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The tumor microenvironment (TME) influences disease initiation and progression. Cross-
talks of cells within TME can affect the efficacy of immunotherapies. However, a precise,
concise, and comprehensive TME landscape in neuroblastoma (NB) has not been
established. Here, we profiled the TME landscape of 498 NB-related patients on a
self-curated gene list and identified three prognostic TMEsubgroups. The differentially
expressed genes in these three TMEsubgroups were used to construct a genetic signature
of the TME landscape and characterize three GeneSubgroups. The subgroup with the
worst overall survival prognosis, the TMEsubgroup/GeneSubgroup3, lacked immune cell
infiltration and received the highest scores of MYCN- and ALK-related signatures and
lowest scores of immune pathways. Additionally, we found that the GeneSubgroup3might
be benefited from anti-GD2 instead of anti-PD-1 therapy. We further created a 48-gene
signature, the TMEscore, to infer prognosis and validated it in three independent NB
cohorts and a pan-cancer cohort of 9,460 patients. We did RNA-seq on 16 samples and
verified that TMEscore was higher in patients with stage 3/4 than stage 1/2 diseases. The
TMEscore could also predict responses for several immunotherapies. After adding clinical
features, we found that the nomogram-based score system, the TMEIndex, surpassed the
current risk system at predicting survivals. Our analysis explained TME at the
transcriptome level and paved the way for immunotherapies in NB.
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INTRODUCTION

Neuroblastoma (NB), derived from the sympathetic nervous systemwith a broad spectrum of clinical
manifestations, is the most common extracranial solid tumor in childhood (Jones et al., 2019).
Several genetic alterations, such as MYCN-amplification, ALK mutation, and segmental
chromosomal alterations, have been found to be associated with the oncogenesis and
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progression of NB. Despite surgeries, chemotherapies, and
immunotherapies having been administered to patients, the
event-free survivals of high-risk phenotypes remain low (Park
and Cheung, 2020). Thus, new drug targets and synergistic
combination therapies are needed to be unearthed.

Cellular bidirectional communications are vital for tumor
cells growth, and the tumor microenvironment (TME)
influences disease initiation, progression, and patient
prognosis (Galon and Bruni, 2020). A subset of tumor-
associated macrophages within the TME might contribute to
disease progression despite immunosurveillance, but other
populations might support the efficacy of anticancer
therapies (Vitale et al., 2019). Myeloid-derived suppressor
cells (MDSCs) and regulatory T cells (Treg cells) infiltrate
the TME to disrupt the immune surveillance and inhibit
cytolytic activities (Ferreira et al., 2019; Veglia et al., 2021).
In NB, tumor-associated macrophages produce IL-1β and
tumor necrosis factor-α to regulate arginine metabolism and
thus promote cell proliferation (Fultang et al., 2019). NB tumor
cells show a low tumor mutational burden and escape the
immune system by downregulating HLA (Ferreira et al.,
2019; Veglia et al., 2021). These results suggest that
investigations of TME in NB could reveal the potential
mechanisms of tumor progression.

Immune-checkpoint therapies have been demonstrated to be
effective in a number of cancers (Horn et al., 2018; André et al.,
2020; Gutzmer et al., 2020). High-risk NB patients lack tumor-
infiltrating lymphocytes and programmed-death ligand-1 (PD-
L1) expression, indicating that these patients are not qualified
for anti-PD-L1 regimes (Srinivasan et al., 2018). Instead, a
disialoganglioside GD2 is presented at high density on all
tumors, and anti-GD2 therapies are impressive in improving
the survivals of NB patients (Ladenstein et al., 2018; Heczey
et al., 2020). However, it is not determined which patients would
benefit from diverse immunotherapies in a transcriptome
aspect.

In this study, we identified NB-specific TME markers
from single-cell analysis and profiled the TME landscape
and its genetic background from 498 NB patients. Among
three subgroups, the one with the worst overall survival
prognosis, TMEsubgroup3, lacked immune cell infiltration.
At the same time, the corresponding GeneSubgroup3 received
the highest scores of MYCN- and ALK-related signatures and
lowest scores of immune pathways but would benefit from
anti-GD2 therapies. We further created a 48-gene signature,
the TMEscore, to infer prognosis and validated its accuracy in
three independent NB cohorts and a pan-cancer cohort of
9,460 patients. We verified that TMEscore was higher in
stage 3/4 than stage 1/2 patients by RNA-seq on 16
samples. After combining with clinical information, we
found that the nomogram-based score system, the
TMEIndex, surpassed the current Children’s Oncology
Group (COG) risk classification system at predicting
survivals. Overall, our analysis explained TME phenotype
at a transcriptome level and paved the way for precise
immunotherapies for NB.

MATERIALS AND METHODS

Neuroblastoma Bulk RNA-Seq Data
Acquisition
In this study, we gathered three microarray datasets and one
RNA-seq dataset, GSE49710 (SEQC), E-MTAB-8248, and
E-MTAB-179, all based on Agilent-020382 Human Custom
Microarray 44 k, with 498, 478, and 223 patients, respectively,
for NB analysis. These datasets were downloaded from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). The
raw files were preprocessed using the RMA algorithm for
background adjustment and quantile normalization by the
limma functions “backgroundCorrect” and
“normalizeBetweenArrays” (Ritchie et al., 2015). Probes were
annotated into gene symbols by GPL16876. When encountered
with distinct probes corresponding to the same genes, probes with
the maximum median values were accepted. Level 4 gene-
expression data of Therapeutically Applicable Research To
Generate Effective Treatments (TARGET) were downloaded
from the UCSC Xena browser (GDC hub: https://gdc.
xenahubs.net). For the TARGET dataset, RNA-sequencing
data [fragments per kilobase of exon per million mapped
fragments (FPKM) values] were transformed into transcripts
per kilobase million (TPM) values. The Ensemble IDs were
annotated into gene symbols, and protein-coding genes were
extracted using gencode. v22. gtf (https://www.gencodegenes.org/)
according to The Cancer Genome Atlas (TCGA) pipeline (https://
docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_
mRNA_Pipeline/).

To address the batch effect between each chip and other
sequencing backgrounds, we utilized the “combat” function in
sva R package (http://bioconductor.org/packages/release/bioc/
html/sva.html). The batch-corrected expression matrix was
used for downstream analysis.

Clinical information, including age, sex, MYCN status,
International Neuroblastoma Staging System (INSS) stage,
COG risk, overall survival, event-free survival, and their
survival time, was retrieved from supplementary files of these
studies and is summarized in Supplementary Table S1. We used
the SEQC cohort to portray the TME in NB, and the remaining
three cohorts were used to validate prognostic signatures.

Gene Set Construction
Single-cell RNA-seq count data of six NB patients with
Chromium Single Cell 30 V3 Reagent Kit were downloaded
from GEO (GSE137804) for the NB-specific marker
identification. Cell types were annotated by Dong et al. (2020)
and retrieved in the supplementary file.

We designed a pipeline to construct a compendium of
microenvironment genes related to NB-specific cell subsets.
We modified the gene list acquired from Charoentong et al.
(2017), deleting markers that expressed on NB tumor cells
and adding markers of endothelial cells, fibroblasts, and
Schwann cells. Markers were identified in the single-cell
RNA-seq data.
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First, single-cell RNA-seq counts were preprocessed
and visualized by the Seurat functions “NormalizeData,”
“FindVariableFeatures,” “ScaleData,” “RunPCA,” “FindNeighbors,”
“FindClusters,” “RunUMAP,” and “DimPlot” with default
parameters (Stuart et al., 2019). Cells were removed when two
diverse cell types were grouped into the same cluster. Cell type
markers were identified by the “FindAllMarkers” function. The top
20markers for endothelial cells, fibroblasts, and Schwann cells were
added to the gene list directly. Finally, we removed markers that
expressed on NB tumor cells in the single-cell data from the list.
These procedures gave an NB-peculiar microenvironment
backdrop that was composed of 31 types of cells.

Inference of the Abundances of Cells in
Tumor Microenvironment
To calculate the relative proportions of each cell in the biopsy,
single-sample gene set enrichment analysis (ssGSEA) was applied
to the bulk RNA-seq data of the SEQC cohort. This was achieved
by the GSVA function “gsva.” We also used the TIMER,
CIBERSORT, quanTIseq, MCP-counter, and EPIC algorithms to
infer cell infiltrations on the website (http://timer.cistrome.org/).

Consensus Clustering of Samples
For a given cells × samples matrix, samples were grouped by the
unsupervised clustering K-means methods. The best number of
clusters was determined by the consensus clustering algorithm via
the ConsensusClusterPlus R package.

Differentially Expressed Genes Analysis
To identify genes contributing to the unbalanced TME and survival
outcomes, we did the differentially expressed genes (DEG) analysis
across three subgroups identified in Section 2.4 in the SEQC
cohort. DEGs were discovered by the limma package, with the
absolute values of log2(fold-change) greater than 1.4 and an
adjusted p-value below 0.05. For the DEGs × samples matrix,
samples were grouped by the unsupervised clustering K-means
methods to obtain clusters in transcriptome backgrounds.

Function and Pathway Analysis
To identify the biological functions of these DEGs in different
subgroups, we conducted gene ontology (GO) enrichment
analysis by clusterProfiler R package, with the p-value adjusted
by Benjamini–Hochberg methods.

The immune, stromal, and oncological pathways, including
CD8 T-effector, antigen processing machinery, immune-
checkpoint, epithelial–mesenchymal transition (EMT) markers,
pan-fibroblast TGF-β response signature, DNA replication-
dependent histones, mismatch repair, nucleotide excision repair,
and DNA damage repair, were curated by Zeng et al. (2019).
Additionally, we retrieved a 157 MYCN-associated gene signature
from Valentijn et al. (2012) and 9 telomere maintenance
mechanism-associated signatures from Nersisyan et al. (2019).

For the pathway analysis, the principal component analysis
was performed on the genes × samples matrix, where genes were
from each pathway signature. Then, the principal component 1 of
each sample was extracted to serve as the pathway score. This

approach has the advantage of focusing the score on the set with
the largest block of well-correlated (or anticorrelated) genes in the
set while down-weighting contributions from genes that do not
interact with other set members.

Gene Traits Analysis
To explore gene patterns among subgroups, we collected curated
cytokines from Immport Cytokine Registry (https://www.
immport.org/resources/cytokineRegistry), immune-checkpoint
genes from a database (https://www.rndsystems.com/cn/research-
area/co–stimulatory-and-co–inhibitory-molecules), and GD2-related
synthases from one literature (Sorokin et al., 2020). We also
calculated IMPRES (Auslander et al., 2018), a predictor of various
immunotherapies responses, and a GD2 positive predictor as the
sum of ST8SIA5 and B4GALNT1 (Sorokin et al., 2020).

Establishment of the TMEscore
To construct a prognostic model predicting NB survivals, we first
conducted univariable Cox regressions on all DEGs on the SEQC
cohort. Genes that owned hazard ratios (HR) < 1 and p < 0.05
were designated as group A and those with HR > 1 and p < 0.05
were designated as group B. For group A and group B genes, we
conducted principal component analysis on each cohort and
extracted principal component 1 as ScoreA and ScoreB,
respectively.

ScoreA � PC1genes ∈ A

ScoreB � PC1genes ∈ B

For the jth patient, the TMEscore was calculated as:

TMEscorej � 2pScoreBj − ScoreAj

Patients were split in to high- and low- TMEscore groups based
on their scores. For each cohort, the best cutoff was determined by
the “surv_cutpoint” function in the survminer package (https://cran.
r-project.org/web/packages/survminer/index.html).

Evaluation of Prognostic Values of
TMEscore in Other Cancers
We downloaded FPKM-normalized RNA-seq data from TCGA
pan-cancer projects on the UCSC Xena website (http://xena.ucsc.
edu/). This included 9,460 patients with adequate survival
information (survival time > 30 days) from 30 cancer types.
FPKM values were transformed into TPM values for analysis.

To extend our TMEscore derived from NB, TMEscores were
calculated in 30 cancer types (TCGA pan-cancer project) using
the same formula earlier, and patients were grouped into high-
and low-TMEscore groups. The cutoff values were determined by
the “surv_cutpoint” function within each cancer type.

Evaluation of Predictive Values of TMEscore
in Immunotherapies
Five RNA-seq data of different immunotherapy trials and
experiments were retrieved and preprocessed under the
following pipeline. For the metastatic melanoma with the anti-
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MAGE-3 cohort (GSE35640, N = 55) and the mouse model with
the anti-CTLA-4 cohort (GSE63557, N = 20), normalized
expressions were downloaded. For the urothelial carcinoma
with anti-PD-L1 cohort (IMvigor, N = 298), counts were
accessed with the “IMvigor210CoreBiologies” R package and
normalized by the size factors provided by the package. For
the melanoma with the anti-PD-1 cohort (GSE78220, N = 28),
FPKM values were downloaded. For the melanoma cohort with
various immunotherapies [TCGA—skin cutaneous melanoma
(SKCM), N = 36], FPKM values were downloaded and
transformed into TPM values. Associated clinical information
was retrieved from supplementary files of these studies.

To test whether our TMEscore derived from NB could predict
immunotherapy responses, TMEscores were calculated in each
cohort mentioned earlier using the same formula, and patients
were grouped into high- and low-TMEscore groups. The cutoff
values were calculated within each cancer type.

Establishment of the Nomogram and
TMEIndex
To assure the TMEscore was independent of clinical variables, we
did uni- and multivariable Cox regression analysis on the
TMEscore, age, MYCN status, sex, stage, and COG risk. The
nomogram, which could help clinicians make decisions, was
established by multivariable Cox regression and visualized by
the rms R package (https://cran.r-project.org/web/packages/rms/
index.html). The total points a patient received in the nomogram
were assigned as the TMEIndex. Patients were also split into high-
and low- TMEIndex groups by the best cutoff determined by the
“surv_cutpoint” function in the survminer package.

To compare the prognostic efficacy of the TMEscore and the
TMEIndex, we graphed the restricted mean survival curves. We also
compared the TMEscore, the TMEIndex, the COG Risk, and the
TISscore in the receiver operating characteristic (ROC) curves.
The TISscore was calculated as an average value of log2- scale
normalized expression of the 18 signature genes (Ayers et al., 2017).

Patient Samples Collection
We retrospectively collected 16 biopsies of NB by surgeries in six
hospitals from January 1, 2019, to March 1, 2021. All the tissue
samples included in this study were obtained with approval from
the independent Ethics Committee Institutional Review Board of
each hospital, and the patients provided written informed
consents. Clinical information was obtained through electronic
health records.

RNA Quantification and Qualification
RNA degradation and contamination were monitored on 1%
agarose gels. RNA purity was checked using the NanoPhotometer
spectrophotometer (IMPLEN, CA, United States). RNA
concentration was measured using Qubit RNA Assay Kit in
Qubit 2.0 Flurometer (Life Technologies, CA, United States).
RNA integrity was assessed using the RNA Nano 6000 Assay Kit
of the Bioanalyzer 2,100 system (Agilent Technologies, CA,
United States).

Library Preparation for Transcriptome
Sequencing
A total amount of 3 µg RNA per sample was used as input
material for the RNA sample preparations. Sequencing
libraries were generated using NEBNext Ultra RNA Library
Prep Kit for Illumina (NEB, United States) following
manufacturer’s recommendations, and index codes were added
to attribute sequences to each sample. Briefly, messenger RNA
was purified from total RNA using poly-T oligo-attached
magnetic beads. Fragmentation was carried out using divalent
cations under elevated temperature in NEBNext first-strand
synthesis reaction buffer (5×). First-strand complementary
DNA (cDNA) was synthesized using random hexamer primer
and M-MuLV reverse transcriptase (RNase H-). Second-strand
cDNA synthesis was subsequently performed using DNA
polymerase I and RNase H. Remaining overhangs were
converted into blunt ends via exonuclease/polymerase
activities. After adenylation of 3′ ends of DNA fragments,
NEBNext adaptor with hairpin loop structure was ligated to
prepare for hybridization. To select cDNA fragments
preferentially 150–200 bp in length, the library fragments were
purified with the AMPure XP system (Beckman Coulter, Beverly,
United States). Then, 3-µl USER enzyme (NEB) was used with
size-selected, adaptor-ligated cDNA at 37°C for 15 min followed
by 5 min at 95°C before polymerase chain reaction (PCR). Then,
PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers, and Index (X) Primer. At
last, PCR products were purified (AMPure XP system), and
library quality was assessed on the Agilent Bioanalyzer 2,100
system.

Clustering and Sequencing
The clustering of the index-coded samples was performed on a
cBot Cluster Generation System using TruSeq PE Cluster Kit v3-
cBot-HS (Illumia) according to the manufacturer’s instructions.
After cluster generation, the library preparations were sequenced
on an Illumina NovaSeq6000 platform, and 150-bp paired-end
reads were generated.

Quality Control and Quantification of Gene
Expression
Raw data (raw reads) of fastq format were firstly processed
through in-house Perl scripts. In this step, clean data (clean
reads) were obtained by removing reads containing adapter and
reads containing ploy-N and low-quality reads from raw data. At
the same time, Q20, Q30, and GC content of the clean data were
calculated. All the downstream analyses were based on clean data
with high quality.

Clean fastq files were then mapped against human reference
genome CRh38 using STAR (v2.9.6a) two-pass mode. HTSeq-
count was used to count the reads numbers mapped to each gene
with the annotation file gencode. v38. annotation.gtf. Raw counts
of gene expressions were transformed into TPM values for further
analysis.
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Immunohistochemistry
One NB tissue chip (N264001, Bioaitech, China) were utilized for
CD3 and CD8 immunostaining in accordance with the
Specimens in Tissue Chips Collection and use guideline
approved by the Ethics Committee of People’s Hospital of
Xutong County, Henan Province, and subsequent approval by
the Ethical Management Committee of Tongji Hospital—Tongji
Medical College. Tissue sections were subjected to
immunohistochemical (IHC) analysis using the AvidinBiotin
Complex (ABC) Vectastain Kit (SP-9001, ZsgbBio) according
to the manufacturer’s protocol. Antihuman CD3 (A19017,
ABclonal) and CD8 (A0663, ABclonal) were used as the
primary antibodies. Furthermore, immunostaining was
evaluated independently by two pathologists who were blinded
to all clinical information.

To quantify CD3+ and CD8+ cell proportions, first, we
randomly selected three 20× regions per sample. This left a
total of 12 regions for stage 1 and stage 4 groups, respectively.
Next, QuPath (v0.3.2, https://qupath.github.io/) was used to
identify total cell numbers and positive cell numbers by
default parameters. Positive cell proportions were calculated as
positive cell numbers/total cell numbers by QuPath.

Statistical Analysis
For categorical and continuous data with normal distribution, we
applied Chi-square tests and Student t-tests to distinguish the
differences between groups. When continuous data were not
normally distributed, Wilcoxon rank-sum tests and
Kruskal–Wallis rank-sum tests were utilized for two-group and
three-group comparisons, respectively. The Pearson correlation
test was used to find linear connections between two groups. A
p-value < 0.05 was considered statistically significant except for
emphasis. To account for multiple testing, the p-values were
adjusted using the Benjamini–Hochberg correction. The
heatmaps were plotted by the ComplexHeatmap R package (Gu
et al., 2016). Kaplan–Meier plots and log-rank tests were used to
examine survival differences between subgroups. Time-dependent
ROC curves were graphed by the timeROCR package (https://cran.
r-project.org/web/packages/timeROC/index.html). The forest plots
and the alluvial plots were visualized by the forestplot (https://cran.r-
project.org/web/packages/forestplot/index.html) and the ggalluvial
(https://cran.r-project.org/web/packages/ggalluvial/index.html) R
package. All statistical analyses were two-tailed and done by R
(R Foundation, version 3.7.0).

Ethics Statement
All patients’ samples were obtained according to the Declaration
of Helsinki, and each patient signed written informed consent for
all the procedures. These procedures were approved by the
independent Ethics Committee Institutional Review Board of
each hospital.

Data Deposition and Materials Sharing
All public datasets could be accessed via GEO (https://www.ncbi.
nlm.nih.gov/geo/) and ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/). Raw fastq files of 16 NB samples in the Tongji
cohort were deposited on the GEO: GSE182586.

RESULTS

Single-Cell Analysis Identified
Neuroblastoma-Specific Tumor
Microenvironment Markers
We first evaluated a TME reference gene set from the single-cell
RNA-seq data. A total of 83,867 cells from six patients, composed
of B cells, T cells, pDC cells, myeloid cells, endothelial cells,
fibroblasts, Schwann cells, and neuroendocrine tumor cells, were
included in the analysis (Supplementary Figure S1A). We
noticed a broad overlap between myeloid cells and tumor cells
in clusters 1, 4, 9, 10, and 12 (Supplementary Figure S1B). We
only retained myeloid cells in clusters 12, 14, and 20 and removed
tumor cells in cluster 12 according to examine the expression of
CD14 and FCER1G genes (Supplementary Figure S1C). Tumor-
infiltrating immune cell estimation methods are highly relied on
the actual presence of those cells in samples (Sturm et al., 2019).
We detected CD3+FOXP3+ cells in one of the subsets of T cells,
which laid the foundation for counting Tregs in bulk samples
(Supplementary Figure S1D). Now, a re-annotated TME
landscape of NB was delineated (Figure 1A). To construct an
NB reference cell marker list, some genes must be added or
discarded on the gene list from Charoentong et al. (2017). To this
end, we performed the DEG analysis on each cell type and
identified markers for them as the DEGs with the top log
(fold-change) between the specific cell type and others
(Figure 1B; Supplementary Table S2). Because the original
gene list did not contain endothelial cells, fibroblasts, and
Schwann cells, the top 20 markers of those cell types were
appended to the list. Some tumor markers were also shown up
in the list, which would make noises for inferring cell abundances.
We removed all of them to precisely manifest the TME in bulk
samples. Finally, a gene set made for NB was conducted
(Supplementary Table S3).

Tumor Microenvironment Landscape
Characterized Three Prognostic Subgroups
We calculated the relative cell proportions on 498 NB samples
from the SEQC cohort based on the altered gene list obtained by
the single-cell analysis discussed earlier (Figure 1C). Patients
were unsupervised clustered into three subgroups, which was
determined by the consensus clustering method and was named
“TMEsubgroup” (Supplementary Figure S2). TMEsubgroup3
lacked immune cell infiltrations except for the effector
memory CD4+ T cells, activated CD4+ T cells, Th2 cells,
immature DCs, eosinophils, and memory B cells. On the other
hand, TMEsubgroup1 and 2 exhibited extensive penetrations of
diverse cells compared with TMEsubgroup3 (all cell types except
for the cell types mentioned earlier, Kruskal–Wallis rank-sum
test, p < 0.0001). TMEsubgroup2 evinced high levels of the
antitumor immunity (activated CD8+ T cells, NK cells, and
NKT cells), pro-tumor immunity (Treg, MDSC, and Th2
cells), and stromal cells (endothelial cells, fibroblasts, and
Schwann cells), which indicated that both cytolytic and
inhibitory immune activities were activated in these patients.
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FIGURE 1 | TME landscape of NB. Cell type markers were identified by single-cell RNA-seq and works of literature. Relative proportion of cells in 498 patients was
calculated by ssGSEA method in SEQC cohort. (A) UMAP plot of filtered cells in six patients’ single-cell RNA-seq data. (B) Dot plot of top 5 DEGs for selected cell types.
(C) Heatmap for inferred relative cell proportions in SEQC cohort. Red indicates high, and blue indicates low proportion. (D) Kaplan–Meier curves of overall survivals for
TMEsubgroups. Differences in survival rates were examined by log-rank test with a p < 0.0001 among these three subgroups. (E) Kaplan–Meier curves of event-
free survivals for TMEsubgroups. Differences in survival rates were examined by log-rank test with a p = 0.00019 among these three subgroups.
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Similar results were obtained by five different algorithms
(Supplementary Figures S3A–E). These TMEsubgroups
discriminated by disparate cell infiltrations were prognostic in
overall survivals and event-free survivals (log-rank test, p <
0.0001 and p = 0.00019, respectively, Figures 1D,E). However,
TMEsubgroup1 and 2 did not significantly diverge in overall
survivals and event-free survivals (log-rank test, p = 0.2 and p =
0.2, respectively, Figures 1D,E).

Distinct Immune Cells Contributed
Unequally to These Three TMEsubgroups
Next, we aimed to unravel the underlying immune mechanisms
of these genes contributing to patient outcomes. We noticed that
MYCN were amplified more in TMEsubgroup3 (11.46 vs. 9.00 vs.
38.57%, Chi-square test: p < 0.0001, Figure 1C). MYCN-
amplified patients had high levels of activated CD4+ T cells,
effector memory CD4+ T cells, and Th2 cells (Kruskal–Wallis
rank-sum test, p < 0.0001, Supplementary Figure S3F). Instead,
various types of CD8+ T cells, which were vital for antitumor
activities, were enriched in MYCN-nonamplified samples. These
results suggested that immune cells were relatively inadequate in
TMEsubgroup3.

To validate that the immune cells were absent in the high-risk
group, we conducted IHC profiling on four stage 1 and four stage
4 samples. CD3+ T cells were enriched in the tumors of stage 1
samples (Supplementary Figure S4A) compared with those of
stage 4 (Supplementary Figure S4B). Similar results were found
that CD8+ T cells infiltrated into tumors of stage 1
(Supplementary Figure S4C), whereas seldom did they exist
in stage 4 patients (Supplementary Figure S4D). Quantitative
analysis also revealed that CD3+ T and CD8+ T cell proportions
were relatively higher in 12 regions from stage 1 patients
(Supplementary Figures S4E, F, Student t-test, p < 0.0001
and p = 0.0012, respectively). These results demonstrated that
the high-risk patients, corresponding to TMEsubgroup3, owned
rare immune cells to activate immune responses.

We noticed that the number of immature DCs was negatively
correlated with multiple cell types, including activated CD8+

T cells (Pearson’s correlation efficiency: −0.265, p < 0.0001,
Supplementary Figure S4G). DCs could present tumor-
associated-antigens on MHC 1 molecules to activate CD8+

T cells and promote immunity Wculek et al., 2020. Previous
reports indicated that an increase of immature DCs could lead to
anergy or deletion of activated T cells (Melief, 2008).

We also examined the contributions of each type of cell to
clinical outcomes. Activated CD4+ T cells, monocytes, Th2 cells,
and Th17 cells were prognostic in all TMEsubgroups (p < 0.05,
Supplementary Figure S4H; Supplementary Table S4), which
were in concordance with previous reports (Cheung and Dyer,
2013). Higher MDSC levels heralded poor survivals in
TMEsubgroup1 and 2, which might be due to their negative
regulation of immune responses (Heczey et al., 2020; Ladenstein
et al., 2018). Besides, we observed that stromal cells, such as
endothelial cells, fibroblasts, and Schwann cells, were beneficial
for patients in the whole SEQC cohort, where HR ranged from
0.602 to 0.804 (Supplementary Table S4). It was illustrated that

only neuroendocrine tumor cells gainedMYCN copies instead of
all cells in the NB microenvironment in previous single-cell
analyses (Dong et al., 2020). Our results further clarified that
stromal cells might not be the crucial factor for NB progression.
Overall, we demonstrated that the aggressive tumor subtype was
accompanied by immune suppression, which leads to tumor
progression.

Gene Profiling Represented the Tumor
Microenvironment Landscape
We first performed pairwise DEG analysis on these three
TMEsubgroups (Supplementary Table S5). A total of 786
genes were selected after strict cutoffs with the absolute of
log2(fold-change) that were greater than 1.4 and an adjusted
p-value below 0.05. These DEGs divided patients into three
clusters, which were determined by the consensus clustering
method and were named “GeneSubgroup” (Figure 2A;
Supplementary Table S5). The matching rates of
TMEsubgroup to GeneSubgroup were 86.69, 73.13, and
95.69% for subgroups 1, 2, and 3, respectively (i.e., 86.69,
73.13, and 95.69% samples of GeneSubgroup1, two and three
were from TMEsubgroup1, 2, and 3, respectively), showing the
association between the TME landscape and the gene expressions
atlas (Chi-square test: p < 0.0001). Therefore, we could depict the
TME landscape at the transcriptome level.

We noticed that GeneSubgroup3 owned more aged (30.24,
39.55, and 56.03% for ages greater than 1.5 years in
GeneSubgroup1, 2, and 3, Chi-square test: p < 0.0001) and
MYCN-amplified (11.43, 9.02, and 45.22% in GeneSubgroup1,
2, and 3, Chi-square test: p < 0.0001) patients, and these were
known risk factors for NB outcomes (Figure 2A). Undeniably,
three GeneSubgroups were prognostic in overall survivals and
event-free survivals (Figures 2B,C, both log-rank test: p <
0.0001). However, GeneSubgroup1 and 2 did not differ in
survivals significantly (Figures 2B,C, log-rank test: p = 0.5 and
0.4, respectively). Thus, the GeneSubgroups showed analogous
clinical characteristics and outcomes with the TMEsubgroups.

GeneSubgroup3 Was Prone to
Carcinogenesis
We conducted GO-enrichment analysis for up- and
downregulated genes in GeneSubgroup3 compared with
GeneSubgroup 2 and found that immune responses decreased
in GeneSubgroup3 (Figure 3A, left five GO terms). On the other
hand, cell-cycle-related pathways took vital roles in
GeneSubgroup3 (Figure 3A, right five GO terms). This was in
line with the patterns in the TMEsubgroup, where the poorest
survived subcluster displayed a dearth of immune cells and rapid
cell division.

Thus, we compared the proven oncogenesis signals among the
GeneSubgroups. The GeneSubgroup3 showed high scores in an
MYCN-downstream signature and nine telomere maintenance
mechanism-related pathways; all of these pathways were the
causes of NB tumorigenesis and progression (19, 20)
(Kruskal–Wallis rank-sum test: p < 0.0001, Figure 3B).
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Generally, tumor oncogenesis is associated with mismatch repair,
in which GeneSubgroup3 outstripped the other two groups
(Kruskal–Wallis rank-sum test: p < 0.0001, Figure 3C). In
addition, CD8+ effector and antigen processing signals
decreased in GeneSubgroup3, making them hard to trigger an
immune response. In two of three EMT-associated signatures,
GeneSubgroup3 scored less, indicating that the
epithelial–mesenchymal transition might not be the main
source of aggressive phenotypes (Kruskal–Wallis rank-sum
test: p < 0.0001, Figure 3C). These data suggested that

patients in GeneSubgroup3 were susceptible to being affected
by classical tumor growth pathways.

Lack of Immune Cells Contributed to
Extrinsic Immune Escape in
GeneSubgroup3
The extrinsic immune escape theory suggested that some of the
TME components assisted and decided the immune escape of
tumor cells (Mohme et al., 2017; Schreiber et al., 2011). First, the

FIGURE 2 | Transcriptome background within TME landscape. DEGs among TMEsubgroups clustered patients into three prognostic GeneSubgroups. (A)
Heatmap for 786 DEGs among TMEsubgroups. Red indicates high, and blue indicates low expression. (B) Kaplan–Meier curves of overall survivals for GeneSubgroups.
Differences in survival rates were examined by log-rank test with a p < 0.0001 among these three subgroups. (C) Kaplan–Meier curves of overall survivals for
GeneSubgroups. Differences in survival rates were examined by log-rank test with a p = 0.00023 among these three subgroups.
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FIGURE 3 | Pathway analysis for GeneSubgroups. (A) Downregulated genes in GeneSubgroup3 enriched in immune-related pathways (left five terms, green) and
upregulated genes enriched in cell cycle related pathways (right five terms, blue). (B) Boxplots of relative scores of MYCN-related pathway signatures. p-values were
generated through Kruskal–Wallis rank-sum tests and labeled above each boxplot with asterisks (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (C)
Boxplots of relative scores of carcinogenesis pathway signatures. p-values were generated through Kruskal–Wallis rank-sum tests and labeled above each boxplot
with asterisks (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 4 | Potential extrinsic and intrinsic immune escape mechanisms for GeneSubgroup3. (A) Boxplots of relative cell proportions among GeneSubgroups.
Thick line represents median value. Bottom and top of boxes are 25th and 75th percentiles, respectively. Whiskers encompass 1.5 times interquartile range. p-values
were generated through Kruskal–Wallis rank-sum tests and labeled above each boxplot with asterisks (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
(B) Boxplots of co-stimulator and co-inhibitor gene expressions among GeneSubgroups. p-values were generated through Kruskal–Wallis rank-sum tests and
labeled above each boxplot with asterisks (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (C) Violin plots of IMPRES among GeneSubgroups. p-values
were generated through pairwise Wilcoxon rank-sum tests and labeled above each boxplot with asterisks (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001). (D) Boxplots of GD2-related gene expressions and GD2 signature scores. p-values were generated through Kruskal–Wallis rank-sum tests and labeled above
each boxplot with asterisks (ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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lack of immune cells, especially the cytolytic cells, could be the
most devastating event for the immune system. All the TME
ingredients except for activated CD4+ T cells, effector memory
CD4+ T cells, immature DCs, and Th2 cells were significantly
lower in GeneSubgroup3 (Kruskal–Wallis rank-sum test except
for cells discussed earlier: p < 0.0001, Figure 4A). Secondly, Tregs
and MDSCs could suppress innate immune functions (Veglia
et al., 2018; Sharabi et al., 2018). We found that Tregs andMDSCs
slumped in GeneSubgroup3 (Kruskal–Wallis rank-sum test: both
p < 0.0001, Figure 4A). This indicated that such cells might not be
the source of immune-silent states in GeneSubgroup3. Thirdly,
high concentrations of immunoinhibitory cytokines, such as IL-
10, would inhibit the proliferation and differentiation of T cells in
GeneSubgroup2 instead of GeneSubgroup3 (Kruskal–Wallis
rank-sum test: p < 0.0001 Supplementary Figure S6A). In
GeneSubgroup3, patients were short of various types of
chemokines (such as CCR1) and tumor necrosis factors as
well as their superfamily members, which were crucial for
attracting immune cells and inducing tumor apoptosis
(Supplementary Figures S6B, C) (Cheng and Jack, 2008;
Nagarsheth et al., 2017; Dostert et al., 2019).

GeneSubgroup3 Would Benefit From
Anti-GD2 Therapies Instead of Anti-PD1 or
Anti-CTLA4
The immune intrinsic escape mechanism emphasized the tumor
immunogenicity and immune checkpoint molecule expression in
antitumor immunity (Schreiber et al., 2011; Mohme et al., 2017).
The HLA molecules were downregulated in GeneSubgroup3, and
this could result in the loss of antigen presentation on the tumor
cell surface (Prigione et al., 2004) (Supplementary Figure S6D).
High expressions of immune checkpoint genes, e.g., CTLA-4 and
PD-1, would aid tumors to escape from immune surveillance
(Ribas and Wolchok, 2018), and the immune checkpoint
therapies prolonged overall survival in many cancer types,
including advanced melanoma and urothelial cancers (Robert
et al., 2015; Horn et al., 2018; André et al., 2020). GeneSubgroup3
exhibited the lowest expressions of PDCD1 (PD-1) and CD274
(PD-L1), suggesting that these patients might not be profitable for
anti-PD-1 or anti-PD-L1 therapies (Figure 4B). A higher value
of IMPRES, a well-constructed immune-therapy predictor, could
forecast response status before the administration of drugs.
GeneSubgroup3 scored low, implying the minimal effect of
using those remedies (median: 6, 8, and 6; Wilcoxon rank-sum
test: p < 0.0001, p < 0.0001, and p = 0.01 for GeneSubgroup1 to
GeneSubgroup2, GeneSubgroup2 to GeneSubgroup3, and
GeneSubgroup1 to GeneSubgroup3, respectively, Figure 4C).

GD2 antibodies have been in clinical trials and displayed
outstanding effects (Robert et al., 2015; Horn et al., 2018;
André et al., 2020). We scrutinized GD2 synthases expressions
and calculated GD2+ predictor scores, the sum of ST8SIA1 and
B4GALNT1, as the previous report (21). We found that
GeneSubgroup3 got higher scores than GeneSubgroup2
(median: 16.97 and 16.35; Wilcoxon rank-sum test: p < 0.0001)
but not differed from GeneSubgroup1 (median: 16.97 and 16.89;
Wilcoxon rank-sum test: p > 0.05), suggesting that GeneSubgroup3,

rather than GeneSubgroup2, might be favorable for using anti-
GD2 regimes (Figure 4D). However, as the GD2 protein is mainly
expressed on tumor cells, the higher GD2 levels in GeneSubgroup3
might be attributed to higher tumor purities, andmore validation is
needed to examine the average GD2 levels between groups. These
data demonstrated that the immune-cold patients were not able to
trigger antigen presentation processes via HLA molecules. They
also could not benefit from anti-PD-1 and anti-PD-L1 therapies.

TMEscore was Prognostic for
Neuroblastoma and Other Cancers
To construct a prognostic signature, we conducted univariable
Cox regressions and selected 48 genes whose adjusted p-values
were <0.05. According to their HR, we divided them into
groups A and B (Supplementary Table.S6). We calculated
ScoreA and ScoreB described in the Method Section and
defined their subtraction as the “TMEscore”
(Supplementary Table.S7). The TMEscore showed
prognostic values, where area under the ROC curve (AUC)
values at 5-year survival reached 0.778, 0.750, 0.720, and 0.705
in the SEQC, TARGET, E-MTAB-179, and E-MTAB-8248
cohorts, respectively (Figure 5A; Supplementary Figures
S7A–C). Except for the E-MTAB-8248 cohort, all datasets
owned AUCs of ROCs greater than 0.7 at 1-, 3-, and 5-year
survival (Figure 5A; Supplementary Figures S7A–C). This
indicated that our signature is predictive and robust. We then
divided patients into high- and low- TMEscore groups. The
high-TMEscore group survived significantly shorter than the
low-TMEscore group in four datasets (log-rank test: all p <
0.0001 for the SEQC, TARGET, E-MTAB-179, and E-MTAB-
8248 cohorts, respectively, Figure 5B; Supplementary Figures
S7D–F).

Of note, the TMEscore increased in stage 3/4 patients relative
to stage 1/2/4S (median: 1.011 vs. −1.3249, Wilcoxon rank-sum
test: p < 0.0001, Figure 5C). We did high-throughput RNA-
sequencing on six stage 3/4 samples and 10 stage 1/2 samples.
Using the same groups of genes and algorithms, we found a
similar result in our Tongji cohort (median: 3.329 vs. −1.5182,
Wilcoxon rank-sum test: p < 0.001, Figure 5D; Supplementary
Table S8). These results demonstrated that the elevated
TMEscore was associated with aggressive phenotype and
decreased survival rates.

We calculated the TMEscore of all patients in the TCGA pan-
cancer project (Supplementary Table S9; Figure 5E). The
TMEscore was prognostic in 20/30 cancer types at p < 0.05,
indicating that the TMEscore could be utilized to predict survival
in these cancers. Conspicuously, high TMEscore heralded poor
outcomes in the kidney renal clear cell carcinoma, brain lower-
grade glioma, SKCM, and adrenocortical carcinoma at p < 0.001
level (HR: 2.243, 2.278, 2.224, and 9.209, respectively). These data
indicated that NBmight share similar carcinogenesis, progression
mechanisms, and TME cross-talk with these cancers because NB
was derived from the sympathetic nervous systems and plentiful
cases were found at the adrenal glands (Maris et al., 2007).
However, no reports or animal experiments have linked NB
with other cancers at the TME level, and further studies are
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FIGURE 5 | TMEscore was prognostic in NB and other cancers. (A) Receiver operating characteristic curves for 1-, 3-, and 5-year survival in SEQC cohort. (B)
Kaplan–Meier curves of overall survivals for high- and low-TMEscore subgroups. Differences in survival rates were examined by log-rank test with a p < 0.0001. (C) Violin
plot of TMEscores between stage 1/2/4S and stage 3/4 in SEQC cohort. p-values were generated through Kruskal–Wallis rank-sum tests and labeled above each
boxplot with asterisks (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (D) Violin plot of TMEscores between stage 1/2/4S and stage 3/4 in Tongji
cohort. p-values were generated through Kruskal–Wallis rank-sum tests and labeled above each boxplot with asterisks (ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001). (E) Forest plot of hazard ratios for 30 TCGA projects. p-values were calculated by Cox regressions.
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FIGURE 6 | Efficacy of TMEscore to predict responses for immunotherapies. (A) Receiver operating characteristic curves of TMEscore and IMPRES to predict
responses for anti-CTLA-4 mouse model. (B) Boxplots of TMEscore between responders and nonresponders for anti-CTLA-4 mouse model (Wilcoxon rank-sum test:
p = 0.023). (C) ROC curves of TMEscore and IMPRES to predict responses for anti-MAGE-3 melanoma patients. (D) Boxplots of TMEscore between responders and
nonresponders for anti-MAGE-3 melanoma patients (Wilcoxon rank-sum test: p = 0.028). (E) ROC curves of TMEscore and IMPRES to predict responses for anti-
PD-L1 urothelial cancer patients. (F) Kaplan–Meier curves of overall survivals for urothelial cancer patients treated with anti-PD-L1. Differences in survival rates were
examined by log-rank test with a p = 0.0011.
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needed. Overall, we successfully generated a signature that could
predict survivals for NB and other cancers.

TMEscore Could be a Predictor of
Immunotherapy Response
The TMEscore was derived from the microenvironment niche
inside tumors where immune checkpoint drugs took effect
(Quail and Joyce, 2013). We proposed that the TMEscore
could represent the immune states of patients. A high
TMEscore meant the low expression of immune-related genes
and thus poor responses for immunotherapies. Indeed, for the
anti-CTLA-4-treated AB1-HA mouse model, the TMEscore
reached an AUC of 0.8, whereas a well-established
immunotherapy response predictor, the IMPRES, only gained
0.485 on this dataset (Figure 6A). Responders received a lower
TMEscore compared with nonresponders, which was in
concordance with our hypothesis (Wilcoxon rank-sum test:
p = 0.023, Figure 6B). Considering that these results were
attained in a mouse model, we further analyzed other datasets.
For the anti-MAGE-3 melanoma patients, the TMEscore got an
AUC of 0.675 (Figure 6C), and points for responders were also
lower than those for nonresponders (Wilcoxon rank-sum test: p =
0.028, Figure 6D).

For the urothelial cancer patients treated with anti-PD-L1, the
AUC of TMEscore decreased, and the TMEscore performed
better than IMPRES (Figure 6E). Besides, the TMEscore could
divide patients into prognostic groups (log-rank test: p = 0.0011,
Figure 6F). The TMEscore was also prognostic for the anti-PD-1
melanoma patients (log-rank test: p = 0.0029, Supplementary
Figure S8A); however, it could barely predict responses
(AUC = 0.503, Supplementary Figure S8B). For the TCGA-
SKCM patients who received various immunotherapies, a higher
TMEscore was correlated with worse survivals (log-rank test:
p = 0.005, Supplementary Figure S8C). Although the AUC of
TMEscore was 0.711 (Supplementary Figure S8D), responders
got higher scores than nonresponders, which was opposite with
the trends discussed earlier (Wilcoxon rank-sum test, p = 0.021,
Supplementary Figure S8E). This is partly because patients were
administered diverse remedies. Overall, the TMEscore could
predict responses for multiple immunotherapies.

TMEIndex Rather Than Children’s Oncology
Group Risk Classification Predicated
Neuroblastoma Outcomes
We conducted a meta-analysis to assess correlations between
the TMEscore and clinical covariates. Higher TMEscores were
hazardous in both <1.5 years and older subgroups (HR = 8.241
and 2.346, respectively, both p < 0.001, Supplementary Figure
S9A). We saw similar results in INSS stage stratifications (HR
= 7.003 for stage 1/2/3/4S and HR = 2.379 for stage 4, both p <
0.001, Supplementary Figure S9A). However, we did not see this
trend in the MYCN subgroup analysis (HR = 1.125, p = 0.583 in
MYCN-amplified patients, Supplementary Figure S9A). The
TMEscore, along with age, MYCN status, sex, INSS stage, and
COG risk, was a risk factor of NB patients (Supplementary

Figure S9B). The TMEscore became significant in
multivariable Cox regression analysis regardless of other
covariates, indicating that it could be an independent survival
predictor (HR = 2.578, p < 0.001, Supplementary Figure S9C).

We further constructed a nomogram, which was convenient
and effective in practice, based on the TMEscore, age, MYCN
status, sex, and INSS stage (Supplementary Figure S10A). The
TMEIndex, which was counted as the total point a patient
received in the nomogram, agreed with 5-year-survival
outcomes better than the TMEscore (C-index: 0.843 and 0.730
for TMEIndex and TMEscore, respectively, Supplementary
Table S7; Supplementary Figure S10B). The TMEIndex
gained the highest AUC in five predictors, including the COG
risk system, suggesting that our TMEIndex was helpful for
predicting outcomes (Supplementary Figure S10C). We
compared the AUC between the TMEscore and COG risk and
TMEIndex and COG risk using nonparametric estimation in the
timeROC package. The TMEscore did not differ from COG risk;
however, the TMEIndex got higher AUC, suggesting that there
was an additional benefit in TMEIndex beyond the
clinical–histological COG-risk classification system (TMEscore
vs. COG risk: p = 0.0294 and TMEIndex vs. COG risk: p < 0.0001,
where adjusting p = 0.05/2 = 0.025 when conducting multiple
comparisons). Finally, basic information about patients in our
research was summarized in the alluvial diagram
(Supplementary Figure S10D).

DISCUSSION

Armed with four large independent NB cohorts, we deciphered
TME inside NB tumors and explored their interactions within
TME as well as their correlations with clinical features and
outcomes. We first curated a cell type marker list specific for
NB TME by utilizing single-cell RNA-seq data. Based on the gene
list, we inferred relative cell proportions in the largest NB cohort,
the SEQC cohort, to cluster patients into three prognostic
TMEsubgroups and used DEGs to cluster patients into
GeneSubgroups. TMEsubgroup/GeneSubgroup1 and 2 were
so-called immune-hot tumors, whereas subgroup 3 were
immune-cold. We constructed TMEscore to predict outcomes
in four NB cohorts and verified that higher INSS stages got higher
scores in the Tongji cohort by 16 high-throughput RNA-seq
samples.We further expanded TMEscore to 30 types of cancers in
TCGA database, and 20 of which had p-values lower than 0.05 in
Cox regressions. In addition, TMEscore was excellent at
predicting immunotherapy responses. Finally, we created a
nomogram-based TMEIndex to aid physicians in determining
remedies.

Our TME inferring results were of high authenticity and
reliability. Quantification of tumor-infiltrating cells from
transcriptomics data could be distinguished in three methods:
single-cell RNA-sequencing (scRNA-seq) approaches, marker-
gene-based approaches, and deconvolution-based approaches
(Robert et al., 2015; Horn et al., 2018; André et al., 2020).
However, scRNA-seq remains expensive and time-consuming,
which is not suitable for clinical use. The latter two ways rely on
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the selection of the reference profiles (Avila Cobos et al., 2018;
Finotello and Trajanoski, 2018). For the marker-gene-based
approaches, gene sets are usually derived from targeted
transcriptomics studies characterizing each cell type and/or
from comprehensive literature search and experimental
validation (Avila Cobos et al., 2018; Finotello and Trajanoski,
2018). For the deconvolution-based approaches, cell types and
cell type markers must be presented in the mixture, and true
composition must be known (Avila Cobos et al., 2018; Finotello
and Trajanoski, 2018). A well-known deconvolutional method,
cibersort, estimates cell abundances based on the 22 peripheral
blood mononuclear cell types microarray data (https://cibersort.
stanford.edu/). However, immune cells in NB TME would be
quite different from what existed in circulations. To address these
issues, we adopted the scRNA-seq + ssGSEA pipeline as described
in the Methods Section, which owned the following advantages.
First, we only used small amounts of samples for scRNA-seq
exploration and ciphered cell proportions in bulk RNA-seq
samples, which is economical for clinical cases. Second, we
confirmed the existence of rare cell types, e.g., Tregs, which
laid the foundations for calculating cell proportions. Third, we
removed tumor cell markers from the gene list. Solid tumor cells
occupy a large proportion of the tumor tissue, and these genes
would exaggerate inferred cell abundances because they are often
expressed higher in the bulk sample. We believed that this
pipeline would give a precise and concise TME compendium
for NB.

In our analysis, three prognostic TMEsubgroups were
identified. To investigate these TMEsubgroups at the
transcriptome level, we mapped them into corresponding
GeneSubgroups. GeneSubgroup1 and 2 had higher proportions
of immune cells compared with GeneSubgroup3 and immune-
related pathways. Moreover, GeneSubgroup2 retained high
immune suppressive cell types such as MDSCs and Tregs.
Also, immune checkpoint genes expressed more in
GeneSubgroup1 and 2. This indicated that GeneSubgroup1
and 2 could be categorized as immune-hot or inflamed tumors
due to their presence of infiltrating immune cells, high density of
IFN-γ-producing CD8+ T cells, and expression of PD-L1 (Hegde
et al., 2016). Immune-hot tumors responded favorably to
immune checkpoint inhibition in many cancers, and thus,
GeneSubgroup1 and 2 could benefit from these therapies
(Hegde et al., 2016). Nonetheless, TMEsubgroup/
GeneSubgroup2 owned a large proportion of fibroblasts,
endothelial cells, and Schwann cells, which is hardly reported
in previous TME studies of NB. In a pan-cancer study, the
immune-enriched and fibrotic subgroup, which was similar to
our TMEsubgroup/GeneSubgroup2, survived less than the
immune-enriched but no fibrotic subgroup in melanoma
patients and TCGA cohort with 8,024 patients (Bagaev et al.,
2021). In this work, researchers found that the immune-enriched
but no fibrotic subgroup had the highest mutation load. We
hypothesized that TMEsubgroup/GeneSubgroup1 had more
mutations to stimulate the immune system. In contrast, we
found that GeneSubgroup1 had low expression of HLA genes.
Thus, investigations about mutation load, neoantigen load, and
antigen-presenting mechanisms in different clusters of NB

patients are needed. On the other hand, GeneSubgroup3 was
characterized by highly proliferating tumors and low expressions
of MHC class I, just the same as the so-called immune-cold or
non-inflamed tumors (Hegde et al., 2016). Pediatric malignancies
are representative examples of non-inflamed tumors (Alexandrov
et al., 2013). The 2-year risks of relapse for immune-hot and -cold
patients were 10 and 80% in colorectal cancer, respectively
(Camus et al., 2009). Indeed, TMEsubgroup/GeneSubgroup3
had significantly lower overall survival and event-free survival.
Thus, we successfully defined immune subgroups analogy with
other cancers. It is suggested that immune checkpoint inhibition
could be administered to immune-hot tumors (Galon and Bruni,
2019). For the immune-cold samples, a combined therapy that
enhances T cell responses and inhibits immune checkpoint
signals is still controversial (Galon and Bruni, 2019). In our
analysis, we demonstrated that GD2 signals were higher in
immune-cold tumors. However, this phenomenon might be
exaggerated by the higher tumor purities in these patients. We
could not precisely calculate or estimate tumor purities in
pediatric cancers because such investigations were rare. Thus,
quantifications and comparisons of GD2 levels between high- and
low-risk groups after sorting EPCAM + tumor cells are expected.

Researchers are keen on searching signatures that could
predict survival and immunotherapy responses (Galon et al.,
2013; Auslander et al., 2018). However, these studies often
only considered immune-related genes. We first created two
signatures, ScoreA and ScoreB, and combined them as
TMEscore. ScoreA is a signature consisting of upregulated
genes in TMEsubgroup2, which are mainly immune-related
genes. In contrast, the ScoreB signature is composed of five
hazardous genes (MX2, FPR1, CEBPB, CLEC4G, and CPLX3).
One of the variants in MX2 was associated with melanoma
(Barrett et al., 2011). FPR1 has been found to be
overexpressed on some tumor cells and mediating antitumor
immunity and metastasis (Wong et al., 2014). CEBPB pathways
affected MDSCs and maintained tumor immunosuppression in
triple-negative breast cancer (Li et al., 2018). These studies
highlighted the importance of such genes in the cross-talks of
TME and emphasized the need to include these genes into
prognostic signatures. Our TMEscore gained high AUCs at 1-,
3-, and 5-year-survival in four independent cohorts. Also,
patients with high and low TMEscores diverged in overall
survival significantly. We sequenced six stage 3/4 and 10 stage
1/2 samples and validated that aggressive samples got higher
scores. In 20/30 tumor types, TMEscore could predict survival,
indicating that this model could be taken into account in clinical
applications. This result also indicated that our signature reflects
common pathways in the pan-cancer-wide field. Besides,
TMEscore could foretell immunotherapy responses. We
compared TMEscore with IMPRES, an immune checkpoint
score system derived from NB and validated on over 10 anti-
PD-1, anti-PD-L1, and anti-CTLA-4 datasets (Galon et al., 2013;
Auslander et al., 2018). TMEscore outperformed IMPRES in
three datasets, which shed light on predicting anti-CTLA-4
and anti-MAGE-3 responses in NB.

There are some limitations to this study. First, we only did IHC
staining of CD3 and CD8 but did not conduct fluorescence-
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activated cell sorting, which is one of the gold standards for
estimating cell content, to validate our self-designed pipeline
(Petitprez et al., 2018). Second, we only follow-up 1-year
survival in the Tongji cohort. Thus, we could not validate
TMEscore for survival analysis. Third, we did not obtain
sequencing data of immunotherapy trials for NB, and this
resulted in the inability to test TMEscore in the prediction of
responses in NB. Fourth, we inferred that high-risk NB patients
might benefit from anti-GD2 therapies without clear evidence,
and further investigations should be put forward. We hope these
limitations can be resolved in the future.

In summary, we computed cell proportions in bulk samples
using a self-curated gene list and identified three subgroups of NB
patients. The patients with the poorest survival could benefit from
anti-GD2 instead of anti-PD-1 drugs. We created TMEscore to
predict survivals and constructed a nomogram-based TMEIndex,
which could substitute the current COG risk system in clinical
cases. We hope our analysis could pave the way for NB TME
investigation and immunotherapy drug use in NB.
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