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A B S T R A C T   

The aim of this study was to evaluate the performance of CHIRPS and TAMSAT satellite rainfall 
data over the Upper Gelana watershed, where gauged meteorological data to understand the 
nature of the climate are scarce. In addition, variability and trends in rainfall and temperature 
were examined from 1983 to 2021. To evaluate satellite rainfall, categorical and continuous 
validation statistics were used. Trends were analyzed using Mann-Kendall, Sen’s Slope estimator, 
and innovative trend analysis (ITA) methods. The study also utilized time-series geostatistical 
analysis techniques. The validation statistics show that TAMSAT performs better on the daily 
timescale, while the two products have comparable performance on the monthly timescale. 
TAMSAT was chosen for rainfall analysis because of its higher resolution and performance. The 
results reveal high inter-annual spatiotemporal variability and strong irregularities in monthly 
rainfall. The Mann-Kendall test indicates statistically significant positive trends in kiremt and 
annual rainfall, but belg rainfall exhibits an insignificant negative trend. In the kiremt season, we 
found a 96.1, 101.6, and 104.8 mm decadal rate of rainfall increment in the lower weina dega 
(LWD), upper weina dega (UWD), and dega agroecological zones, respectively. In contrast, belg 
season rainfall declined by 16.4, 16.2, and 14.0 mm per decade in the LWD, UWD, and dega 
agroecology zones, respectively. The pixel-wise trend analysis also revealed trends and magni-
tudes of monthly, seasonal, and annual rainfall that vary across the study area. In both LWD and 
UWD annual minimum and maximum temperatures, respectively, showed significant decreasing 
and increasing trends, but in dega agroecology the trends were insignificant. The findings of 
rainfall and temperature trends using the ITA method demonstrated its ability to discover some 
hidden trends that were not detected by the MK test.   

1. Introduction 

Climate change is a global problem that attracts the attention of governments, non-government organizations, and researchers all 
over the world [1]. It affects both humans and the earth’s ecosystem. Extreme events such as drought, heat waves, sea level rise and 
flooding endanger human health [2,3], damage infrastructure [4], and cause biodiversity loss throughout the globe [5–7]. Though it is 
a global problem, the impacts vary from place to place with a more pronounced effect in developing countries [4]. 

Climate change is a serious threat to East Africa. The frequency of extreme events has been increasing at an alarming rate in the 
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region [8,9]. The majority of East Africa’s population relies on rainfed agriculture, making the region particularly vulnerable to the 
harmful effects of climate variability and change [10]. Climate change has impacted millions of people in East African countries over 
the last few decades [11–13]. 

Being located in the East African region, Ethiopia is among the most vulnerable countries to the impacts of climate change [14–16]. 
Every year, a large number of people are affected by the direct impacts of climate extremes [13,17–19]. Climate change is affecting 
rainfed agricultural practices and crop yield, which would in turn affect food security [11,20–23]. To lessen its effects, appropriate 
adaptation and mitigation measures should be implemented, which require adequate knowledge of local-level variability and trends in 
rainfall and temperature. 

Many parts of Ethiopia receive rainfall in the kiremt (main) and belg (minor) seasons, which occur from June to September and 
February to May, respectively. Various studies have been conducted on rainfall variability in the country [20–22,24,25]. However, the 
findings on the seasonal rainfall patterns are inconsistent in one way or another. For instance Ref. [24], reported general declining and 
increasing trends of rainfall over Ethiopia in the belg and kiremt seasons, respectively. Contrary to this [22], analyzed rainfall for three 
decades in Ethiopia and found no significant trends in annual and seasonal rainfall amounts in Ethiopia. Disparities were also found in 
studies conducted at the regional level. A study conducted in the Amhara region of Ethiopia found a decreasing trend in belg rainfall 
and an increasing trend in kiremt season rainfall [26]. On the other hand, increasing trends of belg season rainfall were reported for the 
same region [27]. Similarly to the seasonal rainfall, the annual rainfall trends reported in previous studies are not uniform across the 
country. Among others [25,27], found an increasing trend in annual rainfall in the northwestern Ethiopian highlands and over the 
Amhara region, respectively. Another study in the southern parts of Ethiopia found a decreasing trend in annual rainfall amounts [28]. 

In the northeastern highlands of Ethiopia, where the present study area is located, a study over a century-long timescale found a 
significant decreasing trend in the belg season and annual rainfall amounts. Nevertheless, the decline in kiremt rainfall amount was not 
significant [20]. Similar results were reported by Ref. [21] in the Woleka river basin in the northeastern highlands of Ethiopia, where 
they found a general decline in annual, kiremt, and belg rainfall on almost the same temporal scale. Yet, the trends in kiremt rainfall 
amounts in Ref. [21] were significant. The same authors found an insignificant declining trend from metrological data analysis [21]. 

Generally, previous studies on climate variability and trends had discrepancies in their findings. According to Ref. [29], such 
discrepancies are a result of factors that include differences in the data sources, the statistical method used for data analysis, and the 
study period covered. Most of these studies rely on observed data with a large number of missed values or very low-resolution gridded 
data and a single method of trend analysis. They were also carried out at the regional or country level and provide a generalized picture 
for policymakers at the national level. Undeniably, the climatic conditions of Ethiopia vary within a short distance, both in time and 

Fig. 1. Location map of the study area.  
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space. This demands a detailed investigation of local-level climate variability and change to help planners, decision-makers, and the 
local community develop and implement appropriate adaptation measures to reduce the impacts of climate variability and change. 
However, such studies are not available in the present study area, the Upper Gelana Watershed. 

Therefore, this study was aimed at filling the gaps that existed in previous studies on climate variability and trends. First, to 
overcome the limitations pertinent to data, we examined the applications of high-resolution Earth Observation (EO) precipitation 
products, such as Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT) and Climate 
Hazards Group Infrared Precipitation with Stations (CHIRPS), for local-level studies. The performance of satellite rainfall products 
varies based on topography, local climate, and the type of satellite [30–32]. As a result, we assessed their suitability at the watershed 
level using various statistical techniques. Second, we employed a pixel-wise geostatistical approach to the well-known Mann-Kendall 
(MK) test. In addition, the recently developed innovative trend analysis (ITA) was used to refine the findings of the MK test [33–39]. 
Moreover, variability and trends in rainfall and temperature were examined across the agroecological zones of the Upper Gelana 
watershed, in the northeastern highlands of Ethiopia. 

2. Materials and methods 

2.1. Description of the study area 

The study was conducted in the Upper Gelana Watershed of Tehuledere district, in the northeastern highlands of Ethiopia. 
Geographically, it is found between 11.15o N to 11.35o N and 39.62o E to 39.73o E (Fig. 1). It covers a total area of 134 km2. The study 
area is characterized by rugged topography. The altitude of the study area ranges from 1701 m to 2886 m above mean sea level. The 
upper part of the study area is occupied by mountains dissected by a series of smaller streams that flow to the Gelana mainstream. 

The study area has dega (cool and humid) and weina dega (semi-humid) traditional agroecological zones based on altitude and 
rainfall, which are the primary criteria to classify the agroecology zones in Ethiopia [40,41]. Dega agroecology is located above 2300 m 
above sea level, while weina dega is located between 1701 and 2300 m above sea level; both receive rainfall ranging from 900 to 1400 
mm. During our field observation, we have noted differences in plant and crop varieties grown in the lower and upper parts of the weina 
dega agroecology zone, mainly influenced by the climate conditions. To understand this distinction in climate conditions that exist 
within the weina dega agroecology zone of the study area, we have classified it into two equal parts based on the elevation: the lower 
weina dega (LWD) and upper weina dega (UWD) agroecology zones. 

Major plant species found in the study area include planted Eucalyptus and naturally growing Juniperus procera, Acacia abyssinica, 
and Euphorbia tirucalli. A mixed traditional subsistence farming system consisting of both crop and animal production is the main 
source of livelihood in the study area. Major crops grown in the study area include teff (Eragrostis tef), wheat (Triticum aestivum), and 
sorghum (Sorghum bicolor) which are widely grown crops in the dega and weina dega zones. In addition to cereal crops, farmers produce 
chat (Catha edulis), a primary cash crop for the local community. The Upper Gelana watershed is among the most highly populated 
areas in Ethiopia, with limited cultivatable land in the South Wollo zone [42]. 

2.2. Data sources 

In this study, satellite precipitation data is the principal data source for rainfall variability and trend analysis. Ground-based or 
observed rainfall data were used to assess the performance of satellite rainfall products. In order to examine the variability and trends 
in temperature, gridded temperature data were used. Supportive qualitative data about the variability and trend of rainfall were also 
acquired through focus group discussions (FGDs) and key informant interviews (KIIs). 

2.2.1. Satellite preciptation data 
Satellite precipitation data is vital to overcome the data scarcity caused by the limited spatial coverage of ground-based obser-

vations. Among the various available satellite precipitation products [43], two widely used satellite precipitation products, CHIRPS 
and TAMSAT version 3.1, were selected based on their long temporal coverage and relatively better spatial resolution. 

CHIRPS is a satellite rainfall estimate derived from infrared Cold Cloud Duration (CCD) observations. It provides daily and monthly 
rainfall data from 1981 to the present with an average spatial resolution of 0.05◦ (5.5 km). This precipitation data is essential, 
particularly in sparsely gauged locations [44]. CHIRPS daily data [44] from 1983 to 2021 were retrieved from Google Earth Engine 
(GEE) Snippet ee.ImageCollection ("UCSB-CHG/CHIRPS/DAILY") using rgee, a package used to call GEE in the R environment [45]. 

TAMSAT is another satellite rainfall data source. The product is delivered by the TAMSAT group [46–48]. The data is derived from 
Meteosat thermal infrared (TIR) imagery using cold cloud duration (CCD). The TAMSAT has provided long-term rainfall data since 
1983 with an average spatial resolution of 0.0375◦ (4 km) and temporal resolutions of daily, pentadal, dekadal, monthly, and seasonal 
time scales. The data in netCDF were retrieved from the TAMSAT website at http://www.tamsat.org.uk/data. 

2.2.2. Observed rainfall data 
Observed rainfall data from Haik station (found in the study area) as well as the Dessie, Ruga, and Kutaber stations found in the 

vicinity of the study area was obtained from the Ethiopian Meteorological Institute (EMI). The observed rainfall were used for vali-
dation of satellite precipitation data. To make a reliable comparison of the performances of satellite products across the stations, only 
precipitation records available on dates that are common to all four stations are considered, and missed values are disregarded. The 
location, elevation, and temporal coverage of stations used for satellite rainfall validation are presented in Table 1. 
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2.2.3. Gridded temperature data 
We used gridded temperature data to examine the spatiotemporal variability and trends of temperature in the study area. The daily 

gridded temperature data with a spatial resolution of 0.0375◦ (4 km) over the study area were obtained from the EMI. Due to problems 
related to instruments and security issues that occurred in northern Ethiopia, including the study area, the metrological data for the 
Haik stations were not available in the last five years. Unfortunately, the gridded temperature from EMI is available only until 2018 for 
the whole of Ethiopia. As a result, we examined temperature from 1983 to 2018. 

2.2.4. Interview and focus group discussion 
To better understand farmers’ perspectives on climate variability and change, three focus group discussions with five participants 

each were held in lower weina dega (LWD), upper weina dega (UWD) and dega agroecological zones. In addition, interviews were 
conducted with twelve key informants, four from each of the three agroecology zones, including community leaders, kebele heads, and 
agricultural extension workers. Participants for focus group discussions and key informant interviews were chosen based on their long- 
term residence in the area and familiarity with the issues under consideration. 

2.3. Methods of data analysis 

2.3.1. Validation methods 
The performance of satellite precipitation is affected by several factors, including climate regimes, topography, and the type of 

satellite [30–32]. Thus, it is essential to evaluate the accuracy of CHIRPS and TAMSAT in the Upper Gelan watershed before using them 
for further analysis. Several categorical and continuous-verification statistical tools were used to assess performance on daily and 
monthly timescales. 

Continuous verification statistics were used to quantify the level of accuracy, or how well the satellite estimates rainfall amounts as 
compared to the ground observations. The continuous verification statistics used in this study include the multiplicative bias, mean 
error (ME), mean absolute error (MAE), root mean square error (RMSE), Pearson Correlation Coefficient (r), and Nash–Sutcliffe Ef-
ficiency Coefficient (NSE). Bias and NSE were used to validate the daily and monthly satellite rainfall, respectively, while the other 
statistics were applied to both timescales. 

The multiplicative bias is the comparison of the magnitude of the average satellite-estimated rainfall to that of the average rainfall 
from ground-based observations. The value of multiplicative bias ranges from negative infinity to positive infinity, with one being the 
perfect score [49]. 

Bias (Multiplicative)=

1
N

∑N

i=1
Si

1
N

∑N

i=1
Gi

(1) 

The mean error (ME) also called additive bias, measures the difference between the average satellite-estimated rainfall and the 
average ground observation [50,51]. Higher average satellite measurements than the gauged rainfall yield a positive ME value, while 
the reverse results in a negative ME value [51]. 

ME=
1
N

∑N

i=1
(Si − Gi) (2) 

The Mean Absolute Error (MAE) measures the average magnitude of the errors between each pair of satellite-estimated and 
observed rainfall values. MAE values equal to zero imply that the satellite-estimated rainfall is accurate, and they rise as the differences 
between the estimated and observed rainfall become greater. It takes the same unit as the estimated rainfall [51]. 

MAE=
1
N

∑N

i=1
|Si − Gi| (3) 

The RMSE also measures the average magnitude of the errors but gives greater weight to the larger errors [50]. It has the same scale 
as the satellite-estimated rainfall [51]. 

Table 1 
List of meteorological stations used for validation and their locations based on the geographic coordinate system and Adindan datum.  

No Stations Latitude Longitude Year Elevation (m) 

1 Ruga 11.17 39.58 1983–2007 2672 
2 Dessie 11.12 39.63 1983–2007 2553 
3 Haik 11.30 39.68 1983–2007 1985 
4 Kutaber 11.27 39.53 1983–2007 1740  
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Si − Gi)2

√
√
√
√ (4) 

The correlation coefficient (r) measures the degree of a linear relationship between the satellite-estimated rainfall and rain gauge 
data [50]. Its value ranges from +1 to − 1, where the two upper and lower bounding values indicate a perfect linear relationship. If the 
value is zero, then it indicates no linear relationship [51]. 

r=
∑ (Si− S) (Gi− G)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Si− S)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(Gi− G)

2
√ (5) 

Nash–Sutcliffe Efficiency (NSE) is a widely used index developed by Ref. [52] that measures the agreement between estimated and 
observed events. Its value ranges from minus infinity to one, where the latter indicates an excellent match between the estimated and 
observed event. 

NSE= 1 −

∑N

i=1
(Si − Gi)2

∑N

i=1
(Gi − G)

2
(6) 

In all the above formulas for continuous validation statistics, Si represents the satellite-estimated value, Gi is the observed rain 
gauge value, N is the number of observed samples,‾G is the average observed rain gauge value, and‾S is the average satellite-estimated 
value. In the case of Bias and NSE the variables refer daily and monthly satellite rainfall, respectively, whereas in the other continuous 
statistics variables refer to both timescales. 

Categorical verification statistics were also used to assess the match between rainfall incidences in the satellite estimate and ground 
observations. Categorical verification statistics are calculated from two-by-two contingency tables of yes/no events with four basic 
elements such as hit, misses, false alarms, and correct negatives [50]. A hit (a) refers to a matched record of rainfall events in both the 
satellite estimate and ground-based observations. A false alarm (b) refers to a rainfall event recorded by satellite where there is no 
corresponding recorded rainfall by the ground-based meteorological stations in the study area at any time during the study period. A 
miss (c) refers to a rainfall event recorded by ground observation but missed in the satellite estimate. A correct negative (d) refers to no 
rainfall events in both satellite estimates and ground-based observations. In this study, we used categorical verification statistics such 
as the probability of detection (POD), false alarm ratio (FAR), threat score (TS), equitablethreat score (ETS), Heidke Skill Score (HSS), 
and frequency bias score to evaluate the daily satellite rainfall estimate. In computing these statistics, 0.1 mm was used as a threshold 
to separate the rain and non-rain events. 

The probability of detection (POD) tells about the fraction of rain events recorded by the rain gauge, which was also correctly 
estimated by the satellite [50,51]. 

POD=
a

a + c
(7) 

The false alarm ratio (FAR) measures the fraction of rain events estimated by the satellite that did not happen in reality [50]. The 
best value for POD is one, and for FAR it is zero. 

FAR=
b

a + b
(8) 

Heidke Skill Score (HSS) refers to the accuracy of the satellite rainfall estimate in relation to that of random chance. An HSS value of 
one indicates a perfect satellite estimate, and zero implies no skill. When the satellite rainfall products become worse than the reference 
data, the HSS value becomes negative [51]. 

HSS=
a ∗ d − b ∗ c

(a + c)(c + d)(a + b) (b + d)
(9) 

The threat score (TS) is the number of correct yes forecasts divided by the total number of occasions on which that event was 
forecast and/or observed. Its value ranges between 0 and 1, where zero indicates a poor estimate and 1 is the perfect threat score [51]. 

TS=
a

a + c + b
(10) 

The equitable threat score (ETS) is a modified version of the threat score (TS) that was developed to address the TS’s flaw of being 
higher in wet areas. Its value ranges from 0 to 1, with 1 indicating perfect agreement between estimated and observed rainfall [50]. 

ETS=
a − arandom

a + c + b − arandom
(11) 

The frequency bias score is a comparison of the frequency of rainfall in the satellite estimate to that of the observed rainfall [50]. It 
is a ratio of the total rain events in the satellite estimate to the total rain events observed. The bias value of one implies a perfect 
satellite rainfall estimate. Bias values larger than one signify a more frequent satellite rain estimate than a rain gauge record, whereas a 
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value less than one implies a less frequent rain event in the satellite estimate [51]. 

Frequency bias
/

Bias score =
a + b
a + c

(12) 

The continuous and categorical statistics were computed in R using the verification [53] and matrices [54] packages. 

2.3.2. Methods for climate variability analysis 
In this study, variability and trend analysis of rainfall and temperature were done on a pixel by pixel basis and at three point 

locations representing the LWD, UWD, and dega agroecological zones of the Upper Gelana watershed. The mean and standard devi-
ation were used to examine the variability of rainfall and temperature in monthly, seasonal and annual time scale. These descriptive 
statistics are important to get an overview of rainfall and temperature variation during the study period. Apart from the mean and 
standard deviation, the coefficient of variation (CV), precipitation concentration index (PCI) and standardized rainfall anomaly (SRA) 
were analyzed. 

2.3.2.1. Coefficient of variation (CV). The coefficient of variation is vital for understanding the degree of variability in rainfall from the 
long-term mean. The coefficient of variation was computed for monthly, seasonal, and annual timescales using the formula provided 
by [55]. 

CV =
σ
X
∗ 100 (13)  

Where σ is the standard deviation and X is the long-term mean of preciptation data 

2.3.2.2. Precipitation concentration index (PCI). To analyze the monthly rainfall distribution, the precipitation concentration index 
(PCI) was calculated using the formula given by Ref. [55]. 

PCI = 100
∑

xi 2

(
∑

xi)2 (14)  

Where xi is the rainfall amount of the ith month, and 
∑

xi is the sum of precipitation for twelve months. PCI values less than 10 indicate 
uniform distribution, values between 10 and 15 represent moderate distribution, values from 15 to 20 show irregular distribution, and 
values above 20 indicate strong irregularity in precipitation distribution [55]. These classifications were used in previous studies [21, 
56,57]. 

2.3.2.3. Standardized rainfall anomaly (SRA). Standardized rainfall anomaly (SRA) is used to examine inter-annual rainfall variability 
and is specifically useful to identify wet and dry years. The standardized rainfall anomaly (SRA) for a given station can be calculated as 
used in Refs. [29,58,59]. 

SRA=
Xt − X

σ (15)  

Where Xt is the observed annual or seasonal rainfall in year t, X is the long-term mean annual or seasonal rainfall in the study period, 
and σ is the standard deviation of annual or seasonal rainfall. SRA values less than − 1.65 indicate extreme drought; from − 1.28 to 
− 1.65, severe drought; − 0.84 to - 1.28, moderate drought; and SRA greater than - 0.84, no drought [60]. SRA was used for analyzing 
rainfall variability in previous studies [29,58,59]. 

2.3.3. Trend analysis methods 

2.3.3.1. Mann-Kendall (MK) trend test. Trends in timeseries climate data can be computed using parametric or non-parametric 
methods. In the case of the parametric method, the data must be independent and uniformly distributed, whereas non-parametric 
statistics do not consider distribution and can be used with non-serially correlated data. The Mann-Kendall test is one of the most 
commonly used non-parametric approaches for detecting statistically significant trends in rainfall and temperature [61,62]. To avoid 
drawing incorrect conclusions from the MK results, it is crucial to determine statistically significant autocorrelation in the data [63]. 
When there was no serial correlation, the Mann-Kendall test was utilized in this study to detect trends in the monthly, seasonal, and 
yearly rainfall and temperature [64–66]. The Mann-Kendall statistic S is given as: 

s=
∑n− 1

i=1

∑n

j=i+1
sgn

(
xj − xi

)
(16)  

Where n is the number of data points, xi and xj are the data values in time series i and j (j > i), respectively, and sgn (xj − xi) is the sign 
function as: 
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sgn
(
xj − xi

)
=

⎧
⎨

⎩

+1, if xj − xi > 0
0, if xj − xi = 0
− 1, if xj − xi < 0

(17) 

The variance is computed as: 

Var(S) =
n(n − 1)(2n + 5) −

∑m
i=1ti(i − 1)(2ti + 5)

18
(18)  

Where n is the number of observations, m is the number of tied groups, and ti denotes the number of ties of extent i. A tied group is a set 
of sample data with the same value. In cases where the sample size n > 10, the standard normal test statistic ZS can be calculated as 
follows: 

Zs =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , if S > 0

0 if S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , if S < 0

(19) 

Positive values of ZS indicate increasing trends, while negative ZS values show decreasing trends. 
In this study, the presence of serial-autocorrelation was assessed using the autocorrelation function (acf) of the stat package in the R 

program [67]. In the presence of significant serial-correlation, pre-whitening was applied following the variance correction approach 
to address serial correlation in trend analysis [68]. The pre-whitening procedure was implemented using the modifiedmk package in R 
[69]. 

2.3.3.2. Sen’s slope estimator. Sen’s slope estimator was used to quantify the magnitude of detected trends. It is calculated using the 
formula given as follows [64]. 

Xij =

(
Yj − Yi

)

tj − ti
for i= 1,….,N (20)  

Where the Xij are the slopes of the lines connecting each pair of points (ti, Yi) and (tj, (Yj) where (tj > ti. A positive value of Xij indicates 
an increasing trend, while a negative value of Xij indicates a decreasing trend [70]. 

For better visualization of results from coarse resolution rainfall analysis, values from each pixel were extracted and interpolated 
back using inverse distance weighted (IDW) interpolation using the spatstat package [71]. Then, ArcGIS 10.7.1 and Origin 2022 were 
used to prepare the figures. 

2.3.3.3. Innovative trend analysis (ITA). The ITA is graphical approach for analyzing trends in time series data, first developed by 
Ref. [39]. Non-parametric trend analysis techniques like the Mann-Kendall test need a timeseries data that are not serially correlated. 
However, the ITA completely avoids such prior assumptions based on the data [33,35,39,72]. In this method, the data is divided into 
two equal parts and then plotted on a scatter plot, with the first half on the horizontal axis and the second half on the vertical axis. Data 
points below the 1:1 (45◦) line show a decreasing trend, whereas data points above the 1:1 (45◦) line show an increasing trend. Points 
that fall on the 45◦ line are considered trendless. The ITA graph can also be interpreted by dividing the data point series into three equal 
clusters based on the minimum and maximum value ranges of the data points on the horizontal axis. Then, the three clusters can be 
labeled as "low," "medium," and high," and interpretations of the trends can be provided for each cluster. The significance of the trend 
can be determined using ±5 % or ±10% error. If the data points are outside of ±5 % error or the maximum ±10% error from the 1:1 
line, the trend is significant [72]. We used the ITA method to refine the findings of the Mann-Kendall trend analysis [33–36,73,74]. 

Table 2 
Continuous and categorical validation statistics for CHIRPS and TAMSAT daily rainfall in the upper Gelana watershed and its surroundings (the unit 
for ME, MAE and RMSE is mm).  

Stations  Bias ME MAE RMSE r POD TS ETS FAR HSS Bias score 

Ruga CHIRPS 1.16 0.45 3.75 9.06 0.38 0.4 0.33 0.22 0.38 0.36 0.68  
TAMSAT 1.06 0.16 2.97 7.03 0.5 0.57 0.48 0.36 0.3 0.53 0.86 

Haik CHIRPS 0.86 − 0.48 3.84 9.03 0.4 0.4 0.33 0.22 0.37 0.35 0.65  
TAMSAT 0.76 − 0.84 3.15 7.55 0.51 0.56 0.47 0.35 0.29 0.52 0.82 

Dessie CHIRPS 0.91 − 0.31 4.01 9.77 0.42 0.41 0.32 0.21 0.4 0.35 0.69  
TAMSAT 0.84 − 0.57 3.33 8.2 0.52 0.59 0.47 0.35 0.32 0.52 0.88 

Kutaber CHIRPS 1 0.01 3.79 9.24 0.43 0.41 0.33 0.22 0.37 0.37 0.67  
TAMSAT 0.89 − 0.36 2.87 6.9 0.59 0.6 0.51 0.4 0.26 0.57 0.84  
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Fig. 2. The relationship between CHIRPS (a–d) and TAMSAT (e–h) monthly rainfalls and rain gauge data at Ruga, Haik, Dessie and Kutaber stations 
that are found in the upper Gelana watershed and its surroundings. 
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3. Results and discussions 

3.1. Evaluation of CHIRPS and TAMSAT satellite rainfall 

This section presents and discusses the validation results for the daily and monthly performances of CHIRPS and TAMSAT satellite 
rainfall. 

3.1.1. Validation of CHIRPS and TAMSAT daily rainfall 
For the daily timescale, the multiplicative bias statistics revealed that both satellite products are comparable to station rainfall in 

terms of average magnitude (Table 2). The multiplicative bias for TAMSAT ranges from 0.8 (Haik station) to 1.1 (Ruga station), and for 
CHIRPS it ranges from 0.9 (Haik station) to 1.2 (Ruga station). At Kutaber stations, CHIRPs have a perfect multiplicative bias score of 
1.0. The MAE value for TAMSAT varies from 2.97 mm (Kutaber station) to 3.33 mm (Dessie station), while the MAE value for CHIRPS 
ranges from 3.75 mm (Ruga station) to 4.01 mm rainfall (Dessie station). The result of the MAE indicates that TAMSAT has better 
performance than CHIRPS. The RMSE value for TAMSAT ranges from 6.90 mm to 8.20 mm of rainfall, and for CHIRPS, it ranges from 
9.03 mm to 9.77 mm of rainfall. This implies that TAMSAT has a lower average magnitude of error than CHIRPS. As compared with 
CHIRPS, the daily TAMSAT rainfall has a good linear correlation (r) with the rainfall values at the four meteorological stations. The 
POD value of CHIRPS at the four stations ranges from 0.40 to 041, and for TAMSAT, it ranges from 0.56 to 0.60 (Table 2). This indicates 
TAMSAT has better performance in detecting daily rain events in the Upper Gelana watershed and its vicinity. The findings of this 
study agree with the comparison of the two products in terms of POD in the northwest part of the Rift Valley in Ethiopia [31]. 

The TS and ETS statistics showed that CHIRPS have almost consistent performances over the four stations, while the performance of 
TAMSAT was more or less the same except for the Kutaber station (Table 2). In comparison, TAMSAT has higher TS and ETS values 
than CHIRPS, implying a better ability to detect rain events. The FAR values for TAMSAT are lower than CHIRPS at all stations, 
suggesting that TAMSAT produces fewer false alarms. This also implies that the rain events that did not occur in reality were reported 
as if they did by TAMSAT were smaller than those in CHIRPS. The HSS result, which measures the skill or accuracy of satellite pre-
cipitation in relation to random chances, showed that TAMSAT has better accuracy than CHIRPS for daily rainfall. Similar findings 
with the HSS result of this study were also reported by Ref. [31]. The comparison bias score revealed that the frequencies of TAMSAT 
are more similar to the frequencies of station rainfall than those of CHIRPS (Table 2). In general, almost all of the continuous and 
categorical statistics show that TAMSAT performs better than CHIRPS in the daily rainfall estimates. Similar findings were reported by 
Ref. [31] who attributed the better performance of the TAMSAT daily rainfall product to the inherent algorithm adjusted based on local 
station data. 

3.1.2. Validation of CHIRPS and TAMSAT monthly rainfall 
The patterns in the scatterplots and the coefficient of determination (R2) values show a significant correspondence between the 

monthly rainfall from satellite products and the observed rainfall patterns at all four stations (Fig. 2). However, both the scatter and 
values of (R2) suggest that the monthly rainfall from CHIRPS (Fig. 2a–d) has slightly better accuracy than monthly rainfall from 
TAMSAT (Fig. 2e–h). Similar pattern of scatters for both CHIRPS (less) and TAMSAT (a bit wider) over Ethiopia were reported in 
Ref. [31]. 

As shown in Table 3, the mean error at Ruga is 13.49 mm and 4.97 mm for CHIRPS and TAMSAT, respectively. The result indicates 
that TAMSAT has a lower average error compared to CHIRPS at Ruga station. It also shows that the rainfall measured by the CHIRPS 
satellite is greater than the rainfall measured at the Ruga meteorological station. The mean error for CHIRPS at Haik, Dessie, and 
Kutaber stations, respectively, is − 14.6 mm, − 9.5 mm, and 0.15 mm. While the mean error for TAMSAT at Haik, Dessie, and Kutaber 
stations is − 25.3 mm, − 17.1 mm, and − 10.8 mm, respectively (Table 3). The findings imply that CHIRPS has a lower average error 
than TAMSAT at the three stations. The negative mean error values for both CHIRPS and TAMSAT suggest that the estimated rainfall by 
these satellite products is lower than the rainfall measured at the respective ground-based meteorological stations. For CHIRPS, the 
MAE values range from 25.5 mm at Dessie to 31.3 mm at Kutaber station, while TAMSAT MAE values range from 28.5 mm at Ruga to 
38.9 mm at Dessie station (Table 3). Similar to ME, the MAE and the RMSE statistics revealed that CHIRPS is slightly better than 
TAMSAT in monthly rainfall estimates at all four stations. The correlation coefficient for both CHIRPS and TAMSAT monthly satellite- 
estimated rainfall products is larger than +0.8, which demonstrates a very strong positive association with the observed rainfall. Both 

Table 3 
Validation statistics for CHIRPS and TAMSAT monthly rainfall in the upper Gelana watershed and its surroundings (the unit for ME, MAE and RMSE is 
mm).  

Stations  ME MAE RMSE R NSE 

Ruga CHIRPS 13.49 25.58 36.28 0.95 0.88  
TAMSAT 4.97 28.35 45.20 0.92 0.82 

Haik CHIRPS − 14.63 29.31 42.19 0.93 0.84  
TAMSAT − 25.33 37.10 54.18 0.89 0.74 

Dessie CHIRPS − 9.46 25.54 39.39 0.95 0.90  
TAMSAT − 17.12 38.43 57.69 0.90 0.78 

Kutaber CHIRPS 0.15 31.29 46.04 0.94 0.87  
TAMSAT − 10.75 35.94 57.30 0.90 0.80  
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CHIRPS and TAMSAT have NSE values close to one, indicating very good agreement with observed rainfall at all stations. In general, all 
continuous statistical tests performed on monthly data from TAMSAT and CHIRPS indicate that the two products perform well, with 
CHIRPS slightly outperforming the TAMSAT satellite rainfall estimate. The results of this study, specifically MAE, correlation coef-
ficient (r), and efficiency, are in line with the findings stated by Ref. [31] for the monthly timescale in Ethiopia. 

3.2. Spatiotemporal variability of rainfall 

3.2.1. Variability of monthly rainfall 
Based on the validation results of satellite rainfall products, TAMSAT was better than CHIRPS for daily rainfall, while they had a 

very close performance on monthly rainfall. As a result, TAMSAT was chosen and, hence, used in the subsequent analyses of the 
variability and trend in rainfall in this study. As presented in Table 4, the mean monthly rainfall is high in August amounts to 268 mm, 
270.9 mm, and 289.9 mm in LWD, UWD, and dega agroecology zones, respectively. Whereas January is the month with lowest mean 
monthly rainfall in all three agroecology zones. When comparing the three agroecology zones, dega received the highest mean monthly 
rainfall, followed by UWD and LWD, in the majority of the months. In the study area, the mean seasonal rainfall was high in the kiremt 
season (the main rainy season) and low in the bega season during the study period (1983–2021). The belg rainfall deviate from the mean 
by 96.8, 94.1 and 93.8 mm in LWD, UWD and dega agroecology zones, respectively. The standard deviation of annual rainfall is low 
(193.7 mm) and high (212.4 mm) in LWD and dega, respectively. The coefficient of variation (CV) was higher for the belg season than 
the kiremt and annual rainfall in all the three agroecology zones, indicating high variability. 

The average monthly rainfall in the study area varies spatially and temporally across latitudes (north-south) and longitudes (east- 
west). The spatial variation could be related to the altitude of the study area. As we move north, the altitude drops and the agroecology 
shift from dega to UWD and eventually to LWD. It increases from east to west in the northern half, but the topography is uneven in the 
southern half. As shown in the Hovmoller diagrams in Fig. 3a, the southern parts (dega) of the study area received relatively high mean 
monthly rainfall in June, July, August, and September. As we moved north (LWD), the mean rainfall was high only in the July and 
August months. Similarly, the distribution of rainfall varies from east to west; places in the eastern part received relatively the highest 
mean monthly rainfall (1983–2021) in all of the kiremt months, but western parts do in July and August (Fig. 3b). Furthermore, as 
illustrated in Fig. 4a-l, the mean monthly rainfall has a distinct spatial pattern that is also related to the seasons. 

3.2.1.1. Preciptation concentration index (PCI). Based on the PCI results, the LWD, UWD, and dega agroecology zones of the upper 
Gelana watershed are characterized by moderate to strong irregularities in rainfall distribution (Fig. 5a–c). The proportion of years 
with a moderate rainfall distribution is 2.6% in the LWD agroecology zone and 5% in the UWD and dega agroecology zones. The years 
1997 and 2019 exhibited moderate rainfall distributions in the UWD and dega agroecology zones, as did the year 2019 in the LWD 
(Fig. 5). Additionally, 53.8% of study years in the LWD and UWD and 64% of the study years in dega had PCI values above 20, 
indicating a strong irregularity in the distribution of rainfall. As seen in Fig. 5a-c, the distribution of monthly rainfall was not uniform 
or homogeneous throughout the study periods (1983–2021). 

3.2.2. Variability of seasonally and annual rainfall 
As depicted in Fig. 8a-d, the distribution of the seasonal and annual mean rainfall follows a similar pattern as the mean monthly 

rainfall presented in Fig. 4a-l. The southern parts of the Upper Gelana watershed received relatively the highest mean kiremt season 
rainfall (740 mm), while the northern part of the watershed received relatively low (616 mm) mean kiremt season rainfall. As in the 

Table 4 
Descriptive statistics of the monthly, seasonal, and annual rainfall (unit of measurement is mm) based TAMSAT in the LWD, UWD and dega agro-
ecology zones of the upper Gelana watershed (1983–2021).  

Month  LWD   UWD   Dega  

Mean SD CV Mean SD CV Mean SD CV 

Jan 1.7 4.0 240.0 0.7 2.6 347.1 0.3 1.5 605.4 
Feb 9.8 16.3 166.3 8.6 13.8 160.6 7.8 12.5 160.7 
Mar 70.1 51.7 73.7 70.0 51.5 73.7 71.5 49.0 68.6 
Apr 108.3 56.0 51.7 109.8 55.5 50.5 112.4 59.1 52.6 
May 61.9 48.8 78.9 66.2 52.5 79.3 70.6 56.4 79.8 
Jun 26.7 28.2 105.5 30.3 30.8 101.3 31.1 32.1 103.2 
Jul 238.0 102.3 43.0 243.9 103.8 42.6 264.6 111.5 42.1 
Aug 268.6 92.0 34.3 270.9 93.6 34.6 289.9 97.6 33.7 
Sep 108.8 40.8 37.5 111.9 43.6 39.0 123.9 49.0 39.5 
Oct 45.1 47.4 105.0 45.7 47.6 104.1 46.2 49.8 107.8 
Nov 17.5 29.9 171.0 17.8 30.5 170.8 19.6 29.5 150.9 
Dec 7.4 12.2 166.1 7.0 11.4 162.7 7.2 13.5 186.5 
Season 
Belg (FMAM) 250.0 96.8 38.7 254.5 94.1 37.0 262.3 93.8 35.8 
Kiremt (JJAS) 642.1 191.3 29.8 657.1 197.7 30.1 709.5 208.7 29.4 
Bega(ONDJ) 72.0 53.9 74.9 71.7 55.7 77.8 73.3 59.4 81.0 
Annual 963.8 193.7 20.1 982.9 200.7 20.4 1045.1 212.4 20.3  
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mean monthly and seasonal rainfall, latitudinal and longitudinal variations were also visible in the annual rainfall time series (Fig. 6a 
and b). The annual rainfall decreased as we moved from east to west (Fig. 6b) and south to north (Fig. 6a), and the patterns were 
consistent throughout the study period (1983–2021). As stated above, the high rainfall in the southern and eastern parts may be 
associated with their high altitude and better forest cover than the northern parts. 

3.2.2.1. Standardized rainfall anomaly (SRA). The analysis of seasonal SRA from 1983 to 2021 shows that the LWD agroecology zone 
experienced moderate and above drought conditions in 17.9% and 20.5% of the belg and kiremt seasons, respectively. In the UWD 
agroecology, 15.4% of the belg season and 20.5% of the kiremt season out of the 39 years were characterized by above-moderate 
drought conditions. During the study period, the proportion of dry years in the dega agroecology zone accounts for 15.4% and 
17.9% during the belg and kiremt seasons, respectively. In all three agroecology zones, the years 1996 and 1999 were the wettest and 
driest of the belg season, respectively (Fig. 7a–c). The wettest kiremt season in the LWD and UWD occurred in 2010, but in the dega 
agroecology zone, it was in 1998. In all the agroecological zones, the driest kiremt season was recorded in the year 1984 (Fig. 7d–f). 
According to the annual SRA statistics, both the LWD and dega had moderate to extreme dryness in 20.5% of the study years; the UWD 
agroecology, however, saw slightly more dryness (23.1%). In terms of annual rainfall, 1984 and 2019 were the driest and wettest years 
common to all three agroecological zones, respectively (Fig. 7j-l). The standardized rainfall anomaly index results indicate that the 
study area has high inter-annual variability in seasonal and annual rainfall (Fig. 7a-l). 

3.3. Spatiotemporal trends in rainfall 

3.3.1. Serial-autocorrelation test 
In order to get a proper result from the Mann-Kendall trend test, it is essential to assess the presence of serial autocorrelation. Thus, 

the lag-1 serial correlation was calculated on a pixel-by-pixel basis for monthly, seasonal, and annual rainfall. Significant autocor-
relation (P = 0.05) was found in the January (Fig. 9a) and April (Fig. 9b) months on a few pixels. So, pre-whitening was applied for 
those pixels with significant autocorrelation following the variance correction approach to address serial correlation in trend analysis 
in R [68]. The pixels where the point values for LWD, UWD, and dega agroecology zones were extracted are not serially correlated. 
Fig. 9 shows the spatial autocorrelation for rainfall in January and April months. 

3.3.2. Monthly rainfall Mann-Kendall trend analysis 
As shown in Table 5, the monthly rainfall in the LWD agroecology showed statistically significant increasing trends in June (P =

0.1) and from July to November (P = 0.05). Similarly, the monthly rainfall in the UWD and dega agroecology zones shows a significant 
increasing trend from June to November. As. 

shown in Table 5, Sen’s slope test result indicates that the highest magnitude of the trend for all the agroecology zones was in 
August. In contrast, the MK test indicates statistically non-significant downward trends in the January to April, and December months 
in all three agroecology zones (Table 5). However, Sen’s slope values for January, February, and December months were nearly zero, 
implying that the magnitude of changes in rainfall in these months were insignificant during the study period (1983–2021). 

Fig. 10a-l and (a’-l’), respectively, shows the spatial patterns of Mann-Kendall and Sen’s slope test statistics of monthly rainfall for 
the study period (1983–2021).The pixel-wise analysis showed the spatial variation in the magnitudes and significance levels of trends 

Fig. 3. Hovmoller diagrams prepared using TAMSAT data that show latitudinal (a) and longitudinal (b) variations of mean monthly rainfall (mm) in 
the Upper Gelana watershed (1983–2021). 
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across the Upper Gelana watershed. For the majority of the months, the pixel-by-pixel trend analysis results are closely related to MK 
and Sen’s slope results presented in Table 5. The exceptions were the trends in the March and May months. From the spatial analysis, a 
statistically significant (P = 0.1) decreasing trend was found in March in the north, northwest, and a small area in the southeast part of 
the watershed (Fig. 10c’). Contrary to MK and Sen’s slope result for the monthly rainfall presented in Table 5, the spatial analysis 
shows an insignificant positive trend in May in the eastern part and negative trends in the western part (Fig. 10e’). 

3.3.3. Mann-Kendall trend analysis for seasonal and annual rainfall 
Based on the pixel-wise trends shown in Fig. 11(d,d’,dd), statistically significant increasing trends were found in the annual rainfall 

for the whole Upper Gelana watershed (P = 0.001). This result is in line with the findings of previous studies [29,75,76]. An increasing 
trend in annual rainfall were found for Dessie station in earlier study [29]. The magnitudes of the trend in annual rainfall vary spatially 
from 8.98 to 10.22 mm/year. It was lower in the northern part (LWD agroecology) and higher in most parts of UWD and dega ag-
roecology zones of the study area. Kiremt season rainfall also shows a statistically significant (P = 0.001) positive trend (Fig. 11b,b’, 

Fig. 4. Spatial distribution of mean monthly rainfall (mm) in the Upper Gelana Watershed (1983–2021) from January to December respectively 
labeled by letters a-l prepared based on TAMSAT data. 
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bb). Similar findings were reported by other researchers [29,75–79]. The annual increment of kiremt rainfall varies across the 
watershed from 9.38 mm (northern) to 11.4 mm (southern). Fig. 11(a,a’,aa) also shows a declining trend in belg season rainfall 
throughout the study area, but it is insignificant. The decline in belg season rainfall was relatively high in the southern part (dega) of the 
Upper Gelana watershed. Similar findings on the decreasing trend in belg season rainfall were identified in previous studies [75,76,78, 
79]. In all agroecology zones of Upper Gelana watershed, the pattern of bega season rainfall shows a slight increment from 1983 to 
2021 that is significant at P = 0.05 (Fig. 11c,c’cc). 

In all agroecological zones of the study area, the annual, bega, and kiremt season rainfall showed a significant increasing trend, 
whereas belg season rainfall exhibits a non-significant decreasing trend (Fig. 12a-l). As determined from the Sen’s slope in Fig. 12j-l, 
rate of increment in annual rainfall in the LWD, UWD and dega agroecology zones was 91.0, 94.4, and 99.0 mm per decade, 
respectively. Similarly, the decadal rate of increment of rainfall during kiremt season was 96.1, 101.6, and 104.8 mm in the LWD, UWD 
and dega agroecological zones the order of sequence computed based on Fig. 12d-f. In contrast, the belg season rainfall in the LWD, 
UWD and dega agroecology zones decreased by 16.4, 16.2, and 14.0 mm per decade, respectively. The findings imply that the decadal 
rate of increase in annual and kiremt season rainfall is higher in the dega agroecology zone and lower in the LWD. 

3.3.4. Innovative trend analysis (ITA) of seasonal and annual rainfall 
The ITA results in Fig. 13a-l were interpreted for the "low," "medium," and "high" clusters, as explained earlier. Accordingly, data 

points in the belg except for dega (Fig. 13a–c) and bega season (Fig. 13g–i) are below 1:1 (45◦) line, indicating the decreasing trend of 
rainfall in these seasons. In contrast, the data points series of the kiremt season except dega (Fig. 13d–f) and annual rainfall (Fig. 13j-l) 
are above the 1:1 (45◦) line, suggesting an overall increasing trend in rainfall. 

The cluster-based interpretations of the ITA results in Fig. 13a-i revealed that the trends vary in the low, medium and high clusters 

Fig. 5. PCI calculated from TAMSAT rainfall for LWD (a), UWD (b), and dega (c) agroecology zones of the Upper Gelana Watershed (1983–2021).  

Fig. 6. Hovmoller diagrams prepared using TAMSAT data that show latitudinal (a) and longitudinal (b) variations of annual rainfall (mm) in the 
Upper Gelana watershed (1983–2021). 

S. Tadesse et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e27274

14

for seasonal rainfall. In LWD and UWD agroecology zones, a decreasing trend of belg season rainfall were identified in all three clusters 
of data points. However, the belg season in the dega agroecology showed an increasing, decreasing and no-trends in the low, medium 
and high clusters respectively. Kiremt season rainfall exhibited an increasing trend in the low, medium, and high data points in all three 
agroecology zones, with the exception of the decreasing trend in the high data points in dega agroecology. In the case of bega season, an 
increasing trend were detected in low and medium clusters, but rainfall showed a decreasing trends in the high cluster in all the 
agroecology zones of the study area (Table 6). As presented in Table 6 and Fig. 13j–l, the ITA show that the annual rainfall exhibits an 
increasing trend in low, medium, and high data point clusters in all the study agroecology zones. 

3.3.5. Comparison of MK and ITA results for seasonal and annual rainfall 
We found almost similar findings from MK and ITA methods in the overall trend directions for belg, kiremt and annual rainfall LWD 

and UWD agroecological zones of the study area. However, we found a contrasting findings in the belg and kiremt season rainfall in the 
dega agroecology. In this agroecology zone, the MK test show insignificant decreasing trend in belg rainfall, but the ITA revealed 
significant increasing trend in the low cluster and no-trend in the high cluster of the belg season rainfall. Likewise, we found a sig-
nificant increasing trend of kiremt season rainfall from MK test, while ITA show significant declining trend in the high data point 
clusters. Similar contrasting results were obtained for bega season rainfall (Fig. 12 and Table 6). Other authors also noted similar 
discrepancies between the findings of MK and ITA [35]. This might be viewed as an advantage of ITA method in providing detailed 
results about trends in hydro-climatological timeseries data. 

3.4. Spatiotemporal variability of temperature 

In the upper Gelana watershed, the temperature is spatially variable (Fig. 14a–c). It is higher in the north (LWD) than the southern 
(dega) part. The lowest mean monthly maximum temperature were 24.1 ◦C, 23.5 ◦C, and 20.3 ◦C in the LWD, UWD, and dega agro-
ecology zones, respectively, recorded in January. Whereas, the highest mean monthly maximum temperature were 30.3 ◦C, 29.6 ◦C, 
and 25.9 ◦C in June, in order of sequence, in the LWD, UWD, and dega agroecology zones. The lowest mean monthly minimum 
temperature is 7.3 ◦C (in LWD), 6.8 ◦C (in UWD), and 6.1 ◦C (dega) — observed in December. In contrast, the mean monthly minimum 
temperature were high in July in the LWD (14.1 ◦C), UWD (13.6 ◦C) and dega (11.9 ◦C) agroecological zones. The watershed expe-
rienced the highest seasonal average maximum and the lowest seasonal average minimum temperature in the kiremt and bega seasons, 
respectively (Table 7). The annual average maximum temperatures of the watershed were 26.6 ◦C, 26.0 ◦C, and 22.6 ◦C, in order of 

Fig. 7. The standardized anomaly index for the belg (a–c), kiremt (d–f), bega (g–i) and annual (j–l) in the LWD (first column), UWD (second column) 
and dega (third column) agroecology zone prepared using TAMSAT preciptation (1983–2021). 
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Fig. 8. Spatial distribution of average rainfall (1983–2021) in belg (a), kiremt (b) and bega (c) seasons and annual (d) timescales prepared based on 
TAMSAT data. 

Fig. 9. Spatial (pixel-by-pixel) lag-1 serial correlation test result for monthly TAMSAT rainfall for January (a) and April (b) in Upper Gelana 
Watershed (1983–2021). 
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Table 5 
Mann Kendall and Sen’s slope (mm/year) test statistics for monthly rainfall (1983–2021) in the upper Gelana watershed calculated using TAMSAT 
data.  

Month  LWD   UWD   Dega  

Z-Value Sen’s slope P-value Z-Value Sen’s slope P-value Z-Value Sen’s slope P-value 

Jan − 0.18 0.00 0.856 − 0.60 0.00 0.548 − 0.57 0.00 0.567 
Feb − 1.23 0.00 0.219 − 0.82 0.00 0.412 − 0.67 0.00 0.504 
Mar − 1.43 − 1.11 0.153 − 1.39 − 1.03 0.164 − 1.19 − 0.86 0.236 
Apr − 0.64 − 0.50 0.521 − 0.48 − 0.37 0.628 − 0.48 − 0.50 0.628 
May 0.22 0.08 0.828 0.07 0.05 0.942 0.00 0.00 1.000 
Jun 1.78 0.51 0.075* 2.12 0.65 0.034** 1.88 0.67 0.061* 
Jul 2.23 3.29 0.026** 2.42 3.71 0.016** 2.18 3.65 0.029** 
Aug 2.85 3.79 0.004** 2.82 3.79 0.005** 2.88 3.91 0.004** 
Sep 2.17 1.26 0.030** 2.27 1.50 0.023** 1.69 1.39 0.090* 
Oct 2.14 0.99 0.033** 1.80 0.77 0.071* 2.45 0.72 0.014** 
Nov 2.00 0.01 0.045** 2.13 0.01 0.033** 1.96 0.21 0.050** 
Dec − 1.24 0.00 0.213 − 1.36 0.00 0.175 − 1.51 0.00 0.132 

* and ** indicate statistically significant at 0.1 and 0.05 alpha levels respectively. 

Fig. 10. Spatial patterns of Sen’s slope expressed in mm/year (a–l) and significance of MK trends (a’-l’) of monthly rainfall (1983–2021) in the 
upper Gelana watershed computed based on TAMSAT data. 
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sequence, in LWD, UWD, and dega agroecology zones, during the study period (1983–2018). 

3.5. Spatiotemporal trends of temperature 

3.5.1. Monthly temperature trend analysis using MK 
Before running Mann-Kendall and Sen’s slope test, lag-1 serial correlation was computed for the monthly, seasonal, and annual 

average minimum, maximum, and mean temperature. Then, the pre-whitening procedure was applied for those time scales with a 
significant lag-1 serial correlation. 

The MK test result shows a decreasing trend of monthly minimum temperatures for all months except November in the LWD and 
UWD agroecology zones (Table 8). In dega agroecology, a decreasing trend of the minimum temperature was detected in January, 
February, March, July, and November. On the contrary, the monthly maximum temperature shows a significant increasing trend in all 
months except November in the LWD and UWD agroecology zones. As shown in Table 8, the monthly maximum temperature in dega 
agroecology showed a positive trend from January to April and August months, while the other months exhibit a negative trend. 
Warming trends in the maximum temperature were reported by other authors [25,76,80]. A rising trend was observed in the monthly 
mean temperature in most of the months, with the exception of February and November in LWD and UWD and January, February, July, 
and November in the dega agroecology zones. Similar trends in minimum temperature were found in recent studies for different parts 
of Ethiopia [25,59,81]. [81] noted a declining trend for the monthly minimum temperature for Dessie. 

3.5.2. Seasonal and annual temperature trends using MK 
The seasonal and annual minimum temperature in LWD and UWD agroecology zones showed a statistically significant declining 

trend except in the bega season (Fig. 15a-l). In dega agroecology, declining trends were observed in the belg and annual timescales. 
Based on the Sen Slope statistics presented in Fig. 15j–k, the annual minimum temperature declines at a rate of approximately 0.3 ◦C 
per decade in both LWD and UWD agroecological zones. Similarly, declining trends in the seasonal and annual minimum temperatures 
were reported for the western parts of the upper Blue Nile river basin [25]. As shown in Fig. 16a-l, the seasonal and annual trends in 
maximum temperature varies across the study agroecological zones. In the LWD and UWD agroecological zones, the annual maximum 
temperature showed a significant rising trend at a decadal rate of 0.4 ◦C (Fig. 16j–k). The increments in the belg and annual maximum 

Fig. 11. Pixel-wise Mann Kendall trend (Z) (a–d), significance level (a’- d’), and Sen’s slope in mm/year (aa-dd) for belg, kiremt, bega and annual 
rainfall (1983–2021) in the upper Gelana watershed calculated using TAMSAT data. 
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temperature in the dega agroecology were insignificant. As shown in Fig. 17a-l, insignificant positive trends were also observed in the 
seasonal and annual mean temperature except in the bega season in all the agroecology zones. 

3.5.3. ITA for seasonal and annual temperature 
As shown in Fig. 18a-l and Table 9, the seasonal and annual minimum temperatures are consistently declining across all clusters in 

the LWD and UWD. The seasonal and annual minimum temperatures in the dega agroecology zone exhibit an increasing tendency in 
the low clusters, but a declining trends were identified in the high clusters except for the belg season. The seasonal and annual 
maximum temperatures in LWD and UWD showed an increasing trend in all the clusters (Fig. 19a-l and Table 9). In the dega agro-
ecology, belg and annual maximum temperatures showed a decreasing and increasing trend, respectively, in the high cluster (Table 9). 
In the low cluster, the annual mean temperature showed an increasing trend in all the agroecology zones (Fig. 20a-l and Table 9). 
Similarly, the belg and kiremt mean temperature showed an increasing trend in the dega agroecology. In the medium cluster, no trend 
was identified in the seasonal and annual mean temperature in all three agroecology zones. The seasonal and annual mean temper-
atures, with the exception of the belg, exhibited a declining tendency in the high cluster in the LWD and UWD agroecology zones. 
Whereas in dega agroecology, no trends were detected for seasonal and annual mean temperature in the high cluster data points 
(Fig. 20 and Table 9). 

3.5.4. Comparison of MK and ITA for seasonal and annual temperature trends 
The MK and ITA results completely match in the direction of trends for seasonal and annual minimum (decreasing) and maximum 

(increasing) temperatures in LWD and UWD agroecology zones. However, there is no clear match between the findings from the ITA 

Fig. 12. Shows belg (a–c), kiremt (d–f), bega (g–i), and annual (j–l) rainfall trends (1983–2021) in the LWD (left), UWD (middle), and dega (right 
columns) agroecology zones of the upper Gelana watershed computed based on TAMSAT data. The zigzag lines represent rainfall (mm), and the 
straight line in red represents Sen’s estimate of rainfall. In addition, the texts in green, red, and blue are the Z-value, Sen’s slope (mm/year), and p- 
value of the MK test, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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and MK for the seasonal and annual minimum and maximum temperatures in the dega agroecology. For the seasonal and annual mean 
temperature, the MK shows statistically insignificant positive trends in all the agroecology zones, except for the bega season. Whereas 
the ITA results show no trends in mean temperature for the belg season in all the agroecology zones, except for the positive trend in the 
low cluster in the dega agroecology. The kiremt and annual mean temperatures also show no trend in the medium and high clusters in 
all agroecology zones, except for the declining trend in the high clusters in the LWD and UWD agroecology zones. Some contradicting 
findings of MK and ITA methods were also reported in an earlier study [35]. The comparison of the results shows that most of the 
insignificant negative and positive trends in the MK trend test tend to be trendless in the ITA method. 

Points in black color represent data points, the dash lines in red are the ±10% error and dash lines blue are ±5% error line and the 
line in black in between is the no-trend line. The green lines divide the data points into low, medium and high clusters. 

3.6. Farmer’s perception on climate variability and trends 

The results of the focus group discussion and interview confirmed the decreasing trend in belg rainfall. The participants reported 
that the decreasing (or total absence, as they described) of rainfall in the belg season hampered their efforts to become self-sufficient in 
food and caused a shortage of fodder for animals. A farmer in Amumo, a village in the upper weina dega (UWD) agroecology zone, told 
us, "In the past year, particularly before 1990, the yield we got from the belg season constituted a major part of food grain for household 
consumption, but nowadays we are not growing crops due to the lack of rainfall". Another informant also strengthens this idea by 
saying, "In the belg season it was possible to grow all the grains such as wheat (Triticum aestivum), barley (Hordeum vulgare L.), teff 
(Eragrostis tef) and others that we produce during the kiremt season, and sometimes we even harvest more than the kiremt season. 

Fig. 13. Innovative trend analysis (ITA) results of the belg (a–c), kiremt (d–f), bega (g–i), and annual (j–l) rainfall (1984–2021) in the LWD (left), 
UWD (middle), and dega (right columns) agroecology zones of the upper Gelana watershed based on the TAMSAT data. Points in black color 
represent data points, the dash lines in red are the ±10% error and dash lines blue are ±5% error line and the line in black in between is the no- 
trend line. The green lines divide the data points into low, medium and high clusters. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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However, the belg season is becoming completely dry, and we are no longer engaged in crop farming at this time". 
Concerning the kiremt season, the informants’ perspectives contradict the results of the statistical analysis of meteorological data. 

We found inconsistencies among the participants regarding the onset and termination of the kiremt season during the focus group 
discussion. The majority of them agree on the late start of rainfall, but they have different views on the cessation of kiremt rainfall. 
Some say it ends up early, while others say it terminates late. Nevertheless, both scenarios may have an impact on the farmer’s 
agricultural practices. "In the past year, we sowed wheat starting from the second week of July, but in recent years it has shifted to the 
last week of July and sometimes the first week of August," an elderly person from Lay-Golbo (dega agroecology) village told us. The 
Mann-Kendall test results, on the other hand, show an increasing trend in rainfall across all four months of the kiremt season. But this is 
apparently related to the ITA findings, which reveal a decreasing trend in kiremt season rainfall, especially in the high cluster for the 
dega agroecology zone. Nonetheless, the perception of farmers about climate change is dependent on personal and environmental 
factors, so discrepancies may occur with findings that are based on meteorological data analysis [82]. Most of the time, their opinions 
are based on the most recent event they recall or that has an impact on their farming activities, rather than the cumulative effect of a 
long-term event. 

The focus group discussants also pointed out that the temperature in their area is becoming hot. The informants also have similar 
perceptions regarding the increase in temperature. An informant from the Amumo village in the UWD reported that "there is no doubt 
that the temperature in our area has been increasing and no evidence for this other than looking at our environment. Plants such as 
kinchib (Euphorbia tirucalli L.) and banana were growing in hot temperatures, but nowadays they can grow in our village". During the 
field visit, we also noticed kinchib trees used as a fence and banana trees in some homesteads. 

Table 6 
Innovative trend analysis (ITA) statistics and cluster based interpretation of Fig. 13(a–l) for seasonal and annual rainfall (1984–2021) in the LWD, 
UWD and dega agroecological zones of the upper Gelana watershed using the TAMSAT data.   

Agroecology  
Interpretation 

Timescale Low Medium High 

LWD Belg -* -* -* 
Kiremt þ* þ* þ* 
Bega þ* þ* -* 
Annual þ* þ* þ* 

UWD Belg -* -* - 
Kiremt þ* þ* þ* 
Bega þ* þ* -* 
Annual þ* þ* þ* 

Dega Belg þ* - 0 
Kiremt þ* þ* -* 
Bega þ* þ* -* 
Annual þ* þ* þ

Note: (− ), (+) and (0) signs indicates decreasing, increasing and no trend, respectively and * indicate significant trend (points are outside of the ±5 
error line). 

Fig. 14. Average maximum (a), minimum (b), and mean temperatures (◦C) in the Upper Gelana watershed based on the gridded temperature from 
EMI (1983–2018). 
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Table 7 
Descriptive statistics of seasonal and annual average maximum, minimum and mean temperature (◦C) from 1983 to 2018 for the Upper Gelana watershed based on the gridded temperature from EMI.   

Time-scale 
LWD UWD Dega 

Min Max Avg Min Max Avg Min Max Avg 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Belg 11.5 1.1 26.9 1.1 19.2 0.5 10.9 1.1 26.3 1.1 18.6 0.5 9.8 0.9 22.8 0.7 16.3 0.4 
Kiremt 13.5 0.6 27.9 0.5 20.7 0.3 12.9 0.6 27.3 0.5 20.1 0.3 11.4 0.5 23.9 0.5 17.6 0.3 
Bega 8.1 1.4 24.8 1.2 16.5 0.9 7.6 1.4 24.2 1.2 15.9 0.9 6.8 1.2 20.8 1.0 13.8 0.8 
Annual 11.0 0.7 26.6 0.6 18.8 0.4 10.5 0.7 26.0 0.6 18.2 0.4 9.3 0.6 22.6 0.4 15.9 0.3  
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4. Conclusions 

In this study, we found that TAMSAT has a relatively low average magnitude of errors compared to CHIRPS, and a better correlation 
with the daily rainfall from ground-based stations. The POD revealed that TAMSAT has a better ability to detect daily rainfall. The ETS 
demonstrates that the daily rainfall estimate from TAMSAT has better correspondence with gauged rainfall. In addition, FAR was lower 
in TAMSAT’s daily rainfall, and the frequency of daily rain events in TAMSAT was very close to the frequencies of daily gauged rainfall. 
Moreover, HSS suggests that TAMSAT has better skill or accuracy than CHIRPS in daily rainfall estimates. Regarding the monthly 
rainfall, the categorical evaluation statistics revealed the two products have comparable performances, with CHIRPS slightly per-
forming better than TAMSAT. 

The study area is characterized by a strongly irregular distribution of rainfall throughout the study period. Based on TAMSAT 
rainfall product, we found a significant increasing trend in monthly rainfall from June to November in the LWD, UWD and dega ag-
roecology zones using the MK test. However, a slightly different trend was detected in the pixel-wise trend analysis in the March and 

Table 8 
Summary of Mann-Kendall and Sen’s slope test statistics for the maximum, minimum and mean temperature (◦C) at monthly time scales for the LWD, 
UWD and dega agroecological zones (1983–2018) based on the gridded temperature from EMI.  

Month LWD UWD Dega 

Min Max Mean Min Max Mean Min Max Mean 

Jan − 0.031 0.038** 0.006 − 0.032 0.038** 0.006 − 0.046 0.025 − 0.008 
Feb − 0.092** 0.080*** − 0.004 − 0.093** 0.083*** − 0.004 − 0.032 0.032 − 0.003 
Mar − 0.085** 0.086*** − 0.008 − 0.084*** 0.086*** − 0.006 − 0.002 0.031 0.010 
Apr − 0.030 0.071*** 0.016 − 0.029 0.072*** 0.016 0.018 0.005 0.008 
May − 0.017 0.044** 0.012 − 0.017 0.045** 0.013 0.018** − 0.000 0.009** 
Jun − 0.026* 0.030*** 0.001 − 0.026** 0.033*** 0.002 0.007 − 0.011 0.001 
Jul − 0.024** 0.027* 0.003 − 0.024** 0.026* 0.004 − 0.004 − 0.014 − 0.006 
Aug − 0.015* 0.017* 0.001 − 0.015* 0.019* 0.003 0.001 0.010 0.008 
Sep − 0.025** 0.035*** 0.007 − 0.024* 0.038*** 0.007 0.017 − 0.006 0.011** 
Oct − 0.013 0.039*** 0.009 − 0.015 0.039*** 0.010 0.047** − 0.024* 0.013 
Nov 0.039 0.010 0.025** 0.037 0.012 0.025* − 0.007 − 0.012 − 0.009 

(− ) indicates decreasing trend, *, ** and *** indicate statistically significant at 0.1, 0.05 and 0.01 alpha levels, respectively. 

Fig. 15. Shows belg (a–c), kiremt (d–f), bega (g–i), and annual (j–l) minimum temperature trends (1983–2018) in the LWD (left), UWD (middle), and 
dega (right columns) agroecology zones of the upper Gelan watershed based on the gridded temperature from EMI. The zigzag lines represent actual 
temperature, and the straight line in red represents Sen’s estimate. In addition, the texts red and blue are the Sen’s slope (◦C/year) and p-value of the 
MK test, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 16. Shows belg (a–c), kiremt (d–f), bega (g–i), and annual (j–l) maximum temperature trends (1983–2018) in the LWD (left), UWD (middle), and 
dega (right columns) agroecology zones of the upper Gelana watershed based on gridded temperature data from EMI. The zigzag lines represent 
actual temperature, and the straight line in red represents Sen’s estimate. In addition, the texts red and blue are the Sen’s slope (◦C/year) and p- 
value of the MK test, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 17. Shows belg (a–c), kiremt (d–f), bega (g–i), and annual (j–l) mean temperature trends (1983–2018) in the LWD (left), UWD (middle), and dega 
(right columns) agroecology zones of the upper Gelana watershed based on the gridded temperature data from EMI. The zigzag lines represent 
actual temperature, and the straight line in red represents Sen’s estimate. In addition, the texts red and blue are the Sen’s slope (◦C/year) and p- 
value of the MK test, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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May months for some parts of the stud area. We found a significant positive trend in the kiremt season and annual rainfall that vary 
across the study area. In contrast, rainfall during the belg season shows a statistically insignificant downward trend and high vari-
ability. The increment in kiremt season and annual rainfall is higher in the dega agroecology zone and lower in the LWD. The findings 
from MK and ITA agree in showing the directions of trends in belg and kiremt season rainfall in the LWD and UWD and annual trends in 
all the agroecology zones. A few contrasting findings were found using the ITA method, which can be considered as having the ability 
to detect trends that are hidden in the MK test. 

In all the agroecological zones of the study area, mean monthly temperatures were low in December and high in June during the 

Fig. 18. Shows the innovative trend analysis (ITA) of the belg (a–c), kiremt (d–f), bega (g–i), and annual (j–l) minimum temperature (1983–2018) in 
the LWD (left), UWD (middle), and dega (right columns) agroecology zones of the upper Gelana watershed based on the gridded temperature data 
from EMI. 

Table 9 
Summary interpretation of the innovative trend analysis (ITA) of minimum, maximum and mean temperatures (◦C) for the Upper Gelana watershed 
(Figs. 18–20).   

LWD UWD Dega  

Clusters Belg Kiremt Bega Annual Belg Kiremt Bega Annual Belg Kiremt Bega Annual 

Minimum Low -* – -* – -* – -* -* + +* + +* 
Medium -* – -* -* -* – -* -* – + 0 0 
High -* -* -* -* -* -* -* -* 0 – -* – 

Maximum Low +* + + + +* + + + + – 0 0 
Medium + + + + + + + + 0 – – 0 
High + + + + + + + + – 0 0 +

Mean Low 0 0 0 + 0 0 0 + + + 0 +

Medium 0 0 0 0 0 0 0 0 0 0 0 0 
High 0 – -* – 0 – -* – 0 0 0 0 

(− ), (+) and (0) signs indicates decreasing, increasing and no trend, respectively and * indicate significant trends (points are outside of the ±5 error 
line). 
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study period (1983–2018). The seasonal average maximum, minimum, and mean temperatures were high in the kiremt season. The MK 
test shows that the monthly minimum and maximum temperatures, in order of sequence, showed significant declining and warming 
trends in most months in the LWD and UWD agroecology zones. The majority of months in dega agroecology exhibit an insignificant 
upward trend in both temperatures. With the exception of the kiremt and bega seasons in dega agroecology, the seasonal and annual 
minimum and maximum temperatures, respectively, showed decreasing and increasing trends in all the agroecology zones. However, 
these trends are significant only in LWD and UWD agroecology zones. The MK-based trends in seasonal and annual minimum and 
maximum temperatures are in agreement with the ITA-based trends in the LWD and UWD, but some discrepancies were found in the 
case of the dega agroecology zone. The findings suggest the need to implement adaptation programs to make sure communities are safe 
from the possible impacts of climate change and variability. 
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