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Recent progress in next-generation sequencing has greatly facilitated our study of genomic structural variation. Unlike
single nucleotide variants and small indels, many structural variants have not been completely characterized at nucleotide
resolution. Deriving the complete sequences underlying such breakpoints is crucial for not only accurate discovery, but
also for the functional characterization of altered alleles. However, our current ability to determine such breakpoint
sequences is limited because of challenges in aligning and assembling short reads. To address this issue, we developed
a targeted iterative graph routing assembler, TIGRA, which implements a set of novel data analysis routines to achieve
effective breakpoint assembly from next-generation sequencing data. In our assessment using data from the 1000 Ge-
nomes Project, TIGRA was able to accurately assemble the majority of deletion and mobile element insertion breakpoints,
with a substantively better success rate and accuracy than other algorithms. TIGRA has been applied in the 1000 Genomes
Project and other projects and is freely available for academic use.

[Supplemental material is available for this article.]

Genomic structural variations (SVs), such as insertions, deletions,

duplications, inversions, and translocations, are important genetic

drivers for human diseases. Identifying these SVs, however, has

been difficult due to the complexity of the human genome and the

limitation of current technologies. Progress in next-generation

sequencing (NGS), such as whole genome sequencing, has greatly

facilitated our study of SVs. Many SVs have since been identified

through aligning paired-end reads or long reads for human refer-

ence assembly. Several popularly used SV prediction algorithms

(Chen et al. 2009; Hormozdiari et al. 2009; Ye et al. 2009; Rausch

et al. 2012) have predicted 10 times more SVs in an individual

genome than in previous studies (Korbel et al. 2007; Kidd et al.

2008). However, due to limited physical coverage of many NGS

libraries and the repetitiveness of SV regions, the alignment-based

approaches often suffer from relatively high false discovery rates

(FDRs) and lack of breakpoint precision. Some complex SVs, such

as those in genomically instable cancer genomes, are particularly

difficult to resolve precisely because of flanking repeats and se-

quence divergence from the reference assembly (Stephens et al.

2009).

Another way to identify SVs is through sequence assembly,

which pieces together redundant short reads into longer sequence

contigs. This approach is not biased by the reference and is gen-

erally more specific than alignment-based approaches because

more reads are involved in determining a breakpoint. However,

this approach is limited by our ability to assemble large and com-

plex genomes from short reads and generally demands more cov-

erage. Although progress has been made in assembling a complete

human genome from short NGS reads using affordable computa-

tional resources (Zerbino and Birney 2008; Li et al. 2010; Simpson

and Durbin 2010; Iqbal et al. 2012), assembler development is still

at the stage of increasing assembly contiguity and reducing com-

putational cost, instead of comprehensively and accurately repre-

senting all DNA sequences in the input data. Consequently, low-

coverage alternative alleles in diploid or polyploid genomes tend to

be ignored (Alkan et al. 2011). Despite recent efforts that have

enriched the representation of alternative SNVs and indel alleles

(Iqbal et al. 2012), breakpoint sequences underlying large SVs are

still insufficiently represented in the assembly results (Alkan et al.

2011; Mills et al. 2011).

There is a pressing demand to obtain high-quality sequences

underlying the SV breakpoints (breakpoint sequences) for the

purpose of achieving accurate characterization and deriving bio-

logical understanding. In our early efforts, we found that applying

TIGRA to predicted breakpoints can reduce the FDR to as low as

2%–3% for germline SVs (Chen et al. 2009; Ding et al. 2010) and

6% for somatic SVs (Chen et al. 2009). Similarly, low FDRs (3%–

5%) have been observed in independent research (Zhu et al. 2012).

Achieving a low FDR is valuable in large-scale studies because it

alleviates the need to perform orthogonal experimental validation,

which can be costly and time-consuming. Existing experimental

techniques such as polymerase chain reaction, array hybridization,

fluorescence in situ hybridization, and capillary-based sequencing

have their own limitations in terms of capability and precision

(Korbel et al. 2007; Kidd et al. 2008; Conrad et al. 2009, 2010).

Therefore, it is highly desirable to achieve low FDRs when using
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breakpoint assembly, which has been demonstrated by the 1000

Genomes Project Consortium (Mills et al. 2011).

Obtaining high-quality breakpoint sequences is also essential

for understanding the molecular processes and mechanisms that

produced the germline (Korbel et al. 2007; Gu et al. 2008; Kidd

et al. 2008; Conrad et al. 2010; Lam et al. 2010) and/or the somatic

SVs (Stephens et al. 2009; Malhotra et al. 2013). For example, the

presence of microhomology and nontemplate sequences at the

breakpoints is a signature for DNA double-strand breaking fol-

lowed by microhomology-mediated repair. Precise characteriza-

tion at nucleotide resolution provides resources for genomic evo-

lutionary studies and sheds light on the etiology of genetic diseases

(Yang et al. 2013).

Although it seems conceptually straightforward to perform

local targeted assembly at any given location in an alignment as-

sembly (e.g., BAM), it is actually nontrivial to establish a good

practice. One major concern is the false negatives, i.e., an assem-

bler fails to produce a valid breakpoint sequence, even with suffi-

cient coverage. This concern is credible because almost all existing

assemblers are developed to perform whole haploid genome

assembly and are optimized to produce long contigs at the cost

of ignoring local complex structures. In addition, they are not

designed to process population sequencing data that contain

multiple alleles, such as those collected from heterogeneous

cancer tissues.

Since 2008, we have worked to establish a good practice for

assembling breakpoints. After testing the available assemblers,

we developed a new approach that uses a targeted iterative graph

routing assembler (TIGRA), which we optimized to assemble

breakpoints from population sequencing data with minimized

false negatives and improved sequence accuracy. We have ap-

plied various versions of TIGRA to data compiled in the 1000

Genomes Project and other large-scale cancer genome se-

quencing projects and have demonstrated its efficacy in con-

firming alignment-based SV calls, pinpointing precise break-

points, estimating SV genotypes and allele abundances, and

facilitating breakpoint analysis for mechanistic understanding

(The 1000 Genomes Project Consortium 2010, 2012; Ding et al.

2010; Mills et al. 2011). To our best knowledge, TIGRA is the only

tool that has been specifically developed to assemble SV break-

points and has been thoroughly examined in population-scale

genome sequencing projects. In this manuscript, we describe the

rationale and details behind our design and demonstrate the

efficacy of TIGRA using publicly available data. To demonstrate

the advantages of TIGRA, we compare it with alternative ap-

proaches that employ other widely used assemblers, such as

Velvet (Zerbino and Birney 2008), SGA (Simpson and Durbin

2010), Phrap (http://www.phrap.org), and SPAdes (Bankevich

et al. 2012).

We selected these assemblers to represent a wide spectrum

of assembly algorithms. Both Velvet and SPAdes are based on de

Bruijn graphs. Although Velvet was among the first published

short read assemblers and has been widely used, SPAdes was

developed more recently and includes a set of theoretical and

algorithmic advances that target single-cell data and meta-

genomic data. SGA is the first string graph-based assembler

that has achieved considerable advances in reducing computa-

tional expenses and has been applied to breakpoint assembly

(Malhotra et al. 2013). Phrap is a classic assembler that imple-

ments the overlap-layout-consensus strategy. As reads become

longer, such a strategy can potentially be revived for small-scale

NGS assembly.

Results

Overview of TIGRA

The TIGRA program consists of two major steps: (1) read extrac-

tion, and (2) assembly (Fig. 1; Methods). The input is a list of pu-

tative breakpoints and a set of binary sequence alignment/map

formatted (BAM) files that contain the sequence reads aligned to

the reference (Li et al. 2009).

An input breakpoint can be specified with different levels of

detail. At a minimum, it must have the genomic coordinates of the

predicted breakpoint. In addition, it can include the type of SV

(e.g., deletion or insertion) that produced the breakpoint, which is

inferred from discordant paired-end alignment or split-read

alignment (Chen et al. 2009; Ye et al. 2009; Rausch et al. 2012).

To increase the chance of successful assembly, TIGRA tries to

include all reads that are likely associated with the breakpoint, as

long as they have at least one end or a subsegment that is confi-

dently mapped (e.g., mapping quality greater than 20) around the

breakpoint. The other end (mate) could be either unmapped, soft-

clipped, or mapped to a distal locus (e.g., a different chromosome).

When the type of SV is known, TIGRA extracts reads selectively to

reduce the representation of the reference allele. For example, for

a deletion breakpoint, only reads near the start and the end co-

ordinates are extracted; whereas reads within the deleted region are

not extracted. When genotypes are known, TIGRA can selectively

obtain reads from the individuals that contain the breakpoint.

Figure 1. Schematic view of TIGRA. (A) Reads (arrow-shaped boxes) at
a breakpoint (vertical dashed line in the center), including those normally
mapped (gray), mate-unmapped (gray with red outline), soft-clipped
(multicolored), and interchromosomally mapped (colored) are extracted
from BAM files and sent to the assembly algorithm. (B) A de Bruijn graph is
constructed using an iterative multiple-k-mer assembly algorithm. A contig
(oval indexed node) with a specified length and average k-mer coverage (x)
is connected to other contigs if it overlaps other contigs by k-1 bp (edge) in
a particular orientation (arrow), and is of a particular coverage (weight). In
this example, a mobile element insertion (of C2) with homology regions
(C1) is successfully assembled. Two contig strings are decoded from the
graph by TIGRA, representing two alternative alleles.
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Once reads are extracted, TIGRA attempts to assemble them

into longer contigs using a de Bruijn graph-based approach. To

increase the chance of successful assembly, we adopted several

innovations that differ from standard approaches such as Velvet.

First, rather than using a single k-mer, TIGRA allows for the itera-

tive use of multiple k-mers to increase the chance of assembling

low-coverage alleles from short reads. This feature is particularly

relevant in our setting of population sequencing because the al-

ternative alleles, such as those in a subpopulation of tumor cells,

can have substantially lower coverage than those of the dominant

alleles. The coverage of alternative alleles can be further lowered in

the BAM files due to alignment biases against nonreference se-

quences. Second, TIGRA records bubbles (alternative paths) in the

contig graphs and outputs them to represent the alternative alleles

with common flanking sequences. Third, it uses reads (instead of

k-mers) to resolve repeats in the graph. This feature makes it pos-

sible to distinguish repeats that are longer than the k-mer length

and at lengths up to the read length. Finally, TIGRA takes various

measures to enhance the representation of the alternative struc-

tures. For example, TIGRA uses singleton k-mers (rather than ig-

noring them) if they facilitate further expansion of contigs from

the previous iteration. More details are described in Methods.

Since we developed and applied TIGRA to the 1000 Genomes

Project data in 2010 (Mills et al. 2011), similar techniques have

been adopted in different contexts (e.g., single-cell genome as-

sembly) (Bankevich et al. 2012; Peng et al. 2012; Iqbal et al. 2013),

which have further supported the validity of our design.

Deletion breakpoint assembly

To examine TIGRA, we curated two sets of previously sequenced

deletion breakpoints as reference standards (Conrad et al. 2010;

Kidd et al. 2010).

The first set contains 245 deletion breakpoints (Supplemental

Table 1) that were previously characterized at breakpoint resolu-

tion (Conrad et al. 2010) and that are present (80% reciprocal

overlap) in at least one of the 45 CEU samples in The 1000 Ge-

nomes pilot project (Mills et al. 2011). We downloaded the corre-

sponding Burrows-Wheeler (Li and Durbin 2009) aligned BAM files

from the 1000 Genomes Project, which consisted of paired-end

short (35–50 bp) Illumina reads obtained from low-depth (2–53)

whole genome sequencing. To demonstrate the efficacy of TIGRA’s

assembly algorithm, the second step in the overall process, we

examined the same set of reads assembled by TIGRA using Velvet,

SGA, Phrap, and SPAdes (Methods).

In our first experiment, we used the available genotype data to

guide the read extraction. At each breakpoint, we obtained a set of

reads from the variant-containing samples and produced multiple

sets of contigs using different assemblers or parameters (Table 1A).

We aligned the assembled contigs to the reference sequence using

cross_match (http://www.phrap.org/phredphrapconsed.html) and

considered a breakpoint to be correctly assembled if one of its de-

rivative contigs aligned in a configuration compatible with the

ground truth, i.e., indicating a deletion of similar size (<10% dif-

ference) with similar breakpoint coordinates (<5 bp apart). Of the

245 breakpoints, TIGRA correctly assembled 83.7%, followed by

SPAdes (69.0%), SGA (56.7%), Velvet (k = 31; 55.10%), and Phrap

(35.9%). We followed a recently published procedure (Malhotra

et al. 2013), which decoded all paths in the string graph (called

SGA.walk), and merged it with standard string graph assembler

(SGA) results (called SGA.expand). This improved the overall SGA

result to 62.3%. The use of multiple k-mers (k = 15, 25) in TIGRA

outperformed the use of a single k-mer (k = 25) by 11 (4.5%)

breakpoints. Overall, TIGRA assembled 15% more breakpoints than

any other assembler evaluated in this experiment.

In our second experiment, we ignored the known genotypes

and extracted reads from all 45 samples. This application is anal-

ogous to assembling subclonal breakpoints from population se-

quencing of clonally heterogeneous cancer or microbial samples

that contain mixtures of low-abundance alleles. As expected, fewer

breakpoints were successfully assembled. Still, TIGRA succeeded in

70.6% of the 245 cases (Table 1A) in contrast to the success of

Velvet (20.4%), SGA.expand (63.7%), Phrap (36.3%), and SPAdes

(58.4%). The expanded SGA process scored well in this experi-

ment. However, it produced almost twice as many contigs as did

TIGRA, which increases the load for downstream analysis. The

success rate was clearly affected by variant allele frequency in the

population (Fig. 2). TIGRA performed substantially better than the

other assemblers at assembling low-frequency (less than 0.15) al-

leles, as expected from its use of multiple k-mers and more careful

treatment of data.

In both experiments, results can be improved by adjusting

TIGRA read extraction parameters (Supplemental Table 2; Sup-

plemental Notes).

The second reference standard set contains 562 sequenced

deletion breakpoints in eight cell-line samples obtained using long

insert (;48 kb) fosmid end sequence profiling (Supplemental Table

3; Kidd et al. 2010). We thought that this set of breakpoints might

provide a more comprehensive assessment because it includes

breakpoints with longer (>100 bp) homology, resulting from

Table 1. Comparison of deletion breakpoint assembly using low-
coverage population sequencing data from the 1000 Genomes
Project based on a set of 245 known breakpoints in 45 CEU pilot
samples (A) and a set of 562 known breakpoints in eight phase 3
samples (B)

A

Genotype ignored Genotype aware

Method Number Percentage Number Percentage

Conrad 245 100.00% 245 100.00%
Tigra-0.3.7 173 70.61% 205 83.67%
Tigra-0.3.7, k = 25 173 70.61% 194 79.18%
Velvet-1.2.09, k = 31 50 20.41% 135 55.10%
SGA-0.9.17 130 53.06% 138 56.33%
SGA-0.9.17 walks 149 60.82% 133 54.29%
SGA-0.9.17 expand 156 63.67% 152 62.04%
Phrap-1.080721 89 36.33% 88 35.92%
SPAdes-2.5.0 143 58.37% 169 68.98%

B

Genotype ignored Genotype aware

Method Number Percentage Number Percentage

Kidd 562 100.00% 562 100.00%
Tigra-sv-0.3.7,

k = 15,25,35
317 56.41% 276 49.11%

Velvet-1.2.09, k = 31 111 19.75% 196 34.88%
SGA-0.9.17 245 43.59% 90 16.01%
SGA-0.9.17 walks 278 49.47% 21 3.74%
SGA-0.9.17 expand 307 54.63% 95 16.90%
Phrap-1.080721 158 28.11% 240 42.70%
SPAdes-2.5.0 201 35.77% NA NA
SPAdes-2.5.0 sc 179 31.85% 270 48.04%
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nonallelic homologous recombination. We downloaded the BWA

aligned BAM files of these eight samples from the 1000 Genomes

phase 3 project, which consisted of paired-end 100-bp Illumina

reads obtained from low-depth (2–73) whole genome sequenc-

ing. Similar to the Conrad set, we performed the following two

experiments.

In the first experiment, we extracted 562 sets of reads in-

dependently from the corresponding BAM files using TIGRA and

then assembled them using each of the five assemblers (genotype-

aware) (Table 1B). TIGRA was able to correctly assemble 276 (49%)

breakpoints, outperforming the other assemblers. The low cover-

age (three- to sevenfold haploid) made it challenging for SGA and

Velvet. SPAdes performed nearly as well as TIGRA (in its single-cell

mode but not in the whole genome mode). However, it was con-

siderably slower (>100-fold) than TIGRA. As expected, the short

insert size (ranging from 126 to 449 bp) and the short read length

in the NGS data made it difficult to resolve long repeats. In the

results from both TIGRA and SPAdes, we observed a monotonic

reduction of correctly assembled breakpoints as the size of the

breakpoint homology increased (Supplemental Fig. 1).

In the second experiment, we pulled reads from all eight

samples at each breakpoint (genotype-ignored) (Table 1B). TIGRA

correctly assembled 317 (56.4%) breakpoints, which was the best

among all the assemblers. Interesting, 41 more breakpoints were

assembled by TIGRA in this experiment than in the first experi-

ment, which indicates that those breakpoints are present in more

samples than originally reported.

Mobile element insertion breakpoint assembly

Unlike deletions, insertions are generally difficult to assemble be-

cause reads from inserted sequences may not be as clearly associ-

ated with the insertion breakpoint in the BAM files. Assembling

the mobile element insertions (MEIs) is even more difficult due to

their nonunique sequence content and their relatively large sizes.

Major MEI subtypes, such as Alu, LINE, and SVA, have many sub-

families that are distinct in their lineages yet are highly homolo-

gous. For example, among Alu subfamilies, AluYa4 differs from

AluYa5 by only one substitution and from ancestral AluY by five

substitutions. Distinguishing these subfamilies thus requires the

accurate assembly of the inserted elements.

To examine how well TIGRA assembles MEIs, we applied it to

a set of 442 experimentally validated MEI breakpoints in NA12878,

a cell-line genome (Mills et al. 2011; Stewart et al. 2011). The

BAM file, which we downloaded from the 1000 Genomes Project,

consists of short insert (;400 bp) paired-end Illumina HiSeq reads

(101 bp) with 60-fold haploid sequence coverage. Again, to com-

pare the assembly algorithms, we assembled the same sets of reads

extracted by TIGRA using Velvet, SGA, Phrap, and SPAdes.

All five assemblers produced results at each of the 442

breakpoints. The lengths of the resulting contigs varied widely

across the various approaches: Phrap produced the longest contig

(;1355 bp), followed by SPAdes (;1288 bp), Velvet (k = 31; ;858

bp), TIGRA (;805.5 bp), and SGA (;397 bp).

To examine the accuracy of the assembled sequences, we

aligned the obtained MEI contigs against 52 MEI consensus se-

quences derived from Repbase 14.02 (Stewart et al. 2011) (http://

www.girinst.org/repbase/index.html) using the BLAST-like align-

ment tool (Kent 2002). Based on the alignment, we found that

contigs assembled from TIGRA contained the longest MEI se-

quences (average 280 bp) (Supplemental Table 4). This result in-

dicates that the majority of these insertions (predominately Alu)

were assembled near their full length (;300 bp). Manual inspec-

tion (Methods) of TIGRA contigs confirmed that many Alu ele-

ments were completely assembled not only with polyA tails but

also with flanking sequences attached on both ends. Such results

allow TIGRA to precisely pinpoint the breakpoints as well as ac-

curately classify the lineages of the inserted elements. The average

length of MEIs in Phrap contigs was 276 bp, which was almost as

long as those obtained by TIGRA. In Velvet contigs, the average

MEI sequence length was 269.6 bp, despite the longer overall

contig lengths. Even shorter were those in the SPAdes contigs (260

bp) and SGA contigs (235.6 bp). Similar to the process for deletions,

we expanded the SGA contig collection by including all paths in

Figure 2. Comparison of assembly success rate at various allele frequencies in 45 CEU samples. Six assemblers are plotted: TIGRA (purple), Velvet
(blue), SGA (cyan), SGA.all (yellow), Phrap (red), and SPAdes (brown). Allele frequencies (x-axis) are derived from the deletion genotypes released by The
1000 Genomes Project Consortium, and the fraction of success (y-axis) is estimated from 245 control deletion sites.
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the SGA graph (Methods). This increased the average length of its

MEI-containing contigs to 1514 bp, at the cost of producing many

(3.6 times) more contigs than TIGRA. The lengths of the MEIs in

these contigs also increased to 266.4 bp, but were still shorter than

those assembled by TIGRA, Phrap, or Velvet.

We classified each MEI breakpoint to a subtype (Alu, L1, and

SVA) and a specific subfamily based on the best alignment of its

assembly with the 52 Repbase sequences (Supplemental Table 4).

Subtype classification based on TIGRA achieved ;96% overall

concordance with those published by the 1000 Genomes Project

Consortium (Stewart et al. 2011). Among the 442 breakpoints,

TIGRA found 393 (88%) Alu, 44 (10%) L1, and 5 (1%) SVA. The

subfamilies most frequently found were AluYa5 (136/442; 30.8%)

and AluYb8 (96/442; 21.7%). These results were highly consistent

with the findings reported by Stewart et al. (2011), which were

derived from independent alignment-based approaches that uti-

lized different technologies.

A subset of 158 MEIs has independently characterized sub-

families in dbRIP (Wang et al. 2006). This provided us with an

opportunity to further examine the accuracy of the assembled

insertion sequences based on the subfamily classification. Com-

paring our subfamily lineages with those in dbRIP (Supplemental

Table 4), we found a concordance rate of 69.6% under stringent

criteria that require an exact lineage match (Table 2). This per-

centage is nearly identical to that reported previously (70%),

which was derived from assembling longer 454 reads (Stewart et al.

2011). In comparison, the SGA expanded approach achieved

a concordance rate of 62.0%; whereas the concordance rates of

Velvet (k = 31; 44.3%), and SPAdes (41.1%) indicated worse accu-

racy. Interestingly, Phrap’s concordance rate (68.35%) was nearly

as accurate as TIGRA’s. The majority of discordant classifications

between TIGRA and dbRIP (48 total) are among closely related

lineages: 17 were among the AluYa lineage (e.g., between Ya4 and

Ya5), 7 among the AluYb lineage (e.g., between Yb7 and Yb8), and

15 were between ancestral AluY and more recent lineages (e.g.,

AluYe5).

Discussion
Our comparative analyses demonstrated clear advances that

TIGRA has achieved in assembling diversified classes of breakpoint

sequences from NGS data. To our best knowledge, TIGRA is the

only algorithm that has been specifically developed to perform

large-scale breakpoint assembly. We emphasize that existing as-

semblers such as Velvet, SGA, and SPAdes are generic purpose as-

semblers that are not specifically designed to assemble break-

points. Therefore, these comparisons have demonstrated the

differences among only the assembly algorithms, instead of

among the entire breakpoint assembly process. The specific ways

that TIGRA extracts reads are also critical to the overall success.

Taken together, TIGRA represents the current best practice for

performing SV breakpoint assembly from NGS data.

TIGRA is computationally efficient because it typically in-

volves only thousands or tens of thousands of reads per breakpoint,

which requires negligible memory. It is efficiently implemented in

C++ using SAMtools C libraries to perform fast extraction of in-

dividual reads from BAM files. We have tested it on both personal

computers and high-performance clusters. For example, it took

<10 h using 24 Linux 64-bit CPUs to assemble all (over 20,000)

predicted deletions in the 1000 Genomes phase 1 project from

more than 1000 low-depth (;53) BAM files.

The success of TIGRA depends on whether it can include reads

spanning breakpoints. Therefore, it is important to provide input

that has nucleotide or near nucleotide-level precision (smaller

than a few hundred base pairs). Breakpoints determined from

discordant paired-end alignments or split-read alignments, and by

predictors such as BreakDancer, Delly (Rausch et al. 2012),

GenomeSTRiP (Handsaker et al. 2011), and Pindel (Ye et al. 2009),

are well suited as input to TIGRA. In the 1000 Genomes Project, the

success rates in this category ranged between 50%–80% for the

low-coverage (2–73) short (100–500 bp) insert data. Breakpoints

determined based on only the read depth such as CNVnator

(Abyzov et al. 2011) and RDXplorer (Yoon et al. 2009) had sub-

stantially lower success rates (<20%). Breakpoints determined from

the long (>1.5 kbp) insert data may be similarly limited, but more

data are required to estimate the extent of this limitation. In ad-

dition, breakpoints in repetitive regions are demonstratively more

difficult to assemble than those in unique regions due to the lim-

itation of short reads.

In our previous efforts (Mills et al. 2011), we primarily applied

TIGRA to assemble deletions and tandem duplications. Assem-

bling MEIs represents a recent upgrade, which we have demon-

strated in this manuscript. We have also programmed TIGRA to

assemble other types of breakpoints, such as reciprocal trans-

locations and inversions. Those types of breakpoint assemblies

have been shown to be useful, but have not been examined as

thoroughly due to a lack of ground truth data (Ding et al. 2010;

Welch et al. 2011). As more data become available, it is likely that

we will need to make additional improvements to the assembly

procedures. In addition to simple breakpoints, TIGRA may prove

valuable in constructing complex alleles in cancer genomes, which

may contain clusters of SV breakpoints and other types of muta-

tions in near distances (Stephens et al. 2009). Our existing imple-

mentation allows de novo assembly of any breakpoints, including

those that cannot be easily characterized by canonical SV classes.

In addition to genomic breakpoints, we have successfully employed

TIGRA to assemble novel splice junctions in RNA-seq data and have

shown its usefulness in improving the accuracy of gene fusion de-

tection (Chen et al. 2012).

Methods

Read extraction
Given a breakpoint, TIGRA obtains reads from a set of binary se-
quence alignment/map formatted (BAM) files that contain the
aligned sequence reads relative to the reference (Li et al. 2009). For
a breakpoint produced by an intra-chromosomal SV, such as a de-
letion, tandem duplication, insertion, or inversion in the genomic
interval [a, b], TIGRA obtains reads that map to [a-w, a+u] and [b-u,
b+w]. We chose the default value of w (500 bp) such that the as-
sembled contig sequences are long enough to unambiguously map
the variant. The inclusion of reads that did not originate from the

Table 2. Comparison of assembler accuracy based on mobile
element subfamily classification of 158 mobile element insertion
breakpoints in NA12878

Method Matches dbRIP Percentage

Tigra 110 69.62%
Velvet, k=31 70 44.30%
SGA-0.9.17 87 55.06%
SGA-0.9.17.walk 98 62.03%
Phrap-1.080721 108 68.35%
SPAdes-2.5.0 65 41.14%
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variant allele increases the complexity and degrades the assembly
of variant alleles. Therefore, u should be chosen so as to maximally
include reads that are unique to the variant allele, especially those
that span the breakpoints, while maximally excluding those that
are unique to the reference allele. In practice, u can be determined
based on the confidence intervals of the predicted breakpoints,
which are usually specified from the front-end prediction algo-
rithms. Alternatively, it can be set to three times the standard de-
viation insert size, which typically ranges from 50 to 100 bp for
Illumina paired-end libraries. In our practice, the assembly results
are sensitive to u but not as sensitive to w. For a breakpoint pro-
duced by a putative inter-chromosomal translocation (c1, a), (c2, b),
where c1 and c2 represent two different chromosomes, we consid-
ered four possible fusion configurations and accordingly extracted
four different sets of reads (Supplemental Fig. 2).

We extracted all the reads mapped within the above window
for assembly. We included their mates (in paired-end sequencing),
regardless of their mapping status and location. This could be an
expensive operation for certain classes of breakpoints. For exam-
ple, the inserted element of an MEI may have multiple homologs
on the reference, causing the MEI-containing mates to be mapped
incorrectly to distal loci. Extracting mates that are scattered in the
genome is expensive, even with the random accessibility of BAM
files. Nonetheless, the SAMtools C API that TIGRA utilizes has
maximally alleviated this issue.

The iterative graph routing assembler (TIGRA)

We considered the assembly problem as a graph routing (path se-
lection) problem on the sequence graphs derived from the de
Bruijn graphic representations of sequencing reads. The main al-
gorithm and implementation are similar in principle to other de
Bruijn graph-based assemblers (Pevzner et al. 2001; Zerbino and
Birney 2008; Chaisson et al. 2009; Li et al. 2010; Iqbal et al. 2012).
Briefly, the de Bruijn graph records k-mers (sequence of length k) in
the reads as nodes, and the k-1 bp overlaps between them as edges.
The assembly process can be viewed as navigating through this
graph, finding a path or paths that represent the target genome
sequence(s). During this multistep process, the original de Bruijn
graph nodes, if unambiguously connected, are merged to form
super nodes representing longer sequences.

Multiple k-mers and iterative assembly

The k-mer size is one of the most important parameters for a de
Bruijn graph-based assembler. The length of the k-mer represents
a tradeoff between complexity and redundancy (coverage). For two
reads to be assembled together, they must have an exact overlap of
k-1 bp or more; thus, shorter k-mers do not require as much re-
dundancy as longer k-mers but are more limited in representing
complex sequences. When the coverage is low, as often occurs for
low-abundance alleles, using a short k-mer can be critical for suc-
cessful assembly (Supplemental Fig. 3). However, a shorter k-mer
has a limited ability to resolve repeats, causing homologous se-
quences to collapse together. In contrast, a longer k-mer can better
resolve repeats but may result in fragmented assembly due to in-
sufficient coverage. Given the randomness of sequence complexity
and coverage, it is conceivable that incrementally iterating
through multiple different k-mers can produce improved assem-
blies (Chaisson et al. 2009).

One of most distinctive features of TIGRA is the imple-
mentation of such an iterative k-mer. TIGRA starts with a relatively
small k-mer size when it uses multiple k-mers. The assembled
contigs that are longer than the next k-mer size are included as
pseudo reads in the next assembly iteration. Similar to other

assemblers, the choice of the k-mer size is empirical and depends
on the complexity of the genome and the property of the data.
Our default double k-mer setting (15 bp followed by 25 bp)
appears to be more effective than single k-mer settings at as-
sembling breakpoints based on the data we have examined.
For reads longer than 100 bp, a third k-mer of size 35 bp can
often provide further improvement, especially for assembling
insertions.

This idea of the iterative use of multiple k-mers was first de-
veloped in the Euler-SR assembly package (Chaisson et al. 2009).
The approach of Chaisson et al. is different in that they used every
pair of potentially connected contigs (as connected in the graph) as
pseudo reads. Including more pseudo reads may be advantageous
in assembling large genomes. However, it can also increase the risk
of misassembly. In our setting, we chose to include individual
contigs as pseudo reads. Individual contigs usually add less than
13 the sequence coverage per iteration and thus have a limited
possibility of introducing errors.

Most assemblers discard singleton k-mers (those observed
only once) because they are very likely introduced by random se-
quencing errors (Zerbino and Birney 2008). TIGRA implemented
a similar treatment in constructing the initial graph. After that,
TIGRA launched a process to rescue the singleton k-mers if they are
able to connect significant graph components that cannot be
connected otherwise. We used the same k-mer-hashing algorithm
that was used in constructing the initial graph except that the as-
sembled contigs (instead of raw reads) and the singleton k-mers
were assessed.

Tips and bubbles

Two major obstacles in genome assembly are sequencing errors
and repeats. Sequencing errors form ‘‘tips’’ on the graph and can be
easily removed. Mutations or sequencing errors can also form
‘‘bubbles,’’ which consist of two alternative alleles with iden-
tical flanking sequences. Most current de Bruijn graph assem-
blers collapse the bubbles in the sequence graph to produce
a single consensus sequence. Without care, this frequently leads
to the loss of the alternative alleles. TIGRA retains this bubble
structure when the lengths of the alternative alleles differ more
than 3 bp because most NGS platforms produce errors shorter
than 3 bp, and we are primarily interested in assembling alleles
that have lengths or structures that differ substantially from the
reference.

Resolving repeats using reads

The de Bruijn graph collapses repeats when they are longer than
the k-mer size. Such repeats can be recognized and potentially re-
solved based on coverage analysis, as implemented in Velvet.
However, this approach does not work in a region with an altered
copy number and is not robust in a region with biased coverage.
Instead of using coverage, we used read sequences to resolve re-
peats, which are usually longer than the longest k-mer size. TIGRA
identifies repeats from a ‘‘multiple in, multiple out’’ structure
(Supplemental Fig. 4) and resolves them if there are spanning reads
indicating an unambiguous connection. We found this solution to
be more suitable for assembling SV breakpoints, which are usually
associated with copy number alterations and are near low-com-
plexity regions that often have abnormal coverage.

Using pairs may lead to further improvement in resolving
repeats. However, since our primary focus is local assembly in short
breakpoint regions, we did not implement that feature in our
current version of TIGRA.

SV breakpoint assembly using TIGRA
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Highlighting the nonreference sequence

In a TIGRA contig, we use uppercase letters to highlight novel se-
quences that differ from the reference and that are assembled from
unmapped or poorly mapped reads. This feature makes it easy to
identify breakpoints and highlight the differences between the
alternative alleles and the reference.

Cross_match alignment and SV calling

In our experiments, we used cross_match (http://www.phrap.org/
phredphrapconsed.html) to examine whether a contig contained
an SV breakpoint. For a contig assembled from an intra-chromo-
somal variant, we prepared a local reference sequence excised from
[a-w, b+w]. For a contig assembled from an inter-chromosomal
rearrangement, we prepared two local reference sequences from
[a-w, a+w] of chromosome c1 and from [b-w, b+w] of chromosome
c2, respectively. We mapped each contig assembled by TIGRA to
the corresponding reference sequences using cross_match. In the
default setting, we used the following cross_match parameters:
-bandwidth 20 -minmatch 20 -minscore 25 -penalty -10 -discrep_
lists -tags -gap_init -10 -gap_ext -1. We removed contigs that had
more than two hits to the reference and ignored alignments that
had substitution rates >0.5%. If a contig differs substantially from
the reference, cross_match returns multiple local alignments to-
gether with a set of statistics describing the quality of the align-
ments. A glocal alignment (combination of local and global align-
ment) was constructed from these local alignments (Brudno et al.
2003). We used that alignment as the basis for reporting the exis-
tence of breakpoints and detailed information on the type, size,
orientation, and location of the breakpoints (Supplemental Fig. 5).
For example, the local alignment that supports a deletion break-
point contains two local 1-monotonic alignments to the reference
(Chen et al. 2012). The gap between the end position of the first
alignment and the start position of the second alignment corre-
sponds to the size of the deletion, whereas the bases shared by both
alignments correspond to breakpoint homology.

Running the assemblers

We ran TIGRA-0.3.7 under the default parameters, unless other-
wise stated. Detailed usage is available in the Supplemental Notes
and on the TIGRA website. We used Velvet version 1.2.09 for our
analysis, with the following commands: ‘‘velveth 31 -short’’ and
‘‘velvetg -exp_cov auto.’’ We ran both SGA-0.9.43 and SGA-0.9.17
using the following commands and parameters: ‘‘sga preprocess;
sga index -a ropebwt; sga filter -x 2; sga overlap -m 15; sga as-
semble -m 15 -d 0 -g 0 -b 0 -l 100.’’ We ran the expanded SGA
assemblies (SGA.walk) with a modified 0.9.17 version using code
from (Malhotra et al. 2013; Ira Hall, pers. comm.), with the fol-
lowing commands and parameters: ‘‘sga preprocess; sga index;
sga filter -x 2; sga overlap -m 15; sga assemble -m 15 -d 0 -g 0 -b 0 -l
100; sga walk -d 10000–component-walks.’’ We ran Phrap-1.080721
without any parameters. We ran SPAdes-2.5.0 in the single-cell
mode on low-coverage data using ‘‘spades.py–sc–only-assembler
-s –o.’’ We ran it in the whole genome mode on high-coverage
data using ‘‘spades.py–only-assembler -s –o.’’

Manual inspection of TIGRA contigs

To manually inspect TIGRA contigs, we used the human BLAT
search tool (http://genome.ucsc.edu/cgi-bin/hgBlat?command=

start). We copy-pasted the assembled sequence onto the textbox
and submitted it to the server. We reviewed the alignment results
to assess the number, quality, and difference between the best and

the rest, and the annotation of the alignments in the UCSC Ge-
nome Browser (e.g., whether they overlapped with any mobile
elements or previously reported variants). For an MEI, the inserted
sequence within the contig will align to its homologs on the ref-
erence, based on which we can assess its origin and sequence di-
vergence. We considered this information collectively to infer how
likely it was that a contig contained a valid breakpoint.

Data

We downloaded the HiSeq NA12878 BAM file we used in this study
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/
20120117_ceu_trio_b37_decoy/. We downloaded the low-depth CEU
BAM files from http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_
data/data/ and from http://ftp-trace.ncbi.nih.gov/1000genomes/
ftp/data/.

We obtained the 245 deletion breakpoints by intersecting the
1000 Genomes Pilot 1 deletion genotype file (http://ftp-trace.
ncbi.nih.gov/1000genomes/ftp/pilot_data/release/2010_07/low_
coverage/sv/CEU.low_coverage.2010_06.deletions.genotypes.vcf.gz)
with the data in Supplemental Table 2 (ng.564-S2), which we
downloaded from Conrad et al. (2010).

We obtained the 442 MEI breakpoints by extracting PCR-
validated NA12878 sites from ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/pilot_data/paper_data_sets/companion_papers/mapping_
structural_variation/union.2010_06.MobileElementInsertions.
genotypes.vcf.gz.

We downloaded the dbRIP files from http://dbrip.brocku.ca/
dbRIPdownload/.

Software availability

TIGRA is available at http://bioinformatics.mdanderson.org/main/
TIGRA. It is licensed under GPL-v3 and is free for academic use. Also
provided is an example data set with a README file that explains
the details of using TIGRA and the expected outcomes.
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