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Two-photon Ca2+ imaging is a widely used technique for investigating brain functions
across multiple spatial scales. However, the recording of neuronal activities is affected by
movement of the brain during tasks in which the animal is behaving normally. Although
post-hoc image registration is the commonly used approach, the recent developments
of online neuroscience experiments require real-time image processing with efficient
motion correction performance, posing new challenges in neuroinformatics. We propose
a fast and accurate image density feature-based motion correction method to address
the problem of imaging animal during behaviors. This method is implemented by
first robustly estimating and clustering the density features from two-photon images.
Then, it takes advantage of the temporal correlation in imaging data to update
features of consecutive imaging frames with efficient calculations. Thus, motion artifacts
can be quickly and accurately corrected by matching the features and obtaining
the transformation parameters for the raw images. Based on this efficient motion
correction strategy, our algorithm yields promising computational efficiency on imaging
datasets with scales ranging from dendritic spines to neuronal populations. Furthermore,
we show that the proposed motion correction method outperforms other methods
by evaluating not only computational speed but also the quality of the correction
performance. Specifically, we provide a powerful tool to perform motion correction
for two-photon Ca2+ imaging data, which may facilitate online imaging experiments
in the future.

Keywords: two-photon Ca2+ imaging, motion correction, behaving mice, image density feature, image
registration, online experiment

INTRODUCTION

Two-photon microscopy is widely used for investigating neural functions at diverse scales, from
the size of a single spine to a neuronal population (Dombeck et al., 2007; Grienberger and
Konnerth, 2012; Huber et al., 2012). Recent advances in optical imaging techniques have enabled
the monitoring of neural activity with high temporal resolution. However, movement of the
brain, which is generally induced by behaviors such as licking and limb movements, remains a
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serious limitation when recording animals that are awake
(Greenberg and Kerr, 2009). Therefore, correction for brain
movement enables the accurate analysis of morphology and
activity for individual neurons in imaging data (Chen et al., 2013).
In addition, when performing real-time processing during online
functional imaging and photostimulation experiments (Griffiths
et al., 2020), data processing must be performed with a high
speed and robust performance. Therefore, a fast and accurate
processing method for removing the movement artifacts from
imaging data is a key requisite for online experiments (Mitani and
Komiyama, 2018; Pnevmatikakis, 2019).

To reduce the image distortions caused by brain movements,
frame-by-frame motion correction approaches have been
developed based on image registration. An important set
of image registration methods is based on image intensity.
These algorithms are principally intuitive and provide good
performance, but they are computationally expensive. As a
representative intensity-based method, TurboReg (Thevenaz
et al., 1998) has been integrated in ImageJ software and is
widely used for correcting lateral motion artifacts. Moreover, to
implement non-rigid transformation for the motion correction
of Ca2+ imaging data, NoRMCorre (Pnevmatikakis and
Giovannucci, 2017) was developed by splitting the imaging field
into overlapping patches and estimating the transformation
for each pixel via upsampling. The computational speed is
slow for these motion correction methods, thus some efforts
for improving the speed have been made. For instance, Moco
(Dubbs et al., 2016) was programmed in Java and achieved faster
motion correction than TurboReg by implementing a discrete
Fourier transform and cache-aware upsampling. Similarly, fast
Fourier transform was applied for processing motion correction
in the Suite2p toolbox (Pachitariu et al., 2017).

An alternative type of image registration approach is
based on feature detection. These approaches perform by
extracting features through a global intensity gradient such
as DoG (difference of Gaussians). In this way, the feature
detection approaches to extracting features refer to representative
structures. Thus, feature detection-based algorithms, such
as SIFT (Lowe, 2004), ORB (Rublee et al., 2011), and
AKAZE (Alcantarilla et al., 2013), have been used for image
registration. However, these approaches are also relatively
computationally expensive and perform unsatisfactorily in image
registration applications.

Since the rise of deep learning methods, which have achieved
state-of-the-art results in many research fields, deep learning-
based image registration algorithms have been rapidly developed
and used in many image registration applications (Haskins
et al., 2020). However, these methods have also encountered
the issue of high computational power demand (Thompson
et al., 2020), which may limit their applications in online
imaging experiments.

The current image registration-based motion correction
methods are either computationally expensive or difficult to
implement with a conventional computer, and some suffer from
both disadvantages. In this work, we focus on rigid motion
correction. As suggested in previous research (Mitani and
Komiyama, 2018), rigid transformation is quite efficient when

imaging with resonant scanners; the high sampling rate can
only induce negligible within-frame motion distortion. With the
goal of improving both computational speed and accuracy, we
propose a fast image feature extraction and registration (FIFER)
method for motion correction of two-photon Ca2+ imaging data.
Our proposed method is based on an image density estimation
and clustering approach (Hinneburg and Keim, 1998), which
is fast and robust in the extraction of imaging data features.
The efficacy of the proposed motion correction method was first
assessed with raw two-photon Ca2+ imaging data at both the
neuronal population and single-spine scales. The quantitative
evaluation of motion-corrected imaging data demonstrates that
our method provides superior performance in comparison
to other motion correction approaches, and thus provides a
powerful solution to facilitate online functional imaging and
photostimulation experiments in neuroscience research.

MATERIALS AND METHODS

Data Acquisition
Adult (8–12 weeks old) male C57BL/6J mice were obtained
from the Laboratory Animal Center at the Third Military
Medical University. All experimental procedures related to the
use of animals were approved by the Third Military Medical
University Animal Care and Use Committee and were conducted
in accordance with institutional animal welfare guidelines.

For two-photon imaging in head-fixed awake mice (Li et al.,
2018), we first glued a titanium head post to the skull for head
fixation under isoflurane anesthesia. Three days after surgery,
animals received 1 ml of water supply per day for 2–3 days
and then underwent training and testing sessions with water
deprivation in their home cages. For imaging experiments with
Cal-520 AM (Tada et al., 2014), we exposed the right primary
auditory cortex of the mouse (Chen et al., 2011). Cal-520 AM
was dissolved in DMSO with 20% Pluronic F-127 to a final
concentration of 567 µM with artificial cerebral spinal fluid
(ACSF) for bolus loading. With a standard pipette solution, the
solution was diluted 1/10 for cell loading. After that, we used
a micropipette filling with the solution and inserted coaxially
into the targeted cortex. Finally, the dye-containing solution was
ejected in the cortical area by applying a pressure pulse to the
pipette. Ca2+ imaging was performed approximately 2 hours
after dye injection and lasted for up to 8 hours (Stosiek et al.,
2003). The mice were trained to perform a sound-evoked licking
task (Wang et al., 2020).

The imaging experiment was conducted with a custom-
built two-photon microscope system constructed with a 12 kHz
resonant scanner (model “LotosScan 1.0,” Suzhou Institute of
Biomedical Engineering and Technology, Suzhou, China), in
accordance with the set-up described previously (Jia et al., 2010,
2014). Two-photon excitation light was delivered by a mode-
locked Ti:Sa laser (model “Mai-Tai DeepSee,” Spectra Physics,
CA, United States), and a 40 × /0.8 NA water-immersion
objective (Nikon, Minato, Japan) was used for imaging. For
Ca2+ imaging experiments, the excitation wavelength was set to
920 nm. For neuronal population imaging, images of 600 × 600
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pixels were acquired at a 40 Hz frame rate. The size of the
field-of-view was approximately 200 × 200 µm. The average
power delivered to the brain was 30–120 mW. For dendritic spine
imaging, we used the LOTOS procedure (Chen et al., 2011, 2012).
The images, consisting of 250 × 250 pixels, were acquired at a
160 Hz frame rate. The size of the field-of-view was therefore
reduced to approximately 25 × 25 µm. The average power
delivered to the brain was 15–30 mW.

Motion Correction Method
Motion Correction Pipeline for Two-Photon Imaging
Data
Fast image feature extraction and registration (FIFER) operates in
a rigid correction flow (Figure 1A). Initially, we generate features
for an image with a density-based estimating and clustering
algorithm (Figure 1B). This process begins a calculation with
the template image (here we used the first frame of imaging
data) and the first raw frame for correction (i.e., the second
frame of imaging data). After obtaining features of the template
and first raw frame, we then generated features for the
rest of the raw frames by updating the features obtained
from the first raw frame with a fast process (Figure 1C).
After we obtained features for each frame, we matched the
features between the template image and the raw frames
according to the similarity metric (Figure 1D). Finally, we
calculated the rigid transformation parameters and conducted
the image registration. The computational details of each step
are described in the following sections. In the figures, the
brightness of the representative two-photon images was adjusted
for better visualization.

Generating Features From Two-Photon Image
To perform image density-based feature estimating and
clustering, we first initialized the generation of features with
the density estimate. To minimize the computational cost, we
acquired the coordinates around the high-intensity area, instead
of randomly inputting coordinates, to decrease the cost for the
following hill climbing procedure. In this work, we assume that
the features from accelerated segment test (FAST) (Rosten et al.,
2008) detector is a suitable algorithm to detect corners with high
speed. Figure 2A demonstrates that the corners detected by the
FAST algorithm are mostly distributed in high-intensity areas. To
reduce the number of repeated FAST features, we down-sampled
these coordinates by merging those near each other (Figure 2B).
Based on the initial FAST-detected features, we described the
distribution of the empirical density field in an image. Inspired
by Denclue (Hinneburg and Keim, 1998), we propose a weighted
kernel density estimation (W-KDE) algorithm, with which we
mapped each image pixel to a Gaussian kernel function weighted
by this pixel’s image value as its estimated density:

f̂Density(
−→p ) = 1

h2 ∑n
i=1 I(−→pi)

∑n
i=1 I(−→pi) · KGaussian(

−→p −−→pi
h )

KGaussian(
−→u ) = (2π)−1

· e−
(−→u )2

2

(1)

where −→p =
〈
x, y

〉
is an arbitrary coordinate in a partitioned ROI

(region of interest) of an image, −→pi =
〈
xi, yi

〉
is one coordinate

in the ROI, I(−→pi) is the pixel value in this position −→pi, n is the
number of pixels sampled from the ROI, h is a bandwidth to
smooth the density distribution, and KGaussian(

−→u ) is a Gaussian
kernel function which maps a two-dimensional vector −→u onto a
constant. Considering the distance between a given coordinate
and pixel intensity, we describe the influence from one pixel
−→pi with a pixel value of I(−→pi) to an arbitrary coordinate −→p

of the image as I(−→pi) · KGaussian(
−→p −−→pi

h ), which is quantified by
a weighted Gaussian kernel function. Thus, we could estimate
the density of an arbitrary coordinate −→p in a partitioned ROI
by calculating the sampled ROI’s pixel component density and
normalizing the sum of these components, which ensures that the
whole distribution is a normalized density distribution. In brief,
f̂Density(

−→p ) is the weighted mixture density of position−→p within
the total influence of the ROI. To demonstrate that, we selected
a fully sized ROI around an image and calculated each pixel’s
density given the ROI (Figure 3A) through W-KDE and revealed
the density field (Figure 3B) to visualize the density distribution.

Since we estimated a ROI’s density distribution, we analyzed
its ridge topography for feature extraction. Here, we obtained the
coordinates of high intensity regions and hence determined the
local maximums as cluster centers (Hinneburg and Keim, 1998).
The eq. (2) shows the derivation of W-KDE function with the hill
climbing algorithm:

∇̂fDensity(
−→p ) =

1
h4 ∑n

i=1 I(−→pi)

n∑
i=1

I(−→pi) · KGaussian(
−→p −−→pi

h
)

·(
−→p −−→pi)

−→p t+1
=
−→p t
+ δ

∇̂fDensity(
−→p t

)

||∇̂fDensity(
−→p t

)||2
(2)

where ∇̂fDensity(
−→p ) is the gradient of an arbitrary coordinate −→p

in the ROI, and δ is the step stride in hill climbing. Other variables
are the same as W-KDE equation. However, a fixed-step hill
climbing algorithm is generally poor in efficiency. Therefore, we
adapted a fast automatically step-adapted hill climbing approach
in our algorithm, which was based on previous work (Hinneburg
and Gabriel, 2007), as eq. (3) shows.

−→p t+1
=

∑n
i=1 I(−→pi) · KGaussain(

−→p t
−
−→pi

h
)·
−→pi∑n

i=1 I(−→pi) · KGaussain(
−→p t
−
−→pi

h
)

f̂Density(
−→p t+1

)− f̂Density(
−→p t

)

f̂Density(
−→p t+1

)
≤ ε

(3)

where ε is a given restriction to end hill climbing that also
represents the precision of the local maximum. Therefore, we
optimized the hill climbing to a faster algorithm by reducing
the iteration numbers based on the increase in rate of density.
Alternatively, we can simply stop the iteration when a coordinate
update distance is smaller than a threshold η.

||
−→p t+1

−
−→p t
||2 ≤ η (4)
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FIGURE 1 | Processing pipeline for two-photon Ca2+ imaging data. (A) Flowchart of the proposed motion correction method. The red marked modules are the key
steps in the processing flowchart. (B) Illustration of the feature (red dots) extraction for the imaging data. (C) Illustration of the feature update for a raw frame. The
features of the current frame and the next frame are marked as the red and blue dots, respectively. (D) Illustration of matching features between template image and
raw frame. The anatomical direction: a, anterior; m, medial; p, posterior; l, lateral.

FIGURE 2 | Features from accelerated segment test feature detection and sampled FAST features. (A) The corner features detected by FAST algorithm. (B) The
sampled FAST features are uniformly distributed for reducing the computational cost. The features are represented as red dots.

Hence we can start with any coordinate in the ROI and cluster
it to a local maximum, which is the top of a ridge topography
and probably represents a neuronal object. To update the initial
coordinates to a local maximum, we used a ROI centered by the
feature with an appropriate size of 101 pixels (Figure 3C). After
repeating the fast hill climbing procedure (Figure 3D) to the
coordinates of sampled FAST features with a rough termination,
where we calculate step distance of each feature during iterations

and simply terminate the fast hill climbing when the step distance
is smaller than a rough constant η in eq. (4), and we obtained
rough features with noise (Figure 4A). Then, we sorted all of
the rough features by their estimated densities and treated the
upper quartile features as filtered results (Figure 4B). Finally, we
repeated the fast hill climbing procedure on rough features with a
precise termination, where we finally terminate the hill climbing
when the density change rate of each feature is smaller than a
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FIGURE 3 | A global W-KDE for a two-photon image and a visual demonstration of fast hill climbing to update initial coordinates. (A) A representative two-photon
image within a global range ROI marked in red. (B) A topography of global W-KDE. The density map indicated with the grayscale bar painted on the right. (C) An
initial coordinate obtained from sampled FAST features with a 101 pixels-sized ROI centered by it. We mark the ROI in red and plot the initial coordinate and the local
maximum with crosses that are also plotted in panel (D). (D) A W-KDE of this ROI is to reveal the topography and process of fast hill climbing. The density map is
indicated with the grayscale bar painted on the right. Each iteration of this feature is marked on the topography by pink dots.

critical value as described in eq. (3), and merged the coincident
features (Figure 4C). After conducting these processes on the
template image and the first raw frame individually, we obtained
the initial pair of image features.

Updating Features With an Efficient Mode
Starting the calculation for the features of the first raw frame, we
updated the features of the current frame to those of the next
frame through the following procedure (Figure 5). First, we used
a fixed-size ROI centered on every coordinate of the feature in
the current frame under the hypothesis that the features between
two consecutive frames are adjacent. Then, we applied the fast
hill climbing algorithm to achieve local maxima in the same way
as before. This procedure is ultrafast and efficient for updating
features from consecutive imaging frames due to: (1) Only a
small number of features, which were extracted from the first
raw frame, were updated in this process; (2) features between two

consecutive frames were normally adjacent, so the hill climbing
iteration was stopped quickly; and (3) the fast hill climbing
algorithm could automatically adapt the step of hill climbing
depending on the distance to the local maximum. Therefore,
our approach has an advantage in computational efficiency by
updating features from consecutive imaging frames.

Matching Corresponding Features
When we obtained features of the template image (Figure 6A)
and one raw frame in the imaging sequence (Figure 6B), we
matched those features to obtain transformation parameters for
image registration. We then constructed the feature vector in
three dimensions: the x- and y-axis positions and the normalized
density (Figures 6C,D). In addition, we assumed that the
template image and the raw frame have similar image structure
in terms of position and density. Based on this hypothesis,
we deduced that the coupled features in the template image
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FIGURE 4 | Demonstration of the processing used to generate precise high-density features. (A) The sampled FAST features were processed by rough clustering.
(B) A filtering of features to reduce noises. (C) Clustering with a precise termination and merging the coincident features.

FIGURE 5 | Updating features in a consecutive mode. (A) Features of current frame marked by red dots. (B) Features of the next frame updated from features of the
current frame. We indicate features of the next frame with blue dots and those of the current frame with red dots. (C) Enlargement of the respective ROI in panel (B),
i.e., the change flow of coordinates during this iteration. The arrows indicate the movement directions.

and raw frame have the same relative position and estimated
density. Thus, we propose to create a descriptor for each feature
by reserving the differences between this feature and the rest
(Figures 6E,F).{

PTemplate = [
−→p Temp

1 ,
−→p Temp

2 ...
−→p Temp

k1−1 ,
−→p Temp

k1
]

PTarget = [
−→p Targ

1 ,
−→p Targ

2 ...
−→p Targ

k2−1,
−→p Targ

k2
]

Descriptor(−→p Temp
α ) = [−→u1,

−→u2, ,
−→uk1−1,

−→uk1 ]

Descriptor(−→p Targ
β ) = [−→v1,

−→v2, ...,
−→vk2−1,

−→vk2 ]

−→u k1 =
−→p Temp

k1
−
−→p Temp

α
−→v k2 =

−→p Targ
k2
−
−→p Targ

β

(5)

where the descriptors −→p Temp
α or −→p Targ

β are in their groups
of point sets. After obtaining the descriptor of each feature,
we matched the features by comparing the similarity of their
descriptors. To match two feature descriptors, the corresponding
elements between two descriptors were calculated for the Jaccard
similarity coefficient with a parameter ζ1 set as the tolerable

limit. If the calculated Jaccard similarity coefficient was larger
than a given threshold ζ2, their corresponding two features were
successfully matched. Eq. (6) describes this matching process.



J(Descriptor(−→p Temp
α ),Descriptor(−→p Targ

β ))

=

Descriptor
(
−→p Temp

α

)
∩ Descriptor

(
−→p Targ

β

)
Descriptor

(
−→p Temp

α

)
∪ Descriptor

(
−→p Targ

β

)
=

τ

2(k1 + k2 − τ)

τ =
∑k1,k2

m,n=1 L(
2||−→u m −

−→v n||2

||
−→u m||2 + ||

−→v n||2
)− τsame

L(σ) =

{
1, σ ≤ ζ1
0, σ > ζ1

(6)

where τsame represents the counts of multi-matching features.
We demonstrate matching the features of a template image
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FIGURE 6 | A visualization of the process to generate the descriptor. (A) The features for the template image obtained by FIFER features are marked by red dots. (B)
A raw frame to be corrected with its corresponding features. (C) The density distribution of the template image with corresponding features. (D) The density
distribution of the raw frame with corresponding features. The density maps in panels (C) and (D) are indicated with the grayscale bar painted on the right. (E) The
descriptor of a feature selected from the template image. (F) The descriptor of a feature from the raw frame. This descriptor represents a collection of the differences
between itself and all the other features in panels (E,F).

(Figure 7A) with a raw frame (Figure 7B). The matched relations
of those features are shown in Figure 7C.

In addition, we calculated the rotation transformation
parameters for the image feature descriptors. Inspired by SIFT

(Lowe, 2004), we used a histogram of oriented gradients (HoG)
to set a constructive main direction to transform each feature for
matching images (Figures 8A,B). Initially, we created several bins
to calculate the distributions of the summed magnitude of vectors

Frontiers in Neuroinformatics | www.frontiersin.org 7 April 2022 | Volume 16 | Article 851188

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-851188 April 26, 2022 Time: 13:28 # 8

Liu et al. Motion Correction of Ca2+ Imaging Data

FIGURE 7 | Matching relationships between the features of template image and raw frame. (A) The features obtained by FIFER of the template image; features are
marked by red dots. (B) A raw frame to be corrected with its corresponding features. (C) The corresponding coupling of the features; the matched relationships are
indicated by red lines.

within 36 directions for each descriptor. Then, we decomposed
each element of a descriptor of magnitudes into the upper and
lower boundaries and counted the total magnitude in those 36
directions (Figures 8C,D). After that, we determined the main
direction whose bin had the largest total magnitude. To obtain
continuous directions, we used parabola interpolation to estimate
a relative precise direction. Since we obtained the individual
direction of a descriptor, we transformed the descriptor for
matching features (Figures 8E,F). Then, we estimated a rotation
angle by applying singular value decomposition (SVD) to
multiple couples of the matched features (Besl and McKay, 1992).
Hence we calculated the covariance matrix among two groups of
features and applied SVD to obtain a transformation matrix and
perform the registration of the image.

Evaluation of Motion Correction
Performance
For the acquired two-photon imaging datasets, the similarities
between the template image and corrected imaging data frames
were calculated to evaluate motion correction performance. Here,
four popular image quality metrics, including the normalized
root mean square error (NRMSE), the peak signal-to-noise
ratio (PSNR), the structural similarity (SSIM) index, and

the normalized mutual information (NMI), were adopted in
our evaluation tests. A smaller NRMSE value and a larger
PSNR/SSIM/NMI value indicate better image correction quality
(Luo et al., 2021). The calculation time was measured for
processing each raw two-photon image of 600 × 600, 512 × 512
(neuronal population imaging) or 250 × 250 pixels (dendritic
spine imaging) using an AMD Ryzen 7 5800X 3.8 GHz
CPU, with 32 GB RAM.

RESULTS

Validation of Motion Correction by Fast
Image Feature Extraction and
Registration
To first perform an experimental validation of the proposed
method, we evaluated the motion correction results on simulated
imaging data. Here we used the NAOMi simulation toolbox
(Song et al., 2021) to simulate two-photon imaging data. We
set the numerical aperture (NA) of the objective lens as 0.8, the
NA of the illumination light as 0.6 and the laser power as 40
mW. The generated data video had a size of 500 × 500 pixels
and 100 frames. Figure 9A shows a representative example of
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FIGURE 8 | The calculation of direction of the selected features and transformation of corresponding descriptors for matching. (A) The features obtained by FIFER;
features are marked by red dots. (B) A raw frame with a rotation deviation and its corresponding features. The red arrows represent a two-dimensional descriptor of
the selected feature in panels (A,B). (C) The histogram of magnitude in directions bins of the template feature’s descriptor. (D) The histogram of magnitude in
directions bins of the raw frame feature’s descriptor. (E) The descriptor of the selected template feature within its main direction. (F) The transformed descriptor of
the selected frame feature within its main direction.
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FIGURE 9 | Application of FIFER to simulated data. (A) Template image (the first frame) of the clean simulated data. (B) Template image (the first frame) of the
simulated data added with Gaussian noise of a standard deviation σ = 0.10. (C) Template image (the first frame) of the simulated data combined with Gaussian noise
of a standard deviation σ = 0.25. (D) Estimation of shifts for the simulated data of different noise levels. FIFER’s error is calculated as the 2d-norm between the
estimated offsets by FIFER and ground truth offsets (artificially introduced).

simulated clean two-photon image. Then the synthetic noisy
imaging data were generated with random spatial shifts and
added Gaussian noise as the previous work (Pnevmatikakis and
Giovannucci, 2017). Gaussian noise with zero mean and standard
deviation sampled from [0, 0.25] were added to the clean two-
photon images to generate testing images. Figures 9B,C show
two noisy shifted images (noise levels: σ = 0.10 and σ = 0.25).
As we can see (Figure 9D), the FIFER algorithm can estimate
the shifts remarkably well. We evaluated the performance of
motion correction for the simulated data with different noise
levels, and the estimate errors do not change much with the noise
level increases. Therefore, our proposed method achieved good
performance on the simulation data test.

To further evaluate the performance of motion correction, we
used two different two-photon imaging scales of datasets, i.e., the
scale of a neuronal population (Figure 10, top) and the scale of
a dendritic spine (Figure 10, bottom). Figures 10A,B shows the
examples of the template images and the raw imaging frames
(mixed with template images) to be corrected, respectively. After
we applied our motion correction method for processing the

raw imaging frames, the two representative frames were aligned
to their corresponding templates (Figure 10C). This figure
demonstrates that the raw frames were correctly transformed
(here, a translation) to be matched with the template images.

In Figure 11, we demonstrate the motion correction effects
by showing the average image of the imaging data before and
after motion correction. As the motion artifacts distort some of
the imaging frame sequences, the average of a functional imaging
data might suffer from inconsistency. As can be seen from the
averaged raw image of the two imaging datasets (Figure 11A),
both the neuronal population and dendritic spine imaging data
show a blur effect due to motion artifacts during recording. By
contrast, after we performed our motion correction method with
the raw imaging data, the average of corrected images shows
greatly improved quality, and the cells and spines are clearly
visible without obvious blurred effect (Figure 11B). Thus, the
imaging data were successfully restored.

We further addressed the effects of motion corrected neuronal
activity as a time series of fluorescence changes. We identified
the individual neurons and extracted their Ca2+ signals from the
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FIGURE 10 | The motion correction effect in single raw frame of two-photon imaging data. (A) The template images of the population level and spine level. (B) Raw
frames from population level and spine level with motion artifacts which are mixed with corresponding template image. (C) The correction of the raw frames, which
are mixed with corresponding template image. In a mixed image, the image patches from the template and single frame are equally distributed and marked by red
grid lines. The equally distribution means any two adjacent patches are from the template image and single frame, respectively. Each center of the mixed image is a
patch from corresponding template image, which is marked by yellow rectangle. The red arrows indicate the performance of registration.

imaging frames to assess the change dynamics of Ca2+ transients
both before (Figure 12A) and after (Figure 12B) motion
correction. The raw imaging data exhibit that the motion resulted
in spike-like changes (Figure 12C, left) or even larger distortions
(Figure 12D, left) in the time series, which are indicated by
the black arrows in Figures 12C,D. After we processed the
raw imaging data with our method, the motion artifact-induced
changes were successfully reduced and the neuronal signals
were clearly restored (Figures 12C,D, right). Hence, the quality
of individual Ca2+ transients processed by motion correction
algorithm was clearly higher than that of the raw signals, which
can facilitate downstream analyses, e.g., the detection of soma
(Guan et al., 2018) and neuronal Ca2+ transients.

Comparison of Different Methods for
Motion Correction
To further assess the motion correction performance of our
proposed method, we compared FIFER with other popular image
registration methods. We tested them with three two-photon
imaging datasets, including neuronal population (n = 200 and

n = 1825) and dendritic spine (n = 1500) imaging frames to
evaluate the motion correction performance of the methods. The
image registration methods used for comparison consisted of
two groups: feature-based methods and intensity-based methods.
For the classic feature-based methods, the SIFT (Lowe, 2004),
ORB (Rublee et al., 2011), and AKAZE (Alcantarilla et al.,
2013) methods were used for comparison. For the widely used
intensity-based methods, TurboReg (Thevenaz et al., 1998),
Moco (Dubbs et al., 2016), NoRMCorre (Pnevmatikakis and
Giovannucci, 2017), the real-time processing method (Mitani
and Komiyama, 2018), and Suite2p (Pachitariu et al., 2017) were
used for testing.

First, we tested FIFER and the abovementioned methods
with our dataset of neuronal population imaging. As the testing
results showing in Table 1, our FIFER method exhibits superior
motion correction performance compared to existing image
registration approaches in terms of NRMSE (0.9131 ± 0.0416),
PSNR (19.7529 ± 0.3930), SSIM (0.1972 ± 0.0105), and NMI
(0.0281 ± 0.0027). In addition, the calculation time of our
proposed method is just 2.92 ms for processing each image.
For the feature-based methods, SIFT shows better relative
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FIGURE 11 | The correction effect in average frame of two-photon imaging data. (A) The average of raw frames at population level and spine level. (B) The average
of motion corrected frames at population level and spine level.

motion correction performance than ORB and AKAZE with a
longer computational time, and ORB is relatively fast but has
poor correction ability. For the intensity-based methods, we
tested TurboReg with two working modes: Accurate and Fast.
The Accurate mode of TurboReg achieved a better correction
performance than that of Fast mode, while also requiring a longer
calculation time. As the previous work reported, Moco achieved
a fast processing of the data, using 26.92 ms for processing each
frame. However, the motion correction performance of Moco is
just comparable to the Fast mode of TurboReg. Moreover, we
also tested NoRMCorre with its two modes, Rigid and Non-rigid.
The Non-rigid mode of NoRMCorre performed well and was the
closest to matching the motion correction performance achieved
by FIFER, ranking second in our comparative analysis. However,
the calculation time for the Non-rigid mode was the longest
among the tested methods. In comparison, the Rigid mode of
NoRMCorre also achieved good results with a much shorter time
for processing. For the real-time processing method, it was very
fast when processing the raw frames, requiring 3.85 ms for each
frame, and its correction performance was as the same level as
that of Moco and the Fast mode of TurboReg. For correcting the

images with Suite2p, it used 11.91 ms for processing each frame
and revealed similar performance as that of Moco. Hence Suite2p
achieved a moderate motion correction accuracy and speed.
Taken together, our proposed method not only provides superior
motion correction results (P < 0.05, paired t-test), but also uses
minimum processing time compared to the other tested methods.

We next compared FIFER with those methods for another
dendritic spine imaging dataset, because this is also a popular
imaging scale. As the results (Table 2) demonstrate, our
proposed method also provided the best correction results
(P < 0.05, paired t-test) in terms of NRMSE (0.8490 ± 0.0508),
PSNR (18.5548 ± 0.5045), SSIM (0.1791 ± 0.0149), NMI
(0.0733 ± 0.0043), and the fastest processing speed (0.59 ms for
processing each frame). Among the other tested methods, the
Accurate mode of TurboReg achieved the second-best correction
result, and the real-time processing method achieved the second
fastest processing speed (0.76 ms for processing each frame).

To supplement the validation datasets, we further tested
FIFER and those methods with a publicly available dataset
provided by the CaImAn project (Giovannucci et al., 2019). The
testing results (Table 3) show that, FIFER (1.77 ms for processing
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FIGURE 12 | The motion correction effect of the neuronal signals. (A) Two representative neurons in the raw averaged frames, the neurons are indicated by dashed
circles in yellow. (B) Two representative neurons in the corrected averaged frames. (C) The raw and corrected Ca2+ signals of neuron #1. (D) The raw and corrected
Ca2+ signals of neuron #2. The black arrows indicate the distorted period due to motion artifacts.

each frame) was clearly faster than all other algorithms,
meanwhile it also achieved the best (P < 0.05, paired t-test)
correction performance in terms of NRMSE (0.7930 ± 0.1346),
PSNR (27.0004 ± 1.3278), SSIM (0.4632 ± 0.0382), and NMI
(0.0434 ± 0.0033). These validation results indicate a high
generalization ability of FIFER, as it performed consistently
fast and accurate for processing multiple datasets acquired
from different labs.

DISCUSSION

In this work, we proposed the FIFER method to perform motion
correction for two-photon Ca2+ imaging data by extracting
features via image density-based estimation and raw image
registration. Using a regular personal computer, the proposed
method showed promising performance in both computational
speed and motion correction precision. The testing results
showed that our method achieved strong results for not only
simulated imaging data (Figure 9) but also both neuronal
population and dendritic spine imaging datasets (Figures 10, 11).
In addition, we demonstrated that the individual neuronal signal

quality was clearly improved using our approach (Figure 12).
The comparative analyses of FIFER against previously reported
image registration approaches for motion correction in three
imaging datasets (Tables 1–3) highlight the superior ability of our
proposed method, as it is faster than other approaches while also
achieving the best image correction accuracy. Hence, adopting
our image correction method for online two-photon imaging
experiments will benefit both functional imaging and closed loop
photostimulation. The code implementing FIFER is published on
the project’s GitHub page.

To extract features for matching images, we proposed a new
algorithm, namely, W-KDE and density-based clustering, to
extract the density features from a single frame of two-photon
imaging data. Our proposed method outperformed the other
feature-based and intensity-based methods for motion correction
because it operates in a robust way to extract features, and then
finds the optimal template matching solution. As our proposed
method registered a pair of images by extracting local features,
it reduced the differential contents from the global image. By
contrast, the other feature-based methods, including SIFT, ORB,
and AKAZE, did not show good performance. The reason for
this might be that their feature extraction suffered from the
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TABLE 1 | Comparison of fast image feature extraction and registration (FIFER) with other methods (Mean ± SD) for neuronal population imaging dataset (n = 200
frames, 600 × 600 pixels for each frame).

Method Metric (P-value: FIFER vs. other method) Time (ms)

NRMSE PSNR SSIM NMI

SIFT 0.9922 ± 0.0641
(P = 1.12e-35)

19.0407 ± 0.5627
(P = 6.13e-36)

0.1726 ± 0.0224
(P = 2.46e-35)

0.0217 ± 0.0059
(P = 7.30e-35)

105.23

ORB 1.0202 ± 0.0566
(P = 2.91e-57)

18.7942 ± 0.4903
(P = 2.00e-57)

0.1594 ± 0.0248
(P = 1.42e-51)

0.0191 ± 0.0065
(P = 3.15e-45)

26.87

AKAZE 1.0082 ± 0.0703
(P = 8.81e-45)

18.9045 ± 0.6131
(P = 6.41e-45)

0.1740 ± 0.0181
(P = 1.10e-41)

0.0223 ± 0.0045
(P = 2.22e-41)

52.41

TurboReg (Accurate) 0.9738 ± 0.0345
(P = 2.59e-42)

19.1906 ± 0.3063
(P = 1.93e-42)

0.1799 ± 0.0124
(P = 1.68e-55)

0.0236 ± 0.0012
(P = 2.78e-69)

140.87

TurboReg (Fast) 1.0369 ± 0.0212
(P = 2.46e-96)

18.6414 ± 0.1759
(P = 8.20e-94)

0.1700 ± 0.0110
(P = 4.53e-92)

0.0223 ± 0.0009
(P = 1.23e-85)

118.15

Moco 1.0361 ± 0.0211
(P = 9.23e-96)

18.6484 ± 0.1749
(P = 2.96e-93)

0.1715 ± 0.0109
(P = 3.41e-86)

0.0224 ± 0.0009
(P = 6.30e-84)

26.92

NoRMCorre (Rigid) 0.9601 ± 0.0422
(P = 9.29e-23)

19.3160 ± 0.3796
(P = 4.60e-23)

0.1842 ± 0.0119
(P = 2.17e-34)

0.0240 ± 0.0014
(P = 1.46e-56)

61.28

NoRMCorre (Non-rigid) 0.9521 ± 0.0181
(P = 1.46e-28)

19.3817 ± 0.1641
(P = 5.53e-29)

0.1922 ± 0.0090
(P = 1.28e-12)

0.0246 ± 0.0009
(P = 6.73e-53)

210.21

Real-time processing 1.0147 ± 0.0667
(P = 7.10e-49)

18.8815 ± 1.2811
(P = 4.70e-18)

0.1755 ± 0.0591
(P = 2.93e-7)

0.0254 ± 0.0270
(P = 1.55e-1)

3.85

Suite2p 1.0087 ± 0.0254
(P = 3.99e-73)

18.8821 ± 0.2166
(P = 3.11e-72)

0.1694 ± 0.0130
(P = 5.86e-82)

0.0226 ± 0.0013
(P = 1.06e-81)

11.91

FIFER 0.9131 ± 0.0416 19.7529 ± 0.3930 0.1972 ± 0.0105 0.0281 ± 0.0027 2.92

The calculation time is for each frame. Statistical tests were calculated using the paired t-test.

TABLE 2 | Comparison of FIFER with other methods (mean ± SD) for dendritic spine imaging dataset (n = 1500 frames, 250 × 250 pixels for each frame).

Method Metric (P-value: FIFER vs. other method) Time (ms)

NRMSE PSNR SSIM NMI

SIFT 0.9253 ± 0.0815
(P = 7.06e-260)

17.8256 ± 0.7608
(P = 9.59e-264)

0.1657 ± 0.0192
(P = 2.78e-108)

0.0661 ± 0.0089
(P = 1.50e-254)

15.79

ORB 0.9344 ± 0.0783
(P = 1.11e-313)

17.7370 ± 0.7262
(P = 2.47e-319)

0.1630 ± 0.0191
(P = 2.32e-145)

0.0647 ± 0.0090
(P = 6.61e-295)

10.92

AKAZE 0.9312 ± 0.0809
(P = 1.90e-294)

17.7694 ± 0.7513
(P = 2.95e-299)

0.1628 ± 0.0202
(P = 7.10e-49)

0.0668 ± 0.0077
(P = 3.73e-280)

7.78

TurboReg (Accurate) 0.9064 ± 0.0292
(P = 1.45e-258)

17.9752 ± 0.2775
(P = 1.59e-264)

0.1539 ± 0.0090
(P = 9.99e-140)

0.0719 ± 0.0027
(P = 2.27e-76)

109.58

TurboReg (Fast) 0.9654 ± 0.0135
(P = 0)

17.4240 ± 0.1197
(P = 0)

0.1391 ± 0.0045
(P = 0)

0.0711 ± 0.0025
(P = 2.70e-154)

104.46

Moco 0.9604 ± 0.0111
(P = 0)

17.4687 ± 0.1000
(P = 0)

0.1411 ± 0.0043
(P = 0)

0.0715 ± 0.0025
(P = 1.80e-104)

9.24

NoRMCorre (Rigid) 0.9325 ± 0.0189
(P = 0)

17.7263 ± 0.1742
(P = 0)

0.1462 ± 0.0054
(P = 0)

0.0711 ± 0.0025
(P = 9.10e-175)

7.59

NoRMCorre (Non-rigid) 0.9301 ± 0.0147
(P = 0)

17.7480 ± 0.1361
(P = 0)

0.1485 ± 0.0049
(P = 0)

0.0720 ± 0.0026
(P = 5.10e-77)

57.4

Real-time processing 0.9550 ± 0.0254
(P = 0)

17.5269 ± 0.5620
(P = 0)

0.1417 ± 0.0222
(P = 0)

0.0718 ± 0.0096
(P = 5.54e-9)

0.76

Suite2p 0.9506 ± 0.0252
(P = 0)

17.5606 ± 0.2262
(P = 0)

0.1428 ± 0.0061
(P = 0)

0.0697 ± 0.0029
(P = 4.00e-323)

1.90

FIFER 0.8490 ± 0.0508 18.5548 ± 0.5045 0.1791 ± 0.0149 0.0733 ± 0.0043 0.59

The calculation time is for each frame. Statistical tests were calculated using the paired t-test.

signal-to-noise ratio issues with the imaging data. The insufficient
common neuronal morphology or uneven background might
cause classical feature-based motion correction methods to

fail. Specially, the features extracted by our approach mostly
represent some certain cellular structures: the feature marks
the strongest Ca2+ signals of the soma or the dendritic
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TABLE 3 | Comparison of FIFER with other methods (Mean ± SD) for neuronal population imaging dataset (the CaImAn dataset file images_N.01.01, n = 1825 frames,
512 × 512 pixels for each frame).

Method Metric (P-value: FIFER vs. other method) Time (ms)

NRMSE PSNR SSIM NMI

SIFT 0.9611 ± 0.1576
(P = 0)

25.3388 ± 1.4258
(P = 0)

0.3193 ± 0.1376
(P = 3.48e-295)

0.0218 ± 0.0161
(P = 0)

67.54

ORB 0.9523 ± 0.1563
(P = 0)

25.4124 ± 1.3676
(P = 0)

0.3744 ± 0.0696
(P = 0)

0.0283 ± 0.0097
(P = 0)

18.31

AKAZE 0.8843 ± 0.1436
(P = 0)

26.0484 ± 1.2999
(P = 0)

0.4022 ± 0.0433
(P = 0)

0.0346 ± 0.0039
(P = 0)

40.28

TurboReg (Accurate) 0.8789 ± 0.1365
(P = 0)

26.0914 ± 1.2283
(P = 0)

0.4093 ± 0.0367
(P = 0)

0.0347 ± 0.0025
(P = 0)

112.07

TurboReg (Fast) 0.8943 ± 0.1398
(P = 0)

25.9418 ± 1.2370
(P = 0)

0.4005 ± 0.0383
(P = 0)

0.0337 ± 0.0024
(P = 0)

109.20

Moco 0.8945 ± 0.1402
(P = 0)

25.9403 ± 1.2400
(P = 0)

0.4003 ± 0.0386
(P = 0)

0.0337 ± 0.0024
(P = 0)

15.00

NoRMCorre (Rigid) 0.8899 ± 0.1396
(P = 0)

25.9848 ± 1.2412
(P = 0)

0.4027 ± 0.0383
(P = 0)

0.0340 ± 0.0024
(P = 0)

39.77

NoRMCorre (Non-rigid) 0.8821 ± 0.1392
(P = 0)

26.0631 ± 1.2486
(P = 0)

0.4090 ± 0.0379
(P = 0)

0.0346 ± 0.0024
(P = 0)

264.38

Real-time processing 0.8897 ± 0.1390
(P = 0)

25.9905 ± 1.2984
(P = 0)

0.3976 ± 0.0401
(P = 0)

0.0342 ± 0.0119
(P = 1.70e-179)

2.70

Suite2p 0.8881 ± 0.1400
(P = 0)

26.0037 ± 1.2457
(P = 0)

0.4041 ± 0.0385
(P = 0)

0.0341 ± 0.0024
(P = 0)

8.28

FIFER 0.7930 ± 0.1346 27.0004 ± 1.3278 0.4632 ± 0.0382 0.0434 ± 0.0033 1.77

The calculation time is for each frame. Statistical tests were calculated using the paired t-test.

spine, hence the extracted features by our approach are more
accurate than the traditional feature extraction approaches for
two-photon images. In addition, the intensity-based methods,
including TurboReg, Moco, NoRMCorre, Suite2p and the real-
time processing method, also perform image registration based
on global image information. Hence, they might also encounter
the issue that the intensity difference between the non-common
areas (e.g., the noisy background) from the image pair may
have a negative impact on the image registration and result
in a sub-optimal image registration solution (Li et al., 2020).
Furthermore, the sparse features extracted from foreground
cellular structures by our approach hardly suffer from the
background noise and might lead to an optimal solution. For
instance, the dendritic spine imaging data only presented small
common areas, so FIFER using local features achieved better
results than other methods (Table 2). Therefore, the testing
results show that our feature extraction and matching method
provides robust results for correcting motion artifacts at different
two-photon imaging scales.

Moreover, the testing results show that our method is
ultrafast to find an optimal matching solution for an image
pair. Only the real-time processing method achieved comparable
calculation speed, and the other methods are much slower
(Tables 1–3). With our algorithm, once features were extracted
for the first raw frame, we could conduct an ultrafast
update of features with nearby ROI gradients within several
iterations. Across the whole imaging frame sequence, this
kind of feature extraction strategy needs only once global
image search to cluster features for the first raw frame and

template image. Following this initial search, the features of
the remaining raw frames can be quickly generated based
on the previous information. By contrast, the other methods
used global image content (Mitani and Komiyama, 2018); as
a result, their computational costs were relatively larger than
that of our method.

It is also worth to note that, the features in the raw
two-photon images are non-stationary, hence one of the best
approaches for feature detection might be performing spatio-
temporal feature extraction to tackle temporal inconsistencies.
Although computational complexity increases with spatio-
temporal information extracted from consecutive frames of
imaging data, the processing can preserve both the morphology
features and temporal neural dynamics (Luo et al., 2021).
As another consequence of non-stationarity, it also poses a
challenge for evaluating motion correction, because single metric
is hardly able to quantify the performance well. Therefore, a
series of complementary metrics in both spatial and temporal
dimensions can be combined as the most appropriate solution
for measuring the performance quantification, which still needs
further investigations.

In this study, we demonstrate that FIFER performed well
for motion correction task and required only a conventional
computer, such success indicates that it would be desirable
to implement FIFER as online processing software and use it
for neurobiology experiments requiring online observation and
stimulation. However, it warrants to mention that FIFER is
designed as a frame-by-frame 2D motion correction method,
hence it has the limitation for dealing with the distortions
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induced by 3D brain movements, which requires 3D motion
correction method, e.g., (Griffiths et al., 2020). In addition,
although our method demonstrated promising motion
correction performance and a fast processing speed in a rigid
mode, it would be worthwhile to extend our method to treat
affine (Li et al., 2020) or non-rigid distortions (Pnevmatikakis
and Giovannucci, 2017) in complex imaging experiments, such
as in chronic two-photon imaging to study learning-induced
neuronal activity changes.
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