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ABSTRACT

The GeoPCA package is the first tool developed for
multivariate analysis of dihedral angles based on
principal component geodesics. Principal compo-
nent geodesic analysis provides a natural general-
ization of principal component analysis for data
distributed in non-Euclidean space, as in the case
of angular data. GeoPCA presents projection of
angular data on a sphere composed of the
first two principal component geodesics, allowing
clustering based on dihedral angles as opposed to
Cartesian coordinates. It also provides a measure
of the similarity between input structures based
on only dihedral angles, in analogy to the
root-mean-square deviation of atoms based on
Cartesian coordinates. The principal component
geodesic approach is shown herein to reproduce
clusters of nucleotides observed in an g–h plot.
GeoPCA can be accessed via http://pca.limlab
.ibms.sinica.edu.tw.

INTRODUCTION

Multivariate statistics is widely applied to biological
systems. It is used to unravel hidden trends in large data
sets and to analyze the results of molecular dynamics
simulations of biomolecules. Among the wide range of
available multivariate techniques, principal component
analysis (PCA) (1) is one of the most widely used
methods. PCA transforms a data set consisting of
several correlated variables into a new set of uncorrelated
variables called principal components. By a linear orthog-
onal transformation, the first principal component repre-
sents the most variability in the data; the second principal
component represents the second most variability in the

data under the constraint that it is orthogonal to the first
principal component, and so on. Thus, PCA rotates the
axes of data variation, yielding a set of ordered orthogonal
axes that represents decreasing proportions of the data
variation. Using only the first few principal components,
the dimensionality of the transformed data is reduced. For
example, the first few principal components have been
used to specify a set of representative coordinates of the
free energy landscape for biological molecules containing
many degrees of freedom (2). They have also been used to
yield the dominant modes of structural variation in an
ensemble of conformations for a given protein, derived
from Nuclear Magnetic Resonance (NMR) and/or X-ray
(3); i.e. structures of the free protein solved in different
space groups or complexed with different ligands or from
simulations (4,5).
In PCA of large biomolecules with many degrees of

freedom, it is useful to replace the Cartesian coordinates
of the atoms with a smaller set of internal coordinates to
reduce the number of variables involved in PCA.
A natural choice of internal coordinates would be
dihedral angles that change much more than bond
lengths and bond angles in structures of a given
molecule. However, angular data pose difficulties in
PCA and other multivariate statistical analyses due to
their circular nature. For example, the arithmetic mean
of 10� and 350� is (10�+350�)/2 = 180� rather than the
true mean of 0�. This difficulty remains even if the torsion
angles are represented in the interval from �180� to 180�,
as the arithmetic mean of �160� and 160� is 0� instead of
180�.
To circumvent the aforementioned difficulties with

circular data, angles have been transformed into coordin-
ates using cosine and sine values in PCA (referred to
as dPCA in previous work) (2,6). For example, the
two backbone dihedral angles fi and ci of residue i
have been replaced by four coordinates x4i�3= cos(fi),
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x4i�2= sin(fi), x4i�1=cos(ci) and x4i=sin(ci).
Thus, one disadvantage of the dPCA approach is an
increased number of coordinates. Another disadvantage
is the neglect of the cos2 +sin2= 1 correlation (7,8); i.e.
the coordinates are not independent since (x4i�3)

2+
(x4i�2)

2=1 and (x4i�1)
2+(x4i)

2=1. Furthermore, there
is no rigorous mathematical consideration of the applic-
ability of dPCA (to the best of our knowledge). In justify-
ing the transformation of angular data (6), the points are
assumed to lie on a sphere in Euclidean space, subject to
Euclidean geometry, whereas they should in fact be
subjected to non-Euclidean geometry (9). Notably,
some properties of non-Euclidean geometry are
counterintuitive; e.g. the sum of the angles of a triangle
is >180�. Furthermore, since all data point are on a
sphere, the distance measured by the shortest path
between points is an arc rather than a straight line.
Circular correlation and covariance matrices computed

using known formulas for the circular correlation coeffi-
cient and the circular mean, respectively, can be used in
PCA (10). PCA has been applied to torsion angles of a set
of RNA trinucleotides using five different representations;
viz., (i) angles between 0� and 360�, (ii) angles between
�180� and 180�, (iii) angles represented by cosine and
sine values (see dPCA above), (iv) circular correlation
matrix and (iv) circular covariance matrix (11). The
results were compared with those from PCA applied to
Cartesian coordinates of the same data set of RNA
trinucleotides. The outcome of the PCA results was
found to depend on the choice of interval for representing
the angles [(0�, 360�) or (�180�, 180�)]. Thus, for each
torsion angle, its variance has to be analyzed a priori to
determine if it should be represented by a (0�, 360�) or
(�180�, 180�) interval. The interval that yields the larger
total variance of the first principal component was
assumed to be more accurate. Moreover, using a linear
orthogonal transformation in PCA, the non-Euclidean
nature of the circular data was not taken into account.
Various manifold (locally Euclidean space) learning and

non-linear dimensionality reduction approaches may be
considered as alternatives to linear PCA for angular
data. These include self-organizing maps (12), principal
curves (13), kernel PCA (14), isomap (15), diffusion
maps (16) and principal geodesics (17). Most of them
apply machine learning such as neural networks. For
most of these methods, there is no simple interpretation
of the results unlike linear principal components.
Furthermore, these methods have not been used in lieu
of linear PCA for dihedral angles (to the best of our
knowledge).
Our aim is to develop a tool applying a generalization of

PCA for angular data. Among the various manifold
learning and non-linear dimensionality reduction
approaches, geodesic PCA was chosen because (i) it is a
straightforward generalization of PCA for manifolds that
are generally only locally Euclidean and (ii) the mathem-
atics underlying principal component geodesic has been
described (17). Instead of determining a set of ordered
orthogonal linear axes, which represents decreasing pro-
portions of the data variation, we find a set of ordered
orthogonal great circles (principal component geodesics)

that minimizes the distances from the data points to their
projections on the respective great circles. The distance
between any two data points is an arc rather than a
straight line, as in linear PCA.

Below, we first present the essence of the principal com-
ponent geodesic approach and the properties of principal
geodesic components; we refer the reader to previous
works for proofs of the necessary theorems (17).
We then validate the principal component geodesic
approach by using it to cluster a set of RNA conform-
ations that had been classified as follows. Just as the
protein backbone conformation can be described by two
torsion angles (f and u), the RNA backbone conform-
ation can be described by two pseudotorsion angles
(Z=C40i�1�Pi�C4

0
i�Pi+1 and y= y=Pi �C4

0
i�Pi +

1�C4
0
i + 1) and the sugar pucker, instead of the seven

conventional torsion angles, a, b, g, d, e, z and �
(Figure 1). A plot of the y versus Z angles of all nucleo-
tides in a database containing 52 RNA structures revealed
distinct clusters of nucleotides (18). Within a given cluster,
the nucleotides share similar Z and y values as well as
structural features such as A-platforms and GNRA
tetraloops. These clusters of nucleotides have been statis-
tically validated and refined using a larger data set con-
taining 73 RNA structures (19). This work shows that the
principal component geodesic approach provides a means
of distinguishing clusters of nucleotides using seven con-
ventional torsion angles per nucleotide. Its application is

Figure 1. Structure of RNA nucleotides showing the seven convention-
al torsion angles, a, b, g, d, e, z � and two pseudotorsion angles, Z, y,
which are defined as C40i�1�Pi�C4

0
i�Pi+1 and Pi�C40i�Pi+

1�C40i+1, respectively. The bold red lines are pseudobonds connect-
ing P and C40 along the backbone.
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not limited to dihedral angles or nucleotides, but can be
applied to analyze angular data of large, complex
macromolecules.

METHODS

Embedding of an m-Sphere in (m+1)-dimensional
Euclidean space

Nash theorem (20) postulates that every Riemannian
manifold M can be isometrically embedded in a
Euclidean space of sufficiently higher dimension. Thus,
an m-dimensional unit sphere can be embedded in a
(m+1)-dimensional Euclidean space. It is defined by

�ðxÞ :¼ x, xh i � 1 ¼ 0, ð1Þ

where x are points in the (m+1)-dimensional Euclidean
space and <�,�> denote the inner product. The inner
product, <x, x>, in an m-dimensional sphere is equal to
the scalar or dot product in the (m+1)-dimensional
Euclidean space. Thus, although the geometry on an m-
sphere is non-Euclidean, it can be described in terms of
(m+1)-dimensional Euclidean space since the m-sphere
has been embedded in (m+1)-dimensional Euclidean
space. The tangent space of the unit sphere S at x is
defined as the set of all tangent unit vectors v
(Figure 2a) that satisfy

2 x, �h i ¼ 0, �, �h i ¼ 1 ð2Þ

Input data

Let P=(p1, p2, . . ., pn) denote a set of torsion angle meas-
urements describing a molecule of interest. Each pi repre-
sents the ith conformation of the molecule. If P contains n
conformations, there will be n observations for each
torsion angle in the molecule. Let ai

k (k=1, . . .,m)
denote the value of kth torsion angle of pi. Each
pi= (ai

1, ai
2, . . ., ai

m) can be treated as a point on the
m-dimensional unit sphere, representing the ith conform-
ation. For our test data set (see below), the nucleotides all
have the same C30-endo sugar pucker conformation.
Hence, the input data consist of the seven conventional
torsion angles in Figure 1 describing each nucleotide.

Geodesics

Instead of using straight-line axes as principal compo-
nents, curves are used as principal components, so-called
principal component geodesics. A geodesic is a curve on
the m-dimensional sphere, which locally minimizes the
distance between points on the surface. It is a straight
line in the plane and a great circle (like the earth’s
equator) on a sphere. Just as the distance between two
points, a and b, in Euclidean space can be represented
by a straight line of the form b+(t – 1)(b – a), 0� t� 1,
geodesics on spheres are great circles given by

�x,�ðtÞ ¼ a cos t+b sin t ð3aÞ

where 0� t� 2p, a= x and b=v, and Equations (1) and
(2) are satisfied; i.e.

�x,�ðtÞ ¼ x cos t+v sin t ð3bÞ

Spherical distance to a geodesic

The embedding of an m-dimensional sphere into a (m+1)-
dimensional Euclidean space induces a simple expression
for a metric on the sphere. Since the inner product <a, b>
is the standard scalar product of the (m+1)-dimensional
Euclidean space, the spherical distance d(a, b) between any
two points a and b (Figure 2a) on the m-dimensional unit
sphere is given by:

dða, bÞ ¼ arccos a, bh i ð4Þ

The projection of point a onto the geodesic gx,v is the point
a0 (Figure 2b) given by

d ¼
x, ah ix+ �, ah i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x, ah i2+ �, ah i2

p : ð5Þ

Figure 2. (a) The x,v vectors, the gx,v geodesic and the spherical
distance d(a,b) between two points a and b are illustrated on a 2D
unit sphere embedded in 3D Euclidean space. Although point x is on
the sphere, its Euclidean radius-vector is in the direction from the
sphere center to x (dashed line) and is therefore not on the sphere.
The x vector is orthogonal to the Euclidean tangent vector v, which
is in the direction of a path on the sphere and is on the sphere itself.
Both x and v are vectors in (m+1)-dimensional Euclidean space and
are thus subjected to Euclidean geometry. (b) The spherical distance
between point a and its projection onto the geodesic gx,v, point a0, are
illustrated on a 2D unit sphere embedded in 3D Euclidean space.
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Thus, the spherical distance between point a and its pro-
jection onto the geodesic gx,v, point a0, is given by

dða, �x,�Þ ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a, xh i2+ a, �h i2

q
ð6Þ

Principal component geodesics

Consider the following distance function that describes the
mean distance between data points pi and their projections
onto the geodesic gx, v.

Fðx, �Þ ¼
Xn

i¼1

dðpi, �x,�Þ
2

ð7Þ

where d(pi, gx,v) is given by Equation (6). Finding a first
principal component geodesic that accounts for most of
the data variability is equivalent to minimizing F(x, v)
under the constraints given by Equations (1) and (2).
Given the first principal component geodesic gx, v

(1), the
second principal component geodesic, gx, v

(2), can be
found as a geodesic that intersects gx, v

(1) and is orthogonal
to gx, v

(1) by minimizing Fðx,vÞ with the respective
constraints.
To obtain the other principal component geodesics, we

define a principal component geodesic mean, p̂, as the
point that minimizes the mean of dðpi, zÞ

2 over all
common points of gx, v

(1)and gx,v
(2). A principal compo-

nent geodesic of higher order s (3� s� n) minimizes the
function Fðx, vÞ, passes through the principal component
geodesic mean and is orthogonal to all geodesics of
order� s�1.

Geodesic variance

The variance explained by the sth principal component
geodesic, obtained by projection of the data points pi on
the sth principal component geodesic, is given by:

VðsÞ ¼

Pn
i¼1

dðp
ðsÞ
i , p̂Þ2

n
; ð8Þ

where p
ðsÞ
i , the projection of pi on the sth principal com-

ponent geodesic, is obtained using Equation (5), and n is
the number of conformations of a given molecule (see
above). As in conventional PCA, the first principal com-
ponent geodesic represents the most variability in the data
and has the smallest variance. However, if its variance was
comparable with the variance of a randomly chosen
geodesic on the sphere, then the principal component
geodesic analysis would not help to reduce the
dimensionality of the given input data.

Output data

The above approach has been implemented in a program
called GeoPCA. In the current version of GeoPCA,
Lagrange multipliers are used to minimize F(x,v) under
constraints, as described by Huckemann and Ziezold (17).
This procedure yields fixed-point equations, y= f(y),
which are solved by numerical iteration, yn+1= f(y).
After solving the fixed-point equations, GeoPCA

provides projection of the data onto the first two principal
component geodesics and the corresponding Cartesian co-
ordinates of the data points projected on the unit sphere in
3D space to enable plots to be made using standard
plotting packages. Thus, GeoPCA allows visualization
of the output data along the great circles, which
accounts for most of the data variability.

Data set

To validate the principal component geodesic approach, it
was used to cluster a set of RNA conformations derived
from a published database of 73 RNA structures contain-
ing 7407 nt (19). We did not update this database so that
clusters obtained from a plot of the first two principal
component geodesics, which are characterized by two
‘principal’ angles, can be compared with the clusters
found in an Z–y plot of all non-helical nucleotides with
C30-endo sugar pucker from the published database
[see Figure 4 in Wadley et al. (19)]. The latter yielded
six clusters of non-helical C30-endo nucleotides, which
were labeled as I, II, III, IV, V and VI by Wadley et al.
(19). We chose to include in our data set non-helical
C30-endo nucleotides in clusters I and II, as they have
the highest density in the Z–y plot, ensuring that they
are statistically significant and should be detected by any
effective clustering method. Furthermore, cluster I
contains nucleotides that are often constituents of S1
and S2 motifs, while cluster II contains nucleotides that
serve as the second bases in GNRA/GNRA-like
tetraloops or in T-loop motifs. Unlike the nucleotides in
cluster I or cluster II, nucleotides in cluster V do not
belong to structural motifs. Hence, cluster V was also
included in our data set to verify if the principal compo-
nent geodesic approach, like the Z/y plot, also predicts this
cluster.

The non-helical C30-endo nucleotides belonging to
clusters I, II and V were extracted from the published
data set of 7407 nt as follows: First, the Z/y values cor-
responding to the peak density of a given cluster was
found from an initial guess of the ‘peak’ Z/y values from
the Z–y plot of all non-helical C30-endo nucleotides and
refining them to yield the maximum number of nucleotides
for a given cluster. Then, all C30-endo nucleotides with Z/y
values within ±15� of the ‘peak’ Z/y values were ex-
tracted; i.e. (147–187�)/(330–360�) for cluster I, (15–45�)/
(225–255�) for cluster II and (299–329�)/(216–246�) for
cluster V. This yielded 59, 88 and 43 nt for clusters I, II
and V, respectively (Supplementary Table S1). This data
set was used to test whether the principal component
geodesic approach can yield the three clusters found in
the Z–y plot.

RESULTS AND DISCUSSION

dPCA using dihedral angles

Using our database (see above), we first examined if dPCA
(‘Introduction’ section) using the seven standard dihedral
angles (a, b, g, d, e, z and � in Figure 1), represented
by cosine and sine values but neglecting the cos2+sin2

=1 correlation, could yield the three distinct clusters
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(I, II and V, see ‘Data set’ section) found in an Z–y plot in
previous work (19). A 2D plot of the first two principal
components in Figure 3 shows that dPCA cannot distin-
guish non-helical C30-endo nucleotides belonging to
cluster I (black circles), II (green circles) and V (red
circles).

Clustering patterns in non-Euclidean space

Before presenting the clustering results using the principal
component geodesic approach, we first highlight some dif-
ferences between the clustering patterns in Euclidean and
non-Euclidean space. Whereas data points belonging to
a cluster appear close to one another in Euclidean space,

they may be dispersed along a circle in non-Euclidean
geometry. The latter becomes evident if data points clus-
tered at the pole of a sphere are projected onto the big
circle (equator) of that sphere. As shown in Figure 4,
although points around the pole are close to each other,
their projections on the equator may cover the entire big
circle. Hence, points lying on a circle can be identified as
forming a cluster. This property has the advantage that
points lying on different circles can be unambiguously
assigned to different clusters except for those at the inter-
section of circles.

Geodesic PCA using dihedral angles

Geodesic PCA was performed using the seven standard
dihedral angles for each nucleotide in our data set.
Figure 5 shows the projection of the non-helical
C30-endo nucleotides on a sphere and the first two princi-
pal component geodesics (blue great circles). The results in
Figure 5 show that geodesic PCA can separate the nucleo-
tides into three distinct clusters, as observed in a Z–y plot.
The C30-endo nucleotides from cluster I (black points) and
cluster II (green points) lie close to the first two principal
geodesic components (Figure 5a) and are at different dis-
tances from the sphere center, so they are well separated
from each other. However, the C30-endo nucleotides from
cluster V (red points) are not visible from this viewpoint,
but become evident from another viewpoint (Figure 5b).
Although the red circles do not form a compact cluster,
they are nevertheless clearly separated from the nucleo-
tides in the other two clusters.
That the C30-endo nucleotides form three clusters are

also shown when the data points on the sphere are pro-
jected onto a plane. Figure 6a shows the non-helical
C30-endo nucleotides as a function of the first two princi-
pal component geodesics, which can be described by two
‘principal’ angles. The C30-endo nucleotides from cluster
V (red points) are located at the top and bottom of the 2D
plot. They are well separated from the C30-endo nucleo-
tides from cluster II (green points) and cluster I (black
points), which lie along two great circles.

Geodesic PCA using pseudotorsion angles

Since the input data for the principal geodesics approach
(seven torsion angles) differs from that for the Z–y plot
(two pseudotorsion angles), the outcome from these two
methods would not be expected to be identical. Indeed, the
three distinct clusters found herein do not contain exactly
the same nucleotides as clusters I, II and V from an Z–y
plot in previous work (19). For example, C30-endo nucleo-
tides from clusters I (black circles) and V (red circles)
are found along the big circle encompassing C30-endo nu-
cleotides from cluster II (green circles), as shown in
Figure 6. To verify that this discrepancy is not due to
limitations/errors in the GeoPCA program, geodesic
PCA was performed with the two pseudotorsion angles,
Z and y, used to derive clusters I, II and V in previous
work (19). Note that the two ‘principal’ angles describing
the first two principal component geodesics do not
correspond to Z and y. Thus, although the 2D plot in

Figure 3. Plot based on the angles describing the first and second prin-
cipal components obtained using dPCA. The black, green and red
circles denote non-helical C30-endo nucleotides belonging to clusters
I, II and V found in an Z–y plot of all non-helical C30-endo nucleotides
in previous work.

Figure 4. An example of a possible arrangement of the cluster along
the circle after projection of the 2D sphere onto 1D circle.
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Figure 6b is not the same as an Z–y plot, the same three
clusters found in an Z–y plot are found.

SUMMARY

This work introduces a new tool, based on principal com-
ponent geodesics, for conformational analysis using
circular data such as bond, torsion and pseudotorsion
angles. It shows how our approach could aid structural
analysis like analyses of Z–y plots and counterintuitive
consequences of non-Euclidean geometry (e.g. points
lying on a circle belong to the same cluster). The web
interface of GeoPCA, which implements the principal
component geodesics approach described herein, requires
as input, a file with angular data. It yields as output: (i)
Cartesian coordinates of the data points projected on the
first and second principal component geodesics of a sphere
(orthogonal great circles on the sphere) and (ii) the values
of two angles representing corresponding distances to first
and second principal component geodesics for each data

point. To the best of our knowledge, this is the first
method to automatically reduce a multidimensional
analysis of several angles to only two angles containing
most of the information. GeoPCA thus provides a useful
way of visualizing, analyzing and predicting conform-
ations of complex macromolecules with many degrees of
freedom.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1.
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Figure 6. 2D plot based on the angles describing the first and second principal component geodesics using (a) the seven conventional torsion angles
and (b) the two pseudotorsion angles, Z and y (Figure 1). The black, green and red points denote non-helical C30-endo nucleotides belonging to
clusters I, II and V found in an Z–y plot of all non-helical C30-endo nucleotides in previous work. Principal component geodesics are lines parallel to
the axes, passing through zeros of the respective axes and described by dotted lines.

Figure 5. C30-endo nucleotides on a sphere. The first two principal geodesic components are shown in blue. The (a) shows C30-endo cluster
I (black points) and cluster II (green points), while the (b) shows the C30-endo cluster V (red points).
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13. Kégl,B. (1999) Principal Curves: Learning, Design, and

Applications. Concordia University, Canada.
14. Schölkopf,B., Smola,A. and Müller,K.-R. (1997) Kernel principal

component analysis. Artificial Neural Networks—ICANN’97,
Lecture Notes in Computer Science, 1327, 583–588.

15. Tenenbaum,J.B., de Silva,V. and Langford,J.C. (2000) A global
geometric framework for nonlinear dimensionality reduction.
Science, 290, 2319–2323.

16. Coifman,R.R., Lafon,S., Lee,A.B., Maggioni,M., Nadler,B.,
Warner,F. and Zucker,S.W. (2005) Geometric diffusions as a tool
for harmonic analysis and structure definition of data: diffusion
maps. Proc. Natl Acad. Sci. USA, 102, 7426–7431.

17. Huckemann,S. and Ziezold,H. (2006) Principal component
analysis for Riemannian manifolds, with an application to
triangular shape spaces. Adv. Appl. Prob., 38, 299–319.

18. Duarte,C.M. and Pyle,A.M. (1998) Stepping through an RNA
structure: a novel approach to conformational analysis.
J. Mol. Biol., 284, 1465–1478.

19. Wadley,L.M., Keating,K.S., Duarte,C.M. and Pyle,A.M. (2007)
Evaluating and learning from RNA pseudotorsional space:
quantitative validation of a reduced representation for RNA
Structure. J. Mol. Biol., 372, 942–957.

20. Nash,J. (1956) The imbedding problem for Riemannian
manifolds. Ann. Math., 63, 20–63.

PAGE 7 OF 7 Nucleic Acids Research, 2012, Vol. 40, No. 3 e25


