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FDK algorithm is a well-known 3D (three-dimensional) approximate algorithm for CT (computed tomography) image recon-
struction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been
improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone
angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The
proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined
by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more
scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is eval-
uated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional)
approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image
reconstruction.
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which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. INTRODUCTION

In some applications of clinical CT scanning, it is required
that the CT gantry be tilted. For example, in order to
avoid exposure of eyes to X-rays, gantry is tilted during
the head scanning procedure. To meet such special require-
ments, a number of algorithms have been developed for
gantry-tilted helical MSCT (multislice computed tomogra-
phy) image reconstruction [1–4]. Among these algorithms,
Kacherließ et al. [2] developed a gantry-tilted reconstruc-
tion algorithm based on the earlier developed 2D algorithm
ASSR [5]. Hein et al. [3] developed a gantry-tilted recon-
struction algorithm based on the 3D FDK algorithm [6, 7].
In the gantry-tilted FDK algorithm in [3], the reconstruc-
tion plane is perpendicular to the rotating axis of the CT
scanning. Thus the scanning cone angle increases with the
pitch value and slice number which can lead to unavoid-
able artifacts. Recently, Noo et al. [4] developed a gen-
eral framework which can be applied to the gantry-tilted
CT for exact [8, 9] and approximate image reconstruc-
tion.

The FDK-type algorithms for the approximate recon-
struction using the projection data filtering in the horizontal
direction suffer from considerable artifacts due to the large

scanning cone angle for both normal and gantry-tilted heli-
cal MSCT imaging. Recently, some of the improvements have
been made for the FDK-type algorithms. The tilted plane
technique is combined with the FDK algorithm to reduce
the cone angle and further reduce artifacts caused by the
large cone angle [10]. Several methods reduce the artifacts
by filtering projection data along the tangential direction of
the helix [11–13]. Such a technique was earlier proposed by
Yan and Leahy [11] and further improved by Sourbelle and
Kalender [12] for short scan FDK-type algorithms. The im-
proved FDK-type algorithm can achieve better image quality
than that of the conventional FDK algorithm.

Motivated by the observation that artifacts for FDK-type
algorithms can be effectively reduced by filtering projection
data along the helix tangential direction, this paper extends
the existing tangential filtering technique to present a 3D
FDK-type approximation algorithm for gantry-tilted helical
MSCT. Taking into account the gantry-tilted geometry, we
provide a general formula for gantry-tilted CT reconstruc-
tion for different gantry-tilted angles. As a special case, the
reconstruction formula reduces to the standard tangential fil-
tering for conventional CT with zero gantry-tilted angle.

To deal with the complicated gantry-tilted geometry and
large scanning cone angle, our proposed algorithm first
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Figure 1: Geometry for gantry-tilted multislice CT scanner.

applies the ramp filtering to reconstruct a sequence of im-
age planes and these planes are perpendicular to the rotating
axis. The final horizontal image planes are then obtained by
interpolating the tilted image planes. We present simulation
results to show that the proposed gantry-tilted algorithm can
provide considerably improved imaging for large scanning
cone angle.

The key technique of the proposed algorithm is to recon-
struct images on planes perpendicular to the rotation axis
using the ramp filtering along the helix tangential direction.
This is essentially different from the tilted plane reconstruc-
tion technique, such as that in [10], which is based on geo-
metrically optimized reconstruction plane for reducing the
effective cone angle.

It is noted that the tangential filtering technique can be
implemented as a special case of the general framework for
gantry-tilted CT proposed by Noo et al. [4]. Following its
procedure, the gantry-tilted geometry is first transformed
into a conventional CT scanning geometry with zero gantry-
tilted angle and a projection data set of the transformed scan-
ning geometry is formed. Then the tangential filtering tech-
nique can be applied on the data set for the image reconstruc-
tion. The procedure of the proposed algorithm in this paper
is different from Noo et al. ’s general framework in that it
computes the helix tangential direction and applies the filter-
ing directly without rebinning the projection data set for the
transformed scanning geometry. This leads to more efficient
computing and image reconstruction.

The rest of this paper is organized as follows. Section 2
presents the geometric scheme of the gantry-tilted CT. Sec-
tion 3 is on the projection data set formation for tangen-
tial filtering. The proposed approximate reconstruction al-
gorithm presented in Sections 4 and 5 is on simulation and
evaluation of the proposed algorithm.

2. GEOMETRY FOR GANTRY-TILTED HELICAL MSCT

The helical MSCT scanning set up consists of an X-ray source
and a detector array forming a source-detector framework.

The geometry of the source-detector framework in a global
cartesian coordinate system x− y−z is shown in Figure 1(a),
where Cs denotes the X-ray source, the detector array is a
rectangular surface with a geometric centre Cd. The source-
detector framework defines a rotating cartesian coordinate
system s − l − u with the X-ray source Cs as the origin, the
straight line Cs − Cd being the s axis, the l axis being paral-
lel to the horizontal lines, and the u axis being parallel to the
vertical lines of the rectangular detector surface.

The s − l plane containing Cs and Cd is called the centre
plane and its geometry is shown in Figure 1(b), where β is the
projection angle, the distances from the rotating centre point
o′ to the detector and the X-ray source are Rd and Rf , re-
spectively. In the gantry-tilted scanning process, the source-
detector framework rotates around the axis u′ which is par-
allel to the u axis and intersects the z axis at o′ as shown in
Figure 1(a). The gantry-tilted angle is represented by μ be-
tween the z and u′ axes. And the projection angle β is defined
in the s− l plane as shown in Figure 1(b).

For gantry-tilted CT, the X-ray source trajectory can be
considered as a combination of two movements: the X-ray
source rotates on the tilted circular trajectory with a radius
Rf and the centre of the circle moves straightforward along
the table feeding direction. As a result, the X-ray source tra-
jectory is the sum of the circular rotation trajectory on the
centre plane and the linear translation in the z direction in
the following:

Cs(β) =
⎛
⎜⎝
xs
ys
zs

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0
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where β0 is the initial projection angle, z0 is the initial z po-
sition of the centre of the gantry, p is the pitch value of the
helical cone beam scanning, S is the slice thickness, and M is
the number of detector slice.

With the X-ray source trajectory given in (1), we take the
derivative with respect to β to obtain its tangential direction
at Cs in the global coordinate system represented in the fol-
lowing form:

⎛
⎜⎝
xt
yt
zt

⎞
⎟⎠ = dCs(β)

dβ
=
⎛
⎜⎝

−Rf sinβ
Rf cosμ cosβ

h + Rf sinμ cosβ

⎞
⎟⎠ , (2)

where h = pSM/2π. The X-ray source trajectory and its tan-
gential direction at Cs are shown in Figure 2.

It follows from the geometric relation between the global
x − y − z and the rotating s − l − u coordinate system, as
shown in Figures 1(a) and 1(b), that the transformation of
the tangential direction (xt, yt, zt)T as given in (2) to the ro-
tating s − l − u coordinate system can be obtained by first
rotating this vector by an angle μ around the x axis followed
a rotation angle of β − π around the u axis. This results in
the trajectory tangential direction in the rotating s − l − u
coordinate system, denoted by (st, lt,ut)T , in the following:

⎛
⎜⎝
st
lt
ut

⎞
⎟⎠ =

⎛
⎜⎝

cos(β − π) sin(β− π) 0
− sin(β − π) cos(β − π) 0

0 0 1

⎞
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×
⎛
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0 − sinμ cosμ

⎞
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⎞
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=
⎛
⎜⎝

−h sinβ sinμ
Rf + h sinμ cosβ

h cosμ

⎞
⎟⎠ .

(3)

To implement the tangential filtering for the gantry-tilted
scanning projection data, we further use the tangential di-
rection (st, lt,ut)T to set up a tangential cartesian coordinate
system ξ − η − ζ . The origin of this coordinate system is the
X-ray source Cs, the η axis is defined by the tangential direc-
tion of the X-ray source trajectory at Cs, as given in (3), the
ζ axis is parallel to the detector plane, and the ξ − ζ plane is
orthogonal to the η axis.

Using the tangential direction (st, lt,ut)T in (3), we intro-
duce two angular quantities σ and γ as follows:

σ = arcsin

(
st√
s2t + l2t

)

= arcsin

( −h sinμ sinβ√
R2
f + 2hRf sinμ cosβ + h2 sin2 μ

)
,

(4)

γ = arctan

(
ut√
s2t + l2t

)

= arctan

(
h cosμ√

R2
f + 2hRf sinμ cosβ + h2 sin2 μ

)
.

(5)

Following from its definition, the ξ−η−ζ coordinate sys-
tem can be obtained by first rotating the s− l − u coordinate
system around the u axis by an angle σ to obtain an interme-
diate coordinate system ξ − η̃ − u followed by rotating the
ξ − η̃ − u coordinate system around the ξ axis by an angle γ.
Such coordinate rotations and transformation are illustrated
in Figure 3. It follows that the transformation between the
s− l − u and ξ − η − ζ coordinate systems is given by

⎛
⎜⎝
ξ
η
ζ

⎞
⎟⎠ = T

⎛
⎜⎝
s
t
u

⎞
⎟⎠ , (6)

where the transformation matrix T is
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⎛
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⎞
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⎞
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(7)

3. DATA REFORMATION FOR TANGENTIAL FILTERING

In conventional FDK-type algorithms, the ramp filtering is
performed on detector rows and the filtering direction is par-
allel to the l axis on the detector surface. Motivated by the
tangential filtering technique for CT without gantry tilting,
we propose in this paper that the ramp filtering is performed
in the tangential direction of the X-ray source trajectory of
the gantry-tilted CT as shown in Figure 2. For this purpose,
the projection data are reformed such that rows of the re-
formed projection data set are parallel to the tangential direc-
tion of the X-ray source trajectory. The reformed projection
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data set enables the tangential filtering technique for the con-
ventional CT reconstruction being applied.

The reformed data set is built up by introducing a vir-
tual detector array surface in the tangential coordinate sys-
tem ξ − η− ζ and transforming the projection data from the
real detector array surface in the rotating s− l−u coordinate
system to the virtual detector array surface. The virtual de-
tector array surface is placed on the plane ξ = (Rf + Rd), as
shown in Figure 4, with the rows being parallel to the η axis.

As sown in Figure 4, each projection ray radiates on the
real detector array at the point ((Rf +Rd), lp,up)T in the s−l−
u coordinate also radiates on a point ((Rf + Rd),ηp, ζp)T on
the virtual detector array. Let the ξ − η − ζ coordinate of the
point ((Rf +Rd), lp,up)T on the real detector array surface be
(ξ̄p, η̄p, ζ̄p)T . The transformation from ((Rf +Rd), lp,up)T to
(ξ̄p, η̄p, ζ̄p)T is determined by the coordinate transformation
matrix T in (7), that is,

⎛
⎜⎝
ξ̄p
η̄p
ζ̄p

⎞
⎟⎠ = T

⎛
⎜⎝

(
Rf + Rd

)

lp
up

⎞
⎟⎠ . (8)

In view of Figure 4, the coordinate (ηp, ζp)T of the virtual de-
tector cell can be expressed, in terms of that of the real detec-
tor cell in the ξ − η − ζ coordinate system, as

ηp =
Rf + Rd

ξ̄p
η̄p, ζp =

Rf + Rd

ξ̄p
ζ̄p. (9)

This, together with (8), can determine the coordinate of the
virtual detector cell (ηp, ζp)T in the tangential coordinate
system ξ − η − ζ from a given real detector cell at ((Rf +
Rd), lp,up)T in the rotating coordinate system.

Let the projection datum collected from the real detec-
tor cell at ((Rf + Rd), lp,up)T in the s − l − u coordinate at
the projection angle β be denoted byD(β, lp,up) and the cor-
responding projection datum on the virtual detector cell at
((Rf + Rd),ηp, ζp)T in the ξ − η − ζ coordinate by the same
projection ray be denoted by Dv(β,ηp, ζp). Since D(β, lp,up)
and Dv(β,ηp, ζp) are due to the same projection ray, we have

Dv
(
β,ηp, ζp

) = D
(
β, lp,up

)
. (10)
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Figure 4: Illustration of the relationship between (ζ̄p, η̄p, ξ̄p) and
(Rf + Rd ,ηp, ζp) in coordinate system (ζ ,η, ξ).

This can be used to obtain the reformed projection data
set following from the coordinate transform from each real
detector cell at ((Rf + Rd), lp,up)T in the rotating coordi-
nate system to the corresponding virtual detector cell at
((Rf + Rd),ηp, ζp)T in the tangential coordinate system.

4. RECONSTRUCTION AND INTERPOLATION

Because the gantry is tilted and final images should be on
horizontal planes in the global x − y − z coordinate system,
we first reconstruct images on a sequences of intermediate
planes parallel to the centre plane and then interpolate them
to obtain the horizontal images. The introduction of the in-
termediate planes effectively reduces the projection cone an-
gle in comparison with constructing directly the horizontal
planes. Let ψ = {Pi : i = 1, 2, 3, . . . ,n} be the set of the inter-
mediate planes and let the intersection of each tilted plane Pi
and the z-axis be at point oi = (0, 0, zi)T , with zi = z0 + iΔz,
i = 1, 2, 3, . . . , n, and Δz > 0. The projection angle for the
X-ray source being at zi in the z direction is

βi = β0 +
2πiΔz
pSM

. (11)

And the equation for the intermediate plane Pi is

z = zi + y tanμ. (12)

The ramp filtering is along the η direction which is de-
fined as the tangential direction of the source trajectory. Let
g(·) denote the ramp filter. Applying it to the reformed data
set on the virtual detector array in the tangential direction
of the source trajectory and performing standard cone beam
weighting yields

D̃(β,η′, ζ) =
∫

Rf Dv(β,η, ζ)√
η′2 + R2

f + ζ2
g(η′ − η)dη. (13)
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Table 1: Parameters of the clock phantom (mm).

No. Centre No. Centre No. Centre No. Centre

1 (0,200,0) 7 (0,−200,−12) 13 (0,100,0) 19 (0,−100,−12)

2 (100,173.2,−2) 8 (−100,−173.2,−14) 14 (50,86.6,−2) 20 (−50,−86.6,−14)

3 (173.2,100,−4) 9 (−173.2,−100,−16) 15 (86.6,50,−4) 21 (−86.6,−50,−16)

4 (200,0,−6) 10 (−200,0,−18) 16 (100,0,−6) 22 (−100,0,−18))

5 (173.2,−100,−8) 11 (−173.2,100,−20) 17 (86.6,−50,−8) 23 (−86.6,50,−20)

6 (100,−173.2,−10) 12 (−100,173.2,−22) 18 (50,−86.6,−10) 24 (−50,86.6,−22)

Then the reconstruction formula is derived from Yan and
Leahy’s [11] paper for tangential filtering reconstruction.

fi(x, y, z)

= 1
2

∫ βi+βm/2
βi−βm/2

Rf ‖dCs(β)/dβ‖D̃(β,η′(β), ζ(β)
)

(x cosβ + y sinβ − Rf )2
dβ

= 1
2

∫ βi+βm/2
βi−βm/2

Rf

√
R2
f +2hRf sinμ cosβ+h2D̃

(
β,η′(β), ζ(β)

)
(
x cosβ + y sinβ − Rf

)2 dβ,

(14)

where ‖ · ‖ denotes Euclidean norm and βm is the the length
of the projection angle interval.

Given the reconstructed images of the tilted planes Pi,
for i = 1, 2, 3, . . . ,n, and a point (x, y, z)T on a plane par-
allel to the x − y plane where the image is to be obtained by
interpolation, the z-positions of the intermediate planes Pi,
i = 1, 2, 3, . . . ,n, at (x, y)T and denoted by zpi(x, y) can be
determined by (12). Thus there exist two points (x, y, zPj )

T

and (x, y, zPk )
T on two tilted planes Pj and Pk, respectively,

at the upper and lower sides of (x, y, z)T , respectively, which
are closest to (x, y, z)T . Using the obtained attenuation func-
tions f j(x, y, zPj ) and fk(x, y, zPk ) for planes Pj and Pk, re-
spectively, the interpolated attenuation function can be ob-
tained using the following interpolation formula:

f (x, y, z) = f j
(
x, y, zPj (x, y)

)(
zPk − z

)

zPk − zPj

+
fk
(
x, y, zPk (x, y)

)(
z − zPj

)

zPk − zPj
.

(15)

We can now summarise the proposed reconstruction
procedure in the following.

(1) Determine the z position zi, centre of the optimal
plane Pi, its centre projection angle βi, and obtain the
reconstruction plane using (12). For half-scan, βm =
π + θfan.

(2) Obtain the reformed projection data set on the virtual
detector array using (9).

(3) Reconstruct the image on the intermediate planes Pi
using (14).

(4) Obtain the horizontal images by interpolating the in-
termediate images.

5. SIMULATION

We use Turbell clock phantom and thorax phantom to eval-
uate the performance of the proposed algorithm. Parameters
of the simulation are set to Rf = 570 mm, Rd = 560 mm,
S = 1 mm, p = 1.0, projection number per rotation Np =
1024, number of detector cells for each row Nf = 800, detec-
tor cell width 1.5 mm, gantry-tilted angle μ = 10◦. The sim-
ulated performance of the proposed algorithm is compared
with two existing approximate gantry-tilted CT reconstruc-
tion algorithms, which are the gantry-tilted FDK algorithm
in [3] by Hein et al. in 2003 and the gantry-tilted ASSR [2]
by Kachelreiβ et al in 2001.

The Turbell clock phantom is used to evaluate the pro-
posed algorithm. The Turbell clock phantom is composed
with a cylinder and two group balls. The radius of the cylin-
der is 240 mm and its centre is (0,0,0) and its length is
100 mm and its value is 0.4. The radius of the outer group
balls is 22 mm and their values are 1.0. The radius of inner
group balls is 12 mm and their values are 1.0. The positions
of these balls are listed in Table 1. Results obtained from the
simulation of Turbell clock phantom are shown in Figure 5,
the left column is reconstructed images and the right col-
umn is the centre vertical line for reconstructed images. In
Figure 5, Figure 5(a) is the image reconstructed by our pro-
posed algorithm, Figure 5(c) is reconstructed by the gantry-
tilted FDK algorithm and Figure 5(e) shows the image recon-
structed by the gantry-tilted ASSR. The results demonstrate
that the image reconstructed by our proposed algorithm con-
tains fewer artifacts than that of the other two existing algo-
rithms for gantry-tilted CT.

In the simulation of Turbell clock phantom, the centre
vertical lines (y = 0 mm) for the reconstructed images are
also constructed and displayed by the proposed algorithm
(Figure 5(b)), gantry-tilted FDK algorithm (Figure 5(d)),
and gantry-tilted ASSR (Figure 5(f)), repectively. In Figure 5,
dashed lines represent the original image and solid lines rep-
resent reconstructed profiles. The results show that the pro-
file of the proposed algorithm as shown in Figure 5(b) has
smaller variance than the other two results.

A thorax phantom is further simulated which is designed
by referring to human thorax consisting of many impor-
tant organs and often scanned in CT examination. These or-
gans include lungs, heart, aorta, ribs, spine, sternum, and
shoulders. The phantom definitions are obtained from a



6 International Journal of Biomedical Imaging

(a)

350300250200150100500
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

(b)

(c)

350300250200150100500
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

(d)

(e)

350300250200150100500
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

(f)

Figure 5: Images for the plane z = 0 mm of clock phantom generated with the proposed algorithm, gantry-tilted FDK, and gantry-tilted
ASSR with S = 1 mm, p = 1.0, M = 96 (0.35− 0.45).

world phantom database FORBILD. The simulation results
are shown in Figure 6, where Figure 6(a) is the original tho-
rax phantom, Figure 6(b) shows the image reconstructed
by the proposed algorithm, Figure 6(c) is the image recon-
structed by the gantry-tilted FDK algorithm, and Figure 6(d)
is reconstructed by the gantry-tilted ASSR algorithm. The
right-hand column shows zoomed reconstruction images. It
is shown that there are obvious artifacts around ribs in the

images reconstructed by conventional FDK algorithm and
ASSR algorithm. In contrast, the proposed algorithm pro-
vides better image quality and more accurate reconstruction.

6. CONCLUSION

This paper presents an approximate algorithm for gantry-
tilted helical MSCT image reconstruction. It is based on
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Figure 6: Images for the plane z = 0 mm of thorax phantom generated with the proposed algorithm, gantry-tilted FDK algorithm, and
gantry-tilted ASSR algorithm with M = 96 (0.62-1.212).
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the idea of filtering the 3D projection data and the filtering
direction is varying and dependent on the CT parameters
and the gantry-tilted angle. As a result, the proposed gantry-
tilted reconstruction algorithm can provide more scanning
flexibility in clinical CT scanning and is efficient in computa-
tion. In comparison with the existing 2D and 3D algorithms
for gantry-tilted CT image reconstruction, our proposed al-
gorithm can provide improved image quality. The perfor-
mance of the proposed algorithm is evaluated with Turbell
clock phantom and thorax phantom in comparison with the
recent gantry-tilted FDK algorithm and gantry-tilted ASSR
algorithm. The improved performance and image quality of
the proposed algorithm have been shown.
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