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A B S T R A C T

Alzheimer's disease is a progressive neurodegenerative disorder. In this disease neurodegeneration occurs due to
deposition of aggregated amyloid-beta plaques and neurofibrillary tangles (hyperphosphorylated tau proteins).
Present study focuses on interaction of different phytochemicals with presenilin stabilization factor like protein
(PSFL). PSFL protein is known to stabilize Presenilin, which is mainly involved in intramembrane hydrolysis of
selected type- I membrane proteins, including amyloid-beta precursor protein, and produces amyloid-beta pro-
tein. Amyloid-beta are small peptides comprising of 36–43 amino acids, which play a significant role in senile
plaques formation in the brains of Alzheimer patients. Virtual screening and docking of phytochemicals with PSFL
protein was done to find the potential inhibitor. Based on binding affinity, docked energy and molecular dynamics
simulations, three phytochemicals namely Saponin, Casuarictin, and Enoxolone, were identified as potential in-
hibitors for the target protein.
1. Introduction

Alois Alzheimer discovered Alzheimer's disease in 1906. He observed
many abnormal clumps (amyloid plaques) and tangled bundles of fibers
(neurofibrillary, or tau tangles) in the brain tissue of a woman who had
died of an unusual mental illness [1, 2]. Symptoms included language
problems, memory loss, and abnormal behaviour, which play an essential
role in AD [3, 4, 5]. AD is a progressive neurodegenerative disorder that
usually occurs in the older people [6]. In this disease, neuronal death
takes place due to deposition of aggregated amyloid-beta plaques and
neurofibrillary tangles (hyperphosphorylated tau) in the brain [7, 8, 9].
Rapid production of amyloid-beta takes place due to alteration in pro-
teolysis of amyloid precursor protein (APP) caused by missense muta-
tions in amyloid precursor protein (APP), PS-1 (presenilin-1), and PS-2
(presenilin-2) [10]. This causes release of cytokines and activation of
microglia as inflammatory responses due to the accumulation of
amyloid-beta plaques. Also, hyperphosphorylation of tau protein takes
place due to disturbance in equilibrium between kinases and phospha-
tases [11, 12].

Recently, PSFL, which plays key role in stabilizing presenilin protein,
has been found to be crucial in Alzheimer's disease [13, 14]. Presenilins
are proteins mainly involved in intramembrane hydrolysis of selected
2 October 2020; Accepted 16 No
is an open access article under t
type- I membrane proteins. Pertinently amyloid-beta precursor protein
(APP) are also type- I membrane proteins that are cleaved by BACE-1
enzyme to produce Amyloid beta (Aβ) peptides. Amyloid beta (Aβ) are
small peptides comprising of 36–43 amino acids, which play a crucial
role in senile plaques formation. It is found in the brain of Alzheimer
patients [15, 16]. Finding a potent drug that binds to PSFL protein and
destabilizes Presenilins may help in treating Alzheimer's disease by
reducing the formation of amyloid-beta protein.

Alzheimer's disease has no cure till now, but there are some drugs
recently approved by the U.S. Food and Drug Administration (FDA) to
treat the symptoms. Donepezil, galantamine, and rivastigmine are among
available medications that act as cholinesterase inhibitors [3, 17]. These
drugs inhibit the hydrolysis of a neurotransmitter, Acetylcholine in the
brain, that is important for cognitive functioning, memory, and emotion.
Tacrine was the first approved Acetylcholinesterase inhibitor, which was
developed for the treatment of Alzheimer's disease, but it was toxic to-
wards the liver [14]. So, Tacrine was withdrawn from the pharmaceutical
market. Another drug, memantine, regulates the activity of different
neurotransmitters in the brain. Also, a combination of the cholinesterase
inhibitors (donepezil) with NMDA receptor antagonists (Memantine) is
another medication used for treatment. Thus, treating Alzheimer's
vember 2020
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Figure 1. Three dimensional (3D) structure of PSFL protein predicted
by Modeller.
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disease at the molecular level will be more helpful than just treating the
symptoms.

Alzheimer's disease may develop due to different factors such as
Aging, a family history of Alzheimer's disease and presence of genes
β-amyloid precursor protein (APP), apolipoprotein E (APOE), and pre-
senilin 1 (PS-1) [18]. There are some factors that may increase the risk of
Figure 2. Four template sequences showing str
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Alzheimer's disease, such as undergoing severe or repeated traumatic
brain injuries (TBI) and exposure to some environmental contaminants,
such as pesticides, industrial chemicals and toxic metals [19, 20]. This
study aims to model PSFL protein structure and identify a potent inhib-
itor for the treatment of AD. There are studies that have already used this
technique to find out inhibitors against a target protein [21, 22, 23].

2. Materials and methods

2.1. Retrieval of the ligands from database

Natural Products (Herbal Ingredients Targets containing 802 ZINC
entries) Ligands database were retrieved from the ZINC database in .sdf
format, and some other phytochemicals such as carotenoids, flavonoids,
polyphenols, terpenes also downloaded from the PubChem database.
Some medicinal plants like Blueberry [24], Cannabidiol [25], Curcuma
[26], and Phyllanthus Emblica [27] phytochemicals were also used as a
ligand which has already been reported for treatment of AD. All these
phytochemicals were further converted in PyRx 0.8, a supportable format
by using Open Babel [28]. These all ligand databases were used for vir-
tual screening.
2.2. Retrieval of target protein sequence

Presenilin stabilization factor-like protein [Homo sapiens] sequence
was retrieved from NCBI having GenBank ID AAN63817.1 and sequence
ucture and identity with the PSFL protein.



Table 1. Ramachandran Plot statistics of the best model Seq.B99990002.

Number of residues %

Most favoured regions 138 84.7%

Additional allowed regions 18 11.0%

Generously allowed regions 4 2.5%

Disallowed regions 3 1.8%

Non-glycine and non-proline residues 163 100%

End-residues (excl. Gly and Pro) 2

Glycine residues 18

Proline residues 4

Total number of residues 187

Table 2. DOPE (Discrete Optimized Protein Energy) score of the generated models.

S.No. Name of Models generated DOPE Score

1. Seq.B99990001 -14792.358398

2. Seq.B99990002 -14559.158203

3. Seq.B99990003 -14337.731445

4. Seq.B99990004 -14080.270508

5. Seq.B99990005 -15077.041016
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length 257 amino acids [29], further it was used for tertiary structure
prediction.
2.3. Structure prediction of target protein and their validation

Homology modeling was done to predict the three-dimensional
structure of Presenilin stabilization factor-like protein by using Mod-
eller 9.19 [30]. BLAST tool was used to predict homologous protein [31]
[Figure 1]. The target protein was taken in FASTA format and four
templates in PDB format for the modeling purpose. For template selec-
tion, PSI-BLAST of PSFL protein was done against the PDB database, and
four templates (PDB ID: 3CXX_A, 3CXZ_A, 4QUV_A, and 5A63_C) were
selected on the basis of sequence identity having >30 % [Figure 2]. At
last, five homology models were generated and further validated through
PDBsum generate by Ramachandran plot statistics [32] [Table 1]. Five
homology models of PSFL protein were generated using Modeller. Their
DOPE score has been given in Table 2.
2.4. Virtual screening of phytochemicals with modelled PSFL protein

Virtual screening (VS) is a computational approach used in drug
discovery field to screen large databases or collections of compounds in
order to identify novel hits [33]. Virtual screening was carried out by
using PyRx 0.8, which follows the Autodock Vina program. All the
phytochemicals were subjected to screening against the modelled
protein.
2.5. Docking of screened ligands with modelled PSFL protein

Molecular docking is a popular approaches for studying binding af-
finity of ligand and protein [34]. Depending upon binding properties of
ligand and target, it predicts the three-dimensional structure of the
complexes.

Ten best scoring phytochemicals selected after virtual screening
[Figure 3] were further used for molecular docking with modelled PSFL
protein. AutoDock Tool 4.2 was used for docking which follows the
Search Parameter, Genetic Algorithm, and simulated annealing [35].
3

2.6. Molecular dynamics simulation of top protein-ligand complex

The study about structure of macromolecules (Proteins, Nucleic acid,
Peptides) is a key point for exploring important cellular processes. Mo-
lecular dynamics simulation (MDS) is another approach in the field of
bioinformatics for the study of the atom location in space. Newton's laws
of motion are used to calculate the surface energy of system. MD simu-
lations was used to investigate information on the fluctuations and
conformational changes of macromolecules [36, 37, 38]. After docking,
GROMACS version 5.1.2 software was used to check the stability of PSFL
protein. MD simulation was done for three top protein-ligand complexes
[39]. Topologies for the complex were generated using AMBER03 force
field [40]. Protons were automatically assigned to the protein-ligand
complex using the program pdb2 gmx within the GROMACS package.
TIP3P water model was used for the solvation of Complex systems in a
triclinic box under the periodic boundary conditions using a distance of
1.2 nm from the protein to the surface of the box. Energy minimization of
each system was done using the steepest descent integrator without
constraints for 2000 steps [41]. After energy minimization, equilibration
of systems was done under NVT (canonical ensemble) and NPT (iso-
thermal–isobaric ensemble) conditions for 100 ps at 300 K after applying
position restraints to the protein (Andersen HC et al., 1980). Finally, a
5000 ps production run was performed under NPT conditions by
removing position restraints. Maintenance of temperature and pressure
of the system was done using Berendsen weak-coupling method [39].
Lennard-Jones potential was used for van der Waals interactions, and
electrostatic interactions were maintained using particle-mesh Ewald
electrostatics calculations with a cut-off for the real space term of 0.8 nm
[42]. All the bonds were constrained using the LINCS algorithm [43]. A 2
fs time step was applied, and at 2 ps final coordinates were saved.
Analysis of MD simulation was done using Gromacs in-built tools such as
root-mean-square deviation (RMSD), solvent-accessible surface area
(SASA), root mean square fluctuation (RMSF) and radius of gyration
(Rg). Rg calculation was done using least-squares fit [44]. The production
simulation was performed for 20 ns at 300 K. For all trajectory analysis
and graph plotting, Xmgrace tool was used [45]. Analysis of MD trajec-
tories was done using gmx_rmsd, gmx_SASA, gmx_rmsf, and gmx_gyra-
tion of GROMACS utilities to get the best results.



Figure 3. Top 10 best phytochemicals with their structure IDs.
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Figure 4. Graphical representation of DOPE score of generated models.

Figure 5. Ramachandran Plot statistics of best model (Seq.B99990002).
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3. Results

3.1. Prediction of PSFL protein and their validation

PSFL protein was modelled and selected on the basis of DOPE
(Discrete Optimized Protein Energy) score and Ramachandran plot sta-
tistics (Table 2) (Figures 4, 5, and 6). According to Ramachandran Plot
statistics, the second model of presenilin stabilization factor-like protein
[Homo sapiens] had 84.7% most favourable region which was the highest
among the five models generated. Best model structure showed proper-
ties like 84.7% in most favoured regions containing 138 AA residues,
11.0% additional allowed regions containing 18 AA residues, 2.5%
generously allowed regions containing 4 AA residues, 1.8% disallowed
5

regions containing 3 AA residues [Table 1]. Finally, Seq.B99990002 was
selected as the best PSFL Protein model on the basis of PROCHECK Sta-
tistics for docking (Table 2).

3.2. Analysis of binding affinity with PSFL modelled protein and ligand
database

802 ligands from database were screened and selected on the basis of
binding affinity (kcal/mol). Top 10 ligands in the range were Casuarictin,
Saponins, Tellimagrandin II, Digalloyl glucose, Phlorotannin, Carissic
acid, Enoxolone, Tigogenin, Astilbin, 18 Alpha-glycyrrhetinic acid hav-
ing -12.9, -12.3, -11.4, -11.1, -10.8, -10.7, 10.7, -10.6, -10.5, -10.3
binding affinities respectively and were further subjected to molecular



Figure 6. Pie chart depicting Ramachandran plot statistics of predicted structure (Seq.B99990002).

Figure 7. Binding affinity of the best 10 ligands binding with PSFL protein.

Table 3. Binding affinity of the best 10 ligands.

S.No. Ligands Binding Affinity

1. Casuarictin -12.9

2. Saponins -12.3

3. Tellimagrandin II -11.4

4. Digalloyl glucose -11.1

5. Phlorotannin -10.8

6. Carissic acid -10.7

7. Enoxolone -10.7

8. Tigogenin -10.6

9. Astilbin -10.5

10. 18 Alpha-glycyrrhetinic acid -10.3
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docking [Figure 7] [Table 3]. Three ligands, namely Saponins, Casuar-
ictin, and Enoxolone finally showed the lowest docked energy -16.19,
-13.39, and -9.33, respectively [Figure 8] [Tables 4 and 5]. Saponins,
Casuarictin and Enoxolone could be used as a potential inhibitor of PSFL
protein. For validation of binding affinity and docked energy of the top
three best protein ligands complex, Molecular dynamics simulation was
performed. Hydrophobic interactions, hydrogen bonds, and π-stacking
were observed in the ligand-protein complex [Figure 9(a-c)]. Interacting
6

residues are shown in Tables 6a-b, 7a-c and 8a-b. Interaction between
ligand and protein was analyzed by using Protein-Ligand Interaction
Profiler (PLIP) tool [46].

3.3. Analysis of stability of ligand-protein complex

Based on the lowest docked energy, three complexes (Saponin-PSFL
complex, Casuarictin-PSFL complex, and Enoxolone-PSFL Complex) were



Figure 8. Bar graph representation of docked energy of the best 10 ligands.

Table 4. Docked energy of top 10 ligands against PSFL protein.

S.No. Ligands Docked Energy

1. Saponins -16.19

2. Casuarictin -13.39

3. Enoxolone -9.33

4. Tigogenin -8.77

5. Carissic acid -8.54

6. 18 Alpha-glycyrrhetinic acid -8.38

7. Phlorotannin -7.69

8. Tellimagrandin II -7.05

9. Digalloyl glucose -5.42

10. Astilbin -3.75

Table 5. Entry ID, docked energy and interacting residues of finally selected ligands.

Ligand's name Entry ID Docked Energy Interacting residues

Saponins Structure2D_CID_21630000 -16.19 PRO73A,PHE107A,ASP109A,SER33A,ILE34A,SER42A,ILE56A,SER58A,ASP81A

Casuarictin Structure2D_CID_73644 -13.39 ASP81A,PHE108A,LEU46A,LEU71A,SER82A,VAL106A,GLU112A,PHE108A

Enoxolone zinc_19203131 -9.33 LEU46A,ASP81A,PHE107A,PHE108A,GLU112A,VAL106A

Figure 9. Representation of interacting residues (a) Saponins andPSFLprotein complex, (b) Casuarictin andPSFLprotein complex, (c) Enoxolone and PSFL protein complex.
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Table 6. Hydrophobic Interactions and Hydrogen bonds between Saponin and PSFL protein. Orange dashed line show hydrophobic interactions and blue line show
hydrogen bonds.

(a) Hydrophobic Interactions

Index Residue AA Distance Ligand Atom Protein Atom

1 73A PRO 3.63 1801 678

2 107A PHE 3.82 1809 992

3 109A ASP 3.27 1809 1013

(b) Hydrogen Bonds

Index Residue AA Distance H-A Distance D-A Donor Angle Protein donor? Side chain Donor Atom Acceptor Atom

1 33A SER 2.19 2.60 126.00 1781 [O2] 335 [O3]

2 33A SER 1.90 2.83 163.89 335 [O3] 1782 [O2]

3 34A ILE 3.11 3.97 142.65 339 [Nam] 1781 [O2]

4 42A SER 2.87 3.58 132.41 407 [O3] 1777 [O2]

5 56A ILE 3.33 3.69 121.21 1778 [O2] 535 [O2]

6 56A ILE 3.55 3.97 129.57 1780 [O2] 535 [O2]

7 58A SER 3.03 3.94 160.68 549 [O3] 1772 [O2]

8 81A ASP 2.46 3.07 169.45 1775 [O3] 740 [O3]

Table 7.Hydrophobic Interactions, Hydrogen bonds and π-Stacking between Casuarictin and PSFL protein complex. Orange dashed line show hydrophobic interactions,
blue line show hydrogen bonds, and green line show π-Stacking.

(a) Hydrophobic Interactions

Index Residue AA Distance Ligand Atom Protein Atom

1 81A ASP 3.74 1795 738

2 108A PHE 3.49 1793 1001

(b) Hydrogen Bonds

Index Residue AA Distance H-A Distance D-A Donor Angle Protein donor? Side chain Donor Atom Acceptor Atom

1 46A LEU 2.95 3.49 114.41 446 [Nam] 1835 [O3]

2 71A LEU 2.33 2.93 165.98 1837 [O2] 668 [O2]

3 82A SER 3.69 4.02 101.95 744 [Nam] 1781 [O2]

4 82A SER 2.49 2.93 105.04 1781 [O2] 748 [O3]

5 82A SER 2.52 2.99 107.06 1780 [O2] 748 [O3]

6 106A VAL 3.09 3.49 126.18 1845 [O2] 985 [O2]

7 106A VAL 2.15 2.77 176.03 1841 [O2] 985 [O2]

8 112A GLU 3.36 3.58 106.59 1833 [O3] 1038 [O3]

9 112A GLU 2.92 3.29 121.11 1831 [O3] 1038 [O3]

(c) π-Stacking

Index Residue AA Distance Angle Offset Type Ligand Atoms

1 108A PHE 4.05 29.67 0.24 P 1798, 1799, 1807, 1810, 1814, 1815

2 108A PHE 4.35 29.66 1.61 P 1793, 1796, 1797, 1798, 1799, 1789

3 108A PHE 4.45 29.66 1.85 P 1797, 1799, 1805, 1807, 1778, 1779
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selected for MD simulation. The RMSD for the Saponins-PSFL complex
was found to be approximately 1.22 nm. Saponins-PSFL complex main-
tained overall stability throughout 20,000 ps of simulation, Enoxolone-
PSFL Complex was found to be approximately 1.7 nm, and it showed a
gradual increase after ~7000 ps. Casuarictin-PSFL complex was found to
be approximately 0.9 nm, and it showed a gradual increase after
~9000ps. Saponins-PSFL complex showed relatively more stability in
comparison to Casuarictin-PSFL complex and Enoxolone-PSFL Complex
[Figure 10a].

The Rg was also calculated for the Saponins-PSFL complex,
Casuarictin-PSFL complex and Enoxolone-PSFL complex to assess the
compactness of the complex structure. The Rg range of the Saponins-PSFL
complex structure is between 2.1nm and 2.4 nm. From 0 to ~1000 ps,
there is a continuous increase in the Rg value from 2.2 nm to 2.4 nm and
further decrease till 2500 ps. After that, it showed stability till 20000 ps.
Rg range of Casuarictin-PSFL complex structure is between 1.9 nm and
8

2.4 nm. From 0 to ~1000 ps, there is a continuous increase in the Rg
value from 2.2 nm to 2.4 nm and further decreased and showed stability
between 7000ps to 12000 ps and between 15000ps to 20000ps. Rg range
of Enoxolone-PSFL Complex structure is between 1.85 nm to 2.25 nm.
From 0 ps to 400ps, there is a gradual decrease from 2.2 nm to 2.02 nm
and further increase upto 1000ps. It showed stability between 10000ps to
20000ps [Figure 10b].

The SASA was also calculated for Saponins-PSFL complex,
Casuarictin-PSFL complex and Enoxolone-PSFL Complex. The SASA
range of Saponins-PSFL complex structure lies between 111 and 118 nm2.
The resulting Saponins-PSFL complex showed an increase in the SASA at
~2000 ps and then decreased till 8000 ps and then maintained stability
till 20000 ps. Casuarictin-PSFL complex structure lies between 106 and
116 nm2. The resulting Casuarictin-PSFL complex showed a gradual
decrease in the SASA from 0 to ~5000 ps and then stable till 20000ps.
Enoxolone-PSFL Complex structure lies between 107.5 nm2 and 120 nm2



Table 8.Hydrophobic Interactions and Hydrogen bonds between Enoxolone and PSFL protein complex. Orange dashed line show hydrophobic interactions and blue line
show hydrogen bonds.

(a) Hydrophobic Interactions

Index Residue AA Distance Ligand Atom Protein Atom

1 46A LEU 3.32 1770 449

2 81A ASP 3.59 1794 738

3 107A PHE 3.97 1784 992

4 107A PHE 3.69 1786 994

5 108A PHE 3.43 1780 1001

6 112A GLU 3.35 1796 1035

(b) Hydrogen Bonds

Index Residue AA Distance H-A Distance D-A Donor Angle Protein donor? Side chain Donor Atom Acceptor Atom

1 106A VAL 2.37 2.82 107.26 1800 [O3] 985 [O2]

Figure 10. Molecular dynamics (MD) simulation results. (a) RMSD (Root-mean-square deviation), (b) Rg (Radius of Gyration), (c) SASA (Solvent-accessible surface
area), (d) RMSF (Root mean square fluctuation).
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and showed fluctuation till 8000ps and then maintained stability till
20000ps [Figure 10c].

The RMSF for Saponins-PSFL complex was found to be approxi-
mately 0.75 nm. Saponins-PSFL complex maintained overall stability
throughout 3000 atoms. Enoxolone-PSFL Complex was found to be
approximate 0.8 nm, and it showed a gradual decrease from 0 to 250
atoms, and then it maintained stability until 3000 atoms. Casuarictin-
PSFL complex was found to be approximately 0.85 nm, and it showed
a gradual decrease after 0 to ~500 atoms and further maintained
9

stability until 2500 atoms. Saponins-PSFL complex showed more sta-
bility in comparison to Casuarictin-PSFL complex and Enoxolone-PSFL
Complex [Figure 10d].

4. Discussion

Currently, there is no target specific treatment for AD. Available
drugs only suppress the symptoms and can only temporarily slow down
the progression of AD. Suppression of symptoms leaves limited
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improvements in the quality of life for AD patients. So, there is a
worldwide effort in progress to find the best possible way to treat AD
completely, delay the onset of disease, and prevent it from developing.
Finding a potent inhibitor of PSFL protein to treat ADmay be considered
as a rising hope.

In this study Casuarictin, Saponins, and Enoxolone emerged as
promising herbal therapeutics against Alzheimer's disease. Thus, these
three phytochemicals may be selected as the ligands for targeting
protein PSFL. Though trajectory, RMSD, RMSF, Rg, and SASA analysis
confirmed the docking results and it was observed that Saponin-PSFL
complex had the highest stability scores, but saponins are toxic com-
pounds and thus may possess limited scope to qualify as drug mole-
cules. Casuarictin is an ellagitannin, which is hydrolysable form of
tannin. Casuarictin is generally found in Casuarina and Stachyurus
species. While Enoxolone is a pentacyclic triterpenoid first reported
from the herb liquorice. It is a derivative of the beta-amyrin and is used
for its expectorant, antifungal, and antibacterial properties. Amongst
the three molecules, Casuarictin seems to have the highest potential for
further research and analysis as therapeutic agent of Alzheimer's dis-
ease. These findings will facilitate identification of herbal compounds
as inhibitors of PSFL protein to suppress amyloid β protein production
and thus provide a potential alternative for treatment of Alzheimer's
disease.
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