecum (B), and proximal colon (C) of infected C57Bl/6J mice was determined at 

1, 3, 5, 8 and 10 days post-infection. Group geometric mean of CFU per gram of tissue is 

shown for infected mice that did not receive antibiotics (triangles) and for mice treated with 

streptomycin prior to EHEC infection (circles).
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Figure 2. 
Imaging of intestinal tissues of streptomycin-pretreated mice infected with bioluminescent 

EHEC. (A) The entire intestine (si, small intestine; ce, cecum; co, colon) was excised from 

mice orally infected with bioluminescent EHEC for three days. A pseudocolor image 

depicting bioluminescence intensity (red, more intense; blue, less intense) was generated 

using Living Image® Software (Xenogen) and superimposed onto the photographic image. 

The color bar indicates relative signal intensity (photons s−1 cm−2 sr−1). (B) Thereafter, the 

cecum and colon were opened longitudinally and washed with PBS prior to imaging with 

IVIS. Data representative of EHEC- infected (n=9) and Mock-infected (n=5) mice from two 

separate experiments.
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Figure 3. 
Fecal shedding of E. coli O157:H7 in mice following inoculation with the pathogen. 

C57Bl/6J mice were orally gavaged with 2 × 108 of E. coli O157:H7 and their feces were 

monitored for the presence of bacteria over a period of 10 days. Group geometric mean of 

CFU per gram of feces is shown for infected mice that did not receive antibiotics (triangles) 

and for mice treated with streptomycin prior to EHEC infection (circles). * indicates pvalue < 

0.05 when daily fecal shedding of EHEC in antibiotic-free mice and streptomycin-pretreated 

mice are compared.
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Figure 4. 
Electron micrograph images of the ileum and colon of uninfected and EHEC-infected 

antibiotic-free C57Bl/6J mice at day 1 (A) and day 5 (B) post-infection. Scale bar = 1 μm.
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Figure 5. 
Electron micrograph images of colonic tissues from uninfected and EHEC-infected 

C57Bl/6J mice pre-treated with streptomycin at days 1, 3, 5, 8 and 10 post-infection. Scale 

bar = 1 μm.
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Figure 6. 
Hematoxylin and eosin staining of colonic tissues from uninfected and EHEC-infected 

C57Bl/6J mice pre-treated with streptomycin at day 3 post-infection. Arrows point to lamina 

propria polymorphonuclear leukocytes.
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Figure 7. 
Transmucosal electrical resistance (TER) of colonic tissues from antibiotic-free C57Bl/6J 

mice infected with EHEC (A) and mice pre-treated with streptomycin (B). Segments of 

colonic tissues were mounted in Üssing chambers and TER values were determined. Group 

geometric means of TER of colons of infected mice are shown as percent of uninfected 

control mice. * indicates pvalue < 0.05 when daily TER values of colonic tissues from 

infected mice are compared to uninfected control mice.
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Figure 8. 
Mucosal permeability to 4-KDa FITC-dextran of colonic tissues from infected mice pre-

treated with streptomycin at day 8 post-infection. (A) Transmucosal electrical resistance of 

colonic tissues from uninfected, EHEC- and HS-4-infected mice. (B) Flux of 4-KDa FITC-

dextran across mouse colonic tissues from uninfected, EHEC- and HS-4 infected mice 

determined at the end of a 90-minute experimental period. * indicates indicates pvalue < 

0.01.
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Figure 9. 
ZO-1 immunofluorescence microscopy of colonic tissues from uninfected and EHEC-

infected C57Bl/6J mice pre-treated with streptomycin at days 1, 3, 5, 8 and 10 post-

infection. Merged image shows ZO-1 (red), actin (green) and Hoechst (blue) staining of 

colonic samples.
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Figure 10. 
Occludin immunofluorescence microscopy of colonic tissues of uninfected and EHEC-

infected C57Bl/6J mice pre-treated with streptomycin at day 5 post-infection. Colonic 

tissues were stained for occludin (red), actin (green) and Hoechst (blue).
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Figure 11. 
Claudin-3 immunofluorescence microscopy of colonic tissues of uninfected and EHEC-

infected C57Bl/6J mice pre-treated with streptomycin at day 3 post-infection. Merged image 

shows claudin-3 (red), actin (green) and Hoechst (blue) staining of colonic samples.
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Figure 12. 
Claudin-2 immunofluorescence microscopy of colonic tissues from uninfected and EHEC-

infected C57Bl/6J mice pre-treated with streptomycin at days 1, 3, 5, 8 and 10 post-

infection. Merged image shows claudin-2 (red), actin (green) and Hoechst (blue) staining of 

colonic samples.
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Figure 13. 
mRNA transcript levels of Cldn2, Cldn3 and Ocln present in colonic tissues of uninfected 

and EHEC-infected C57Bl/6J mice pre-treated with streptomycin at days 1, 3, 5, 8 and 10 

post-infection. Fold change of target mRNA copies per gapdh mRNA copies of colon 

samples of EHEC-infected mice compared to uninfected controls were determined. Values 

above x-axis are positive fold changes, and values below x-axis are negative fold changes. * 

indicates pvalue< 0.05 when daily target mRNA transcript levels present in colonic tissues of 

infected mice are compared to uninfected control mice.
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