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Abstract
Objectives:	Studies	at	the	genomewide	level	of	Parkinson’s	disease	(PD)	suggested	a	
significant	association	between	the	Hydroxy-	delta-	5-	steroid	dehydrogenase,	3	beta-		
and	steroid	delta	isomerase	7	(HSD3B7)	gene	rs9938550	variant	and	a	decreased	risk	
for	PD.	But	its	effect	has	only	been	discussed	in	Caucasian	populations,	and	no	pheno-
typic	characteristics	were	included.	To	investigate	the	novel	variant	for	PD	in	Chinese	
Han	populations,	we	performed	an	association	analysis	of	rs9938550	variant	in	a	large	
cohort.
Methods:	Using	a	case–control	methodology,	a	total	of	2,239	subjects	(1,072	sporadic	
patients	with	PD	and	1,167	control)	were	genotyped	and	the	genetic	association	was	
analyzed.
Results:	No	significant	association	was	found	between	allele	A	of	rs9938550	and	PD	
in	the	entire	cohort	(p = .079).	However,	the	frequency	of	allele	A	was	lower	in	late-	
onset	PD	(LOPD)	as	compared	with	controls	older	than	50	years	(OR	=	0.62,	95%	CI:	
0.45–0.85,	padjust	=	.002).	 Relatively	 lower	Unified	 Parkinson’s	Disease	Rating	 Scale	
scores	were	demonstrated	in	mid-		to	late-	stage	PD	with	GA	+	AA	genotypes	than	GG	
genotype	 (padjust	=	.018),	while	 other	 clinical	 features	were	 similar	 between	 carriers	
and noncarriers.
Conclusions:	Our	results	support	that	the	HSD3B7	rs9938550	variant,	which	is	likely	
linked	 to	 bile	 acid	 biosynthesis,	 reduces	 the	 risk	 of	 LOPD	 in	 Chinese	 patients	 and	
might induce a benign clinical performance.
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1  | INTRODUCTION

Parkinson’s	disease	(PD)	is	the	most	common	movement	disorder	
typically	 characterized	 by	 motor	 disability	 (Tysnes	 &	 Storstein,	
2017).	 It	has	an	age-	dependent	prevalence,	and	its	burden	at	the	
population level is estimated to expand dramatically as the size 
of	 elderly	 population	 grows	 (Dorsey	 et	al.,	 2007;	 Trinh	 &	 Farrer,	

2013).	The	majority	of	patients	with	PD	are	sporadic	forms,	prob-
ably resulting from the interactions between genetic and envi-
ronmental	 factors	 (Migliore	&	Coppede,	2009).	Despiting	 several	
disease-	modifying	drugs	have	been	developed,	 there	 is	 currently	
no	 cure	 for	 PD.	 Therefore,	 identifying	 genetic	 susceptibility	 for	
PD	will	be	beneficial	for	detecting	the	pathogenesis	and	tailoring	
therapy.
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Genomewide	 association	 study	 (GWAS),	 an	 effective	 approach	
for	understanding	the	genetic	basis	of	complex	diseases,	has	recently	
identified	several	novel	candidate	loci	for	PD	(Hill-	Burns	et	al.,	2014;	
Tan,	 Jiang,	 Tan,	 &	 Yu,	 2014).	 Rs9938550,	 a	 single-	nucleotide	 poly-
morphism	 (SNP)	 in	 the	3β- hydroxy- Δ5-	C27-	steroid	 dehydrogenase/
isomerase	 (HSD3B7)	gene	 (16p	11.2),	may	play	a	vital	 role	 in	an	un-
known pathogenesis related to the process of bile acid and steroid 
metabolism	 (Nalls	 et	al.,	 2014).	When	combining	 the	 finding	 from	a	
pathway-	based	association	study,	there	is	a	potential	contribution	of	
rs9938550	to	HSD3B7	on	PD	(Song	&	Lee,	2013).	In	the	classical	path-
way,	HSD3B7	catalyzes	the	second	step	of	bile	acid	formation	(Monte,	
Marin,	Antelo,	&	Vazquez-	Tato,	2009),	and	its	mutations	may	reduce	
the	 synthetic	 capability	 (Cheng	et	al.,	2003).	 Interestingly,	when	 the	
main	 product,	 chenodeoxycholic	 acid	 (CDCA),	 converts	 into	 a	 β- 
configuration	ursodeoxycholic	acid	(UDCA)	and	its	taurine-	conjugated	
form	(TUDCA),	the	anti-	apoptotic	effect	 is	demonstrated	(Ackerman	
&	Gerhard,	2016;	Amaral,	Viana,	Ramalho,	Steer,	&	Rodrigues,	2009;	
Hirano,	Masuda,	&	Oda,	1981).	In	a	PD	module,	UDCA	significantly	at-
tenuated programed cell death events and protected human dopami-
nergic	SH-	SY5Y	cells	through	the	PI3K-	Akt/PKB	signaling	pathways,	
similarly,	UDCA	deregulated	the	level	of	rotenone-	induced	apoptosis	
by	modulating	mitochondrial	dysfunction	(Abdelkader,	Safar,	&	Salem,	
2016;	 Chun	 &	 Low,	 2012).	 TUDCA	was	 also	 found	 to	 activate	 the	
prosurvival	Akt	pathway,	diminishing	the	neurodegeneration	in	a	vivo	
module	of	PD	(Castro-	Caldas	et	al.,	2012).

However,	current	work	to	discover	the	physiological	roles	of	bile	
acids	in	neurodegenerative	conditions	mostly	focused	on	UDCA	and	
TUDCA,	 little	has	been	performed	on	 the	 initial	 stage	 that	HSD3B7 
gene	is	involved	(Ackerman	&	Gerhard,	2016).	Given	the	limited	power	
to	identify	disease	gene	by	GWAS	or	pathway-	based	approaches	and	
the	neuroprotective	potential	of	bile	acids	for	PD,	replication	studies	
are	 needed	 from	 different	 ethnic	 groups	 (Wang,	 Li,	 &	 Hakonarson,	
2010).	 We	 aimed	 to	 investigate	 the	 relationship	 between	 SNP	
rs9938550	in	HSD3B7	gene	and	PD	using	SNP	array	on	a	large	spo-
radic	PD	cohort	of	Chinese	samples.

2  | MATERIALS AND METHODS

2.1 | Subjects

A	total	of	1,072	sporadic	PD	cases	were	recruited	for	this	study	(589	
males,	483	 females,	mean	age	at	onset,	AAO	52.19	±	10.59)	 at	 the	
Department	of	Neurology	of	West	China	Hospital,	Sichuan	University.	
All	cases	underwent	a	neurological	evaluation	that	employed	PD	diag-
nostic	criteria	based	broadly	on	the	United	Kingdom	PD	Society	Brain	
Bank	 (UKPDBB)	Criteria	 (Hughes,	Daniel,	 Kilford,	&	 Lees,	 1992)	 by	
movement	disorder	specialists,	while	those	with	a	positive	family	his-
tory	of	PD	were	 excluded.	According	 to	 a	 cluster	 analysis,	 patients	
were	 subcategorized	 into	 early-	onset	 (AAO	<	50,	 EOPD)	 and	 late-	
onset	 (AAO	≥	50,	LOPD)	groups	 (Post,	Speelman,	&	de	Haan,	2008;	
Ross	et	al.,	2008).	Unified	Parkinson’s	Disease	Rating	Scale	(UPDRS)	
scores	and	Hoehn–Yahr	(HY)	stage	in	the	OFF	state	were	recorded	to	
demonstrate	the	clinical	stages	(Goetz	et	al.,	2004;	Post,	Merkus,	de	

Bie,	de	Haan,	&	Speelman,	2005).	Control	subjects	 (613	males,	554	
females,	 mean	 age	 51.96	±	15.41)	 were	 ethnic-	,	 age-	,	 and	 gender-	
matched,	and	had	no	evidence	of	any	neurological	disorder.	A	writ-
ten informed consent was obtained from each subject involved in the 
study and ethical approval was provided by the Ethics Committee of 
Sichuan	University.

2.2 | Genetic analysis

DNA	extraction	and	SNP	genotyping	were	performed	using	standard	
protocols	as	described	previously	(Liao	et	al.,	2014).	Briefly,	polymer-
ase	chain	reaction	(PCR)	and	detection	primers	were	designed	by	the	
MassArray	Assay	Design	 3.0	 software	 (Sequenom).	 About	 15	ng	 of	
genomic	 DNA	 was	 amplified	 by	 primers	 flanking	 the	 targeted	 se-
quence,	followed	by	dephosphorylation	and	allele-	specific	primer	ex-
tension.	Products	were	loaded	into	a	Spectro-	Chip	and	subjected	to	
a	matrix-	assisted	 laser	 desorption/ionization	 time-	of-	flight	 (MALDI-	
TOF)	mass	spectrometry.	The	Sequenom	MassArray	Typer	software	
(Sequenom)	 conducted	 the	 data	 analysis.	 Thus,	we	detected	 a	mis-
sense	mutation	(c.748A>G)	in	the	HSD3B7	gene,	substituting	threo-
nine	for	alanine	at	residue	250	(p.Thr250Ala).

2.3 | Statistical analysis

Statistical	analysis	was	performed	using	SPSS	software	version	18.0	
(SPSS	Inc.,	Chicago,	IL,	USA)	and	SHEsisPlus	(Shi	&	He,	2005).	Fisher’s	
exact	test	was	used	to	check	Hardy–Weinberg	equilibrium	(HWE)	of	
each	 SNP	 for	 subjects.	Continuous	 variables	were	 evaluated	by	 a	 t 
test	or	a	Mann–Whitney	U	 test	according	to	distribution	 (normal	or	
skewed).	 Categorical	 variables	 were	 compared	 using	 a	 chi-	squared	
test	to	analyze	the	distribution	of	genotype	and	allele.	SNP	associa-
tions	 were	 evaluated	 using	 logistic	 regression	 models,	 which	 were	
further	 performed	 after	 adjustment	 for	 age,	 gender,	 and	 other	 risk	
factors	through	odds	ratios	(OR)	with	95%	confidence	intervals	(CI).	A	
two- tailed p-	value	<	.05	was	considered	significant.

3  | RESULTS

A	 total	 of	 2,239	 subjects	 (1,167	 controls	 and	1,072	 cases)	were	
included in the analysis. There was no evidence of deviation 
from	 HWE	 in	 SNP	 rs9938550	 in	 the	 population	 (p = .319).	 No	
differences in age or gender between cases and controls were 
found	 (p = .853;	 p = .270,	 Table	 S1).	 The	 minor	 allele	 frequency	
of	 rs9938550	 in	 	patients	 with	 PD	 is	 6.2%,	 and	 it	 did	 not	 dif-
fer	 significantly	 when	 compared	 to	 controls	 of	 7.4%	 (p = .079,	
OR	=	0.81,	 95%	CI:	 	0.64–1.03).	No	 difference	was	 observed	 yet	
in	the		frequencies	of	genotypes		between	two	groups	in	overall	PD	
population	(p = .314).

Multivariate	 regression	analysis	with	adjustment	 for	 age,	 gender	
indicated	that	the	distribution	of	allele	A	was	not	significantly	differ-
ent	between	the	controls	and	PD	groups	in	both	genders,	at	all	ages,	
also	no	association	was	found	between	EOPD	and	younger	controls	
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(<50	years)	 (Table	1).	 However,	 the	 allele	 A	 was	 significantly	 less	
frequent	 in	 the	 LOPD	 subgroup	 than	 in	 controls	 (≥50	years)	 when	
combining	both	genders	(p = .002,	OR	=	0.62,	95%	CI:	0.45–0.85)	or	

considering	each	gender	alone	(p = .013,	OR	=	0.60,	95%	CI:	0.40–0.9,	
for males; p = .049,	OR	=	0.62,	95%	CI:	0.39–0.99,	for	females).	In	an	
exploratory	 analysis,	 PD	 samples	were	 divided	 into	 two	 subgroups	
(GA	+	AA	carriers	and	GG	carriers)	to	compare	clinical	characteristics	
(Table	2).	 Based	 on	 the	HY	 stage,	mid-		 to	 late-	stage	 (stage	 III	 to	V)	
(Coelho	&	Ferreira,	2012)	patients	with	genotypes	GA	+	AA	had	the	
evidently	lower	UPDRS	scores	than	GG	carriers	after	adjusting	for	age,	
gender,	and	disease	duration	(p = .018).	But	there	was	no	correlation	
in	the	clinical	presentation	for	AAO,	gender,	onset	symptoms,	or	HY	
stage	between	two	subgroups	(Table	2).

4  | DISCUSSION

In	Chinese	Han	populations,	especially	for	the	older	cohorts,	Allele	
A	of	rs9938550	is	likely	associated	with	a	reduced	risk	of	develop-
ing	 PD,	which	 is	 supported	 by	 the	 prior	works	 in	 old	 Caucasians	
(Nalls	et	al.,	2014;	Song	&	Lee,	2013).	But	we	could	not	 replicate	
this	 result	 in	our	EOPD	subgroup.	Given	 that	advancing	age	 is	an	
important	 risk	 factor	 for	PD,	as	 its	onset	and	prevalence	 increase	
particularly	 after	 age	 50	 (Elbaz	 et	al.,	 2002;	 Pezzoli	 et	al.,	 2014).	
These	findings	suggested	that	SNP	rs9938550	in	HSB3D7 gene pre-
sents	an	effect	in	the	main	population	of	patients	with	PD.	To	fur-
ther	detect	the	relationship	between	the	variant	and	PD,	we	added	
our	 results	 into	 a	 meta-	analysis	 based	 on	 the	 PDGene	 database	
(http://www.pdgene.org)	 (Nalls	et	al.,	2014).	No	statistical	hetero-
geneity was found among 12 included studies undergoing the same 
UKPDBB	 criteria	 (I2	=	31).	 Notably,	 the	 result	 also	 revealed	 that	
allele	A	was	 less	 frequent	 in	PD	 than	 in	 controls	 (p = 5.81	×	10−6,	
OR	=	0.90,	95%	CI:	0.88–0.94,	Figure	S1),	suggesting	HSD3B7,	in	a	
protective	manner,	is	a	potential	candidate	locus	for	PD	(Ackerman	
&	Gerhard,	2016).

Moreover,	 older	 AAO	 was	 associated	 with	 a	 more	 severe	 PD	
phenotype,	 we	 focused	 on	 the	 relationship	 between	 allele	 A	 and	
patients	of	 a	mid-		 to	 late-	stage	 (Pagano,	 Ferrara,	Brooks,	&	Pavese,	

TABLE  1 Allelic	distribution	of	HSD3B7	gene	in	Chinese	patients	with	PD	and	at	different	ages	at	onset

All ages <50 years ≥50 years

HC PD p value HC EOPD p value HC LOPD p value

Totala

A,	N	(%) 172	(7.4) 133	(6.2) .079 60	(5.8) 62	(7.3) .279 112	(8.7) 71	(5.4) .002*

G,	N	(%) 2,162	(92.6) 2,011	(93.8) 982	(94.2) 780	(92.7) 1,180	(91.3) 1,231	(94.6)

Females

A,	N	(%) 77	(7.0) 61	(6.3) .596 26	(5.2) 31	(7.5) .168 51	(8.5) 30	(5.3) .049*

G,	N	(%) 1,031	(93.0) 905	(93.4) 478	(94.8) 379	(92.5) 553	(91.5) 526	(94.7)

Males

A,	N	(%) 95	(7.8) 72	(6.1) .149 34	(6.4) 31	(7.1) .607 61	(8.9) 41	(5.4) .013*

G,	N	(%) 1,131	(92.2) 1,106	(93.9) 504	(93.6) 401	(92.9) 627	(91.1) 705	(94.6)

PD,	Parkinson’s	disease;	HC,	healthy	control;	EOPD,	early-	onset	PD;	LOPD,	late-	onset	PD.
aTest	by	logistic	regression	after	adjusting	for	age,	gender.
*p < .05;	patients	with	PD	were	subcategorized	by	age	at	onset.

TABLE  2 Clinical	characteristics	of	patients	with	PD	between	A	
allele carriers and noncarriers

GA + AA GG p value

Age	at	onset,	mean	(SD)

Total cohort 50.54	(10.5) 52.41	(10.6) .061

EOPDa 41.47	(5.7) 41.69	(5.9) .713

LOPDa 58.41	(6.6) 59.08	(6.7) .390

Gender,	N	(%)

Male 68	(53.5) 521	(55.1) .776

Female 59	(46.5) 424	(44.9)

Onset	symptoms,	
N	(%)

Resting tremor 70	(55.1) 452	(47.8) .128

Bradykinesia 43	(33.9) 298	(31.5)

Rigidity 7	(5.5) 82	(8.7)

Mixed	symptoms 7	(5.5) 106	(11.2)

Othersb 0	(0.0) 7	(0.7)

HY,	N	(%)

1–2.5 100	(78.7) 694	(73.4) .235

3–5 27	(21.3) 251	(26.6)

UPDRS,	mean	(SD)c

HY:	1–2.5 38.10	(17.7) 38.40	(17.2) .870

HY:	3–5 63.70	(16.9) 74.77	(23.2) .004*

EOPD,	early-	onset	PD;	LOPD,	late-	onset	PD;	UPDRS,	Unified	Parkinson’s	
Disease	Rating	Scale;	HY,	Hoehn–Yahr	stage.
aMann–Whitney	U test adopted.
bIncluding	pain,	weakness,	symptoms	of	autonomic	dysfunction,	and	so	on.
cT test adopted.
*p < .05.

http://www.pdgene.org
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2016).	Consistent	with	our	hypothesis,	 those	patients	with	GA	+	AA	
genotypes	had	 lower	UPDRS	scores	compared	to	GG	genotype	car-
riers,	 suggesting	 that	 rs9938550	variant	 tended	 to	 feature	 a	 favor-
able	performance	in	the	advanced	stage	of	PD.	However,	it	failed	to	
reach	statistical	significance	in	other	clinical	features,	which	was	likely	
a	result	of	a	relatively	small	sample	size	in	GA	+	AA	subgroup	and	an	
age- related effect.

Considering	 the	 neuroprotective	 effects	 of	 bile	 acids,	 a	 set	 of	
neurodegenerative	 diseases	 have	 been	 reported,	 including	 PD,	
Alzheimer’s	 disease	 (AD),	 and	 Huntington’s	 disease	 (HD),	 but	 the	
available data for HSD3B7	 are	 limited	 (Ackerman	&	Gerhard,	2016;	
Ramalho	 et	al.,	 2013;	 Rodrigues	 et	al.,	 2000).	Astrocyte	 expressing	
HSD3B7	 is	 responsible	 for	degradation	of	oxysterol,	 the	active	oxi-
dized	product	of	cholesterol,	which	can	be	used	as	a	marker	of	brain	
atrophy	 in	 patients	 holding	 aging	 neurons	with	AD	 and	HD	 (Leoni	
&	 Caccia,	 2011;	 Rutkowska,	 Preuss,	 Gessier,	 Sailer,	 &	 Dev,	 2015).	
Additionally,	the	production	of	the	dafachronic	acids,	a	nuclear	recep-
tor	for	bile	acids,	can	be	regulated	by	a	conserved	3	beta-	HSD to par-
ticipate	 in	 cholesterol,	 bile	 acid	metabolism,	 and	 longevity	 (Wollam	
et	al.,	 2012).	 It	might	 be	 conceivable	 that	 an	 age-	specific	 effect	 of	
allele	A	 in	HSD3B7 locus can modulate the neuroprotection to pa-
tients	with	PD.

Our	 study,	 although	 exploratory,	 has	 some	 limitations.	 Potential	
gene–gene	 and	gene–environment	 interactions	were	not	 taken	 into	
account. Concerning the complex genetic architecture of HSD3B7 
locus and lack of sufficient power of statistical methods used in in-
dividual	SNP	assays,	 the	genetic	variants	 identified	to	be	associated	
with	PD	usually	explain	a	relatively	small	proportion	of	the	heritabil-
ity.	Currently,	only	a	few	studies	demonstrated	that	primary	bile	acid	
biosynthesis contributed to neuron degeneration when employing 
pathway-	based	GWAS	to	exploit	the	collective	effects	of	a	number	of	
causal	variants	and	to	improve	the	power	of	detection	(Huang,	Martin,	
Vance,	&	Cai,	2014).	Then,	 the	sample	size,	albeit	 relatively	 large,	 is	
somewhat	 limited	when	considering	the	low	frequency	of	allele	A	in	
our population and ethnic heterogeneity.

Taken	 together,	we	observe	a	 trend	 toward	 significance	with	an	
HSD3B7	variant	rs9938550	to	PD	in	a	Chinese	Han	population	while	
A	allele	of	 it	 is	 associated	with	a	decreased	 risk	of	LOPD.	Our	data	
also	suggest	that	patients	with	A	allele	at	mid-		to	late-	stage	appear	to	
have	 benign	 clinical	 presentations.	Nevertheless,	 the	 assessment	 of	
this variant is insufficient and the variability in biomarker in patients 
with	different	AAO	should	be	considered,	therefore,	follow-	up	work	
is currently underway to determine potentially protective effects of 
allele	A	and	their	causal	mechanisms	by	more	replication	studies	from	
other regions.
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