
Reproducibility of Structural, Resting-State BOLD and
DTI Data between Identical Scanners
Lejian Huang1., Xue Wang2., Marwan N. Baliki1, Lei Wang2,3*, A. Vania Apkarian1,4*, Todd B. Parrish2*

1Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America, 2Department of Radiology, Feinberg

School of Medicine, Northwestern University, Chicago, Illinois, United States of America, 3Department of Psychiatry & Behavioral Sciences, Feinberg School of Medicine,

Northwestern University, Chicago, Illinois, United States of America, 4Departments of Anesthesia and Surgery, Feinberg School of Medicine, Northwestern University,

Chicago, Illinois, United States of America

Abstract

Increasingly, clinical trials based on brain imaging are adopting multiple sites/centers to increase their subject pool and to
expedite the studies, and more longitudinal studies are using multiple imaging methods to assess structural and functional
changes. Careful investigation of the test-retest reliability and image quality of inter- or intra- scanner neuroimaging
measurements are critical in the design, statistical analysis and interpretation of results. We propose a framework and
specific metrics to quantify the reproducibility and image quality for neuroimaging studies (structural, BOLD and Diffusion
Tensor Imaging) collected across identical scanners and following a major hardware repair (gradient coil replacement). We
achieved consistent measures for the proposed metrics: structural (mean volume in specific regions and stretch factor),
functional (temporal Signal-to-Noise ratio), diffusion (mean Fractional Anisotropy and Mean Diffusivity in multiple regions).
The proposed frame work of imaging metrics should be used to perform daily quality assurance testing and incorporated
into multi-center studies.
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Introduction

MR brain imaging is a non-invasive tool with high spatial and

temporal resolution that can be used to investigate brain function,

and subtle structural changes related to learning, development,

treatment, or as a result of a pathophysiologic condition. Standard

(commonly used) MR imaging methods include high resolution

structural scanning (T1 or T2 contrast) for brain morphometry

changes, functional changes (BOLD) to study the dynamic changes

in the brain related to a stimulus or in the resting condition,

diffusion tensor imaging (DTI) and derived fractional anisotropy

(FA) maps for monitoring white matter integrity and connectivity.

Increasingly clinical trials are adopting multiple sites/centers to

increase their subject pool and to expedite the studies. Data

sharing is another effective approach to increase the subject pool

in populations that are difficult to recruit or require large numbers,

eg. The Alzheimer’s Disease Neuroimaging Initiative (ADNI),

Multidisciplinary Advances in Pelvic Pain (MAPP), and 1000

Functional Connectomes Project (fcon 1000). Longitudinal studies

following the progression of disease have to consider the variability

induced by software and hardware upgrades to the MRI scanner.

Additional complications arise when incorporating scanners from

different vendors, field strengths, software levels, and coil

architecture. Careful investigation of the test-retest reliability and

image quality of inter- or intra- scanner neuroimaging measure-

ments are critical in the statistical analysis and interpretation of

results. Previously, such studies have focused on a single imaging

methodology specific metric: e.g. Cortical thickness based on T1

(Wonderlick et al., 2009), temporal Signal-to-Noise Ratio (Parrish

et al., 2000) and FA values based on DTI (Vollmar et al, 2010).

In this paper, we propose a framework for quantifying the

reproducibility and image quality for multimodal neuroimaging

data (structural, BOLD and DTI) collected across identical

scanners and following a major hardware repair (gradient coil

replacement). The uniqueness of our study is (1) we examined the

three standard brain imaging methods (T1, BOLD, DTI); (2) we

examined the impact of a major hardware repair (gradient coil);

and (3) we tested a battery of metrics for image quality and

reliability assessment applicable to local and multi-center imaging

trials.

Methods

Subjects and Experimental Design
Six healthy volunteers (five males, one female, mean age in

years 2664) participated in this study. The study was approved by

the Northwestern University Institutional Review Boards. Written

informed consent from all participants involved in the study was

obtained. Within a one-month period all subjects were repeatedly

scanned under the following three conditions: condition 1:
scanner 1 (baseline); condition 2: scanner 1 (post gradient coil

replacement); condition 3: scanner 2. Scanners 1 and 2 are
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identical Siemens 3.0 Tesla Trio Tim whole body systems, both

equipped with a 32-channel head coil using VB17 software, as well

as the same RF and magnetic shielding, and identical physical

environment including power and chilled water. For each subject,

conditions 2 and 3 were scanned back to back within an hour of

each other and approximately 2 weeks after condition 1.

Data Acquisition
T1 anatomical data were acquired following the ADNI protocol

except with a 1 mm thickness using magnetization-prepared rapid

acquisition with gradient echo (MPRAGE) with the following

parameters: voxel size, 1 mm isotropic; TR/TE, 2300/2.97 ms;

flip angle = 90; in-plane acquisition matrix, 2566256; 176 1 mm

slices. Resting state fMRI data were acquired using a gradient-

echo echo-planar imaging sequence with the following parameters:

voxel size, 1.7261.7263 mm; TR/TE, 2500/25 ms; flip an-

gle = 800; in-plane acquisition matrix, 1206128; Grappa factor of

2 with 24 reference lines, 40 slices, with 244 volumes. DTI data

were acquired using the following acquisition parameters: voxel

size, 2 mm isotropic; TR/TE, 9000/83 ms; flip angle = 900; in-

plane matrix resolution, 1126130; 72 slices; b = 1000 s/mm2.

Diffusion was measured in 60 directions separated into seven

groups by eight no-diffusion weighted volumes acquired for better

registration and head motion correction.

Data Analysis
Analyses were conducted using the FSL 4.1 (www.fmrib.ox.ac.

uk/fsl/) [1] and MATLAB 7.9.0 on a clustered Linux system. To

assess the reliability of the data across the above three conditions,

specific imaging data based metrics including two metrics for the

T1 image (volume of specific ROIs and stretch factor), one for

resting state fMRI (temporal signal to noise ratio, tSNR, in specific

ROIs) and two for the DTI data (mean fractional anisotropy and

mean diffusivity in specific ROIs) were evaluated.

Data Quality Control
To ensure the quality of the imaging data, motion for the

subject during resting state fMRI and diffusion imaging were

estimated. The maximum adjacent volume to volume motion for

each subject is listed in Table 1 (middle and right columns) and all

motion was less than 1 mm for the resting state fMRI and diffusion

scans for all subjects under all three conditions. DTI images were

also visually checked to ensure there was no slice drop-out due to

excessive motion. Motion during the T1 scan often affects the

background intensity anterior to head since the phase encoding

direction is from anterior to posterior. To detect motion during the

T1 scan, the ratio of background intensity between a region

anterior to head (as sensitive measure to motion) and a region

superior to eye (as reference), were calculated. Both regions

contain 8000 voxels. A ratio larger than one raises concerns for

motion and needs more careful visual inspection. As shown in

Table 1 left column, except for three, all the other ratios are less

than 1. The three T1 were inspected and there was some ghosting

due to movement but the ghosting noise was insignificant

compared to the signal in the brain.

Global Intensity Normalization
Due to inter-session differences in the physical state of the

scanner hardware (e.g. coil loading), the interactions between the

patient’s body with the scanner (e.g. positioning, different body

sizes etc.) and different receiver settings [2], global image intensity

varies from session to session. Therefore, the procedure of global

intensity normalization was performed, in which each individual

T1 image was multiplied by a scaling factor Gi,

Gi~

1
18

P18
i~1

Si

Si

i~1, 2 ,: . . . 18 ð1Þ

where Si is the average intensity within the whole brain regions for

the ith T1 image.

Metric 1: T1 (ROIs Volume)
Volume of brain structures is often used to assess the status and

progress of disease, aging, development etc. For a normal adult

brain the volume should remain constant for a short period of

time. The ROIs volume based on segmentation of the T1

anatomic data was used as a stability metric. The steps to estimate

volume were as follows, Firstly, global intensity normalization was

performed, then the brain was segmented using FIRST (part of

FSL tools) [3]. The volume for the following 7 ROIs were

estimated Thalamus (right), Putamen (right), Hippocampus (right),

Amygdala (right), brain stem, white matter (WM) and cerebrospi-

nal fluid (CSF).

Metric 2: T1 (Stretch Factor)
The stretch factor describes the transformation required to

move the native-space brain to the template space which is derived

as the determinant of the affine transform matrix, similar to Atlas

Scaling Factor [4]. The stretch factor is a good metric to quantify

geometric distortions introduced in the morphometric measures. A

stretch factor of 1 represents no change between individual space

and template space. A stretch factor larger or smaller than 1

indicates expansion or contraction required to register each

individual to the template respectively. Two templates were used

for comparison; one was the 1 mm brain template from the

Montreal Neurological Institute provided with FSL

(MNI152_T1_1 mm). The other maintained the highest level of

resolution by using a subject specific template acquired during

condition 2. Using a 12-parameter affine transformation in FLIRT

(part of FSL tools) [5], the individual subject’ T1 volume was co-

registered to these two templates, and stretch factor (linear scaling)

in the X, Y and Z directions was calculated and compared across

the three conditions.

Metric 3: Temporal Signal to Noise Ratio (tSNR) for
Resting State fMRI
tSNR was used to estimate temporal stability of measured time

course of BOLD weighted echo planar data that can be used for

task based studies or for resting state studies. tSNR within regions-

of-interest (ROI) were estimated as the ratio of mean signal from

all the voxels within the ROI divided by the standard deviation

across time [6]. Resting state fMRI identifies the temporal

synchronicity between time courses as a measure of connectivity.

We explored the tSNR within two functional networks, the

default-mode network (DMN) and the attention network (ATT),

shown in panel A of Figure 1. For all fMRI BOLD data, the first

four volumes were discarded and the remaining volumes were

preprocessed, which included the following steps: 1) skull

extraction, slice time correction, affine motion correction; 2)

spatial smoothing using a Gaussian kernel of full-width at half-

maximum 5 mm, and high-pass temporal filtering (150 s); 3)

regression of motion correction vectors (3 translations and 3

rotations), mean intensity of white matter, cerebrospinal fluid, and

the overall global signal. Temporal SNR was calculated after the

Reproducibility of Neuroimaging Data
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BOLD data were preprocessed in the ROIs of the default mode

network and the attention network.

Metric 4: Mean FA and MD Values in ROIs and White
Matter for DTI Data
Analysis for DTI was performed using FMRIB’s Diffusion

Toolbox (FDT). DTI images were motion and eddy current

corrected and the diffusion tensor was calculated for each voxel.

Eigenvalues (l1, l2 and l3) were derived from each tensor, mean

diffusivity (MD) was calculated as the average of the three

eigenvalues i.e. MD= (l1+ l2+ l3)/3 and the fractional

anisotropy (FA) was calculated as

FA~
ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1{l2ð Þ2z l1{l3ð Þ2z l2{l3ð Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21zl22zl23

p . Four ROIs of different scale,

the entire white matter, the splenium of the corpus callosum

(SCC), the right frontal white matter (RFWM), and the right

uncinate fascicle (RUF) (Vollmar et al. 2010), were manually

drawn on the study-specific T1 template then transformed to

individual subject’s native diffusion space (see panel A of Figure 2).

The mean and standard deviation of FA and MD values of six

subjects across three conditions for each ROI were calculated.

Table 1. Motion parameters of six subjects across three conditions for T1, resting-state data, and DTI.

T1 (Ratio Between anterior and superior ROIs) Resting-state Data (Max motion (mm)) DTI (Max motion (mm))

Con1 Con2 Con3 Con1 Con2 Con3 Con1 Con2 Con3

Sub1 0.66 0.95 0.83 0.41 0.65 0.34 0.65 0.38 0.25

Sub2 0.84 1.39 0.93 0.20 0.54 0.30 0.71 0.27 0.30

Sub3 0.62 0.81 1.47 0.19 0.53 0.29 0.41 0.67 0.13

Sub4 0.72 0.74 0.64 0.09 0.34 0.14 0.09 0.78 0.37

Sub5 0.94 0.69 0.91 0.10 0.08 0.68 0.20 0.58 0.30

Sub6 1.13 0.93 1.00 0.08 0.16 0.19 0.43 0.24 0.22

Left three columns are the ratios between anterior and superior ROIs. Anterior ROI is defined as the region anterior to the skull but far from the level of eyes and its
coordinate is within (90,x,109, 246,y,255, 186,z,225), totally 8000 voxels. Superior ROI is defined as the region superior to the skull and its coordinate is within
(65,x,84, 156,y,195, 246,z,255), totally 8000 voxels. Middle three columns are the maximum displacement between adjacent volumes for resting-state data.
Right three columns are the maximum displacement between volumes for the DTI data.
doi:10.1371/journal.pone.0047684.t001

Figure 1. Temporal signal-to-noise ratio (tSNR). Panel A: ROI placements (red regions) in MNI 152 template space, (i) default-mode network
(DMN), (ii) attention network (ATT). Panel B: Mean and standard error of tSNR of six subjects across three conditions for default-mode and attention
networks. The intra-class correlations are 0.65 and 0.75, respectively.
doi:10.1371/journal.pone.0047684.g001

Reproducibility of Neuroimaging Data
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Statistical Analysis
The statistical analysis was performed using MATLAB. Two

types of statistical assessments were used, one-way ANOVA and

intra-class correlation (ICC). One-way ANOVA was used to test

group mean differences across three conditions. A statistical

threshold of p,0.05 was considered significant. ICC was used to

measure test-retest reliability of the different scanner conditions.

ICC is defined as a function of the between-subject variance and

the error variance across conditions [7],

ICC(3,1)~ BMS{EMS
BMSz k{1ð ÞEMS

, where BMS, EMS and k represent

between-subject variance, condition error variance, and the

number of conditions, respectively. ICC value ranges from 0 to

1. A high ICC value (close to 1) indicates that between subject

error dominates the measurement error between different

conditions. A small ICC value (close to 0) would indicate that

the effect of condition dominates the error.

Results

Metric 1
T1 (ROIs volume): The average volumes and standard errors

for each ROI for all subjects under each condition were plotted in

panel A of Figure 3. The exact values and corresponding ANOVA

F values as well as ICC for each ROI are reported in Table 2. All

ICC values are positive and close to 1 indicating that there are no

significant differences between the three conditions compared to

the differences between the subjects.

Figure 2. Fractional anisotropy (FA) and mean diffusivity (MD) values of DTI images. Panel A: ROI placements (red regions) in MNI152
template space, (i) Splenium of corpus callosum (SCC), (ii) right frontal white matter (RFWM), and (iii) right uncinate fascicle (RUF). Panel B: Mean and
standard error of FA value of six subjects across three conditions for (i) SCC, (ii) RFWM, (iii) RUF, and (iv) WM. The intra-class correlations are 0.69, 0.82,
0.94, and 0.94, respectively. Panel C: Mean and standard error of MD value of six subjects across three conditions for (i) SCC, (ii) RFWM, (iii) RUF, and
(iv) WM. The intra-class correlations are 0.83, 0.65, 0.92, and 0.90, respectively.
doi:10.1371/journal.pone.0047684.g002

Reproducibility of Neuroimaging Data
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Figure 3. ROI volumes and stretch factor (both based on T1 structure images). Panel A: Mean and standard error of volume (cm3) of (i) right
Thalamus, (ii) right Putamen, (iii) right Hippocampus, (iv) right Amygdala, (v) Brain Stem, (vi) white matter (WM) and (vii) cerebrospinal fluid (CSF) of
six subjects across three conditions. The intra-class correlations are 0.97, 0.97, 0.80, 0.93, 0.96, 0.62 and 0.87, respectively. Panel B: Mean and standard
error of stretch factor co-registering to MNI152_T1_1 mm across three conditions in (i) X, (ii) Y and (iii) Z direction. The ICCs are 0.95, 0.99, and 0.86.
Panel C: Mean and standard error of stretch factor co-registering to condition 2 T1 image across three conditions in (i) X, (ii) Y and (iii) Z direction.
Post-hoc comparisons, for X direction condition 1 (t = 2.93, p = 0.015) and 3 (t = 11.67, p,0.001) groups differ significantly from condition 2 group,
indicated by * and **; for Y direction condition 1 (t = 2.78, p = 0.02) and 3 (t = 6.78, p,0.001) groups differ significantly from condition 2, indicated by
* and **; for Z direction condition 3 (t = 6.67, p,0.001 ) differs significantly from condition 2, indicated by *. Note that the scale for the stretch factor
in panels B and C is different.
doi:10.1371/journal.pone.0047684.g003
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Metric 2
T1 (stretch factor): Since two templates were used when

calculating stretch factor, two sets of stretch factors are presented

in panels B (for MNI template) and C (subject specific template

from Condition 2) of Figure 3. The exact values and correspond-

ing ANOVA F values as well as ICC for are shown in Table 3 (for

MNI template) and Table 4 (for Condition 2 template). There

were no significant differences among the three conditions for the

stretch factor in any direction when the MNI template was used.

However, when each individual subject’s T1 image under

condition 2 (scanner 1 post gradient replacement) was used as

the template, there were significant differences between the

conditions. The post-hoc comparisons, for X direction condition

1 (t = 2.93, p = 0.015) and 3 (t = 11.67, p,0.001) indicate that the

conditions 1 and 3 differ significantly from condition 2; for Y

direction condition 1 (t = 2.78, p= 0.02) and 3 (t = 6.78, p,0.001 )

groups also differ significantly from condition 2 group; for Z

direction condition 3 group (t = 6.67, p,0.001 ) differs signifi-

cantly from condition 2.

Metric 3
BOLD (tSNR): The mean and standard error of tSNR across

conditions for the 2 network ROIs (DMN and ATT) was

(692.26137.1, 668.36263.3, 786.66277.3) and (699.66147.8,

604.56175.1, 793.76158.5), respectively, and are shown in panel

B of Figure 1. There are no significant differences across

conditions for the DMN (F2,15 = 0.43, p = 0.66) and ATT

(F2,15 = 2.07, p = 0.16). And the ICCs are 0.65 and 0.75, which

indicates the measurement error due to the different scanners is

small relative to the errors related to the subjects, which

demonstrates a consistent tSNR for three scanner conditions.

Metric 4
DTI (FA and MD) The mean and standard error of FA in the

ROIs as well as the ANOVA test, ICC and SCC are shown in the

panel B of Figure 2 and Table 5. There are no significant

differences across conditions for FA measures. Similarly for MD,

the mean and standard error of MD are shown in panel C of

Figure 2 and Table 6.

Discussion

We report a battery of metrics used to quantify the re-

producibility and image quality for standard neuroimaging data

(structural, BOLD and DTI) collected across two identical 3.0 T

scanners and following a major hardware repair.

T1 Anatomic Data
Han et al. [8] and Jovicich et al. [9] examined the scanner

upgrade’s (from Sonata to an Avanto) effect on reliability of T1-

derived measurements, e.g. cortical thickness and subcortical,

ventricular and intracranial brain volumes. The upgrade included

replacement of the 1.5T magnet, the RF and gradient system, and

software. They showed that pooling data across the scanner

upgrade did not degrade the measurement reproducibility.

Recently Kruggel et al. [10] examined impact of scanner

hardware and imaging protocol on image quality and segmented

compartments (CSF, GM and WM) volume precision in the ADNI

cohort. Image quality was rated by the Signal-to-Noise ratio

(SNR), higher SNR corresponds to better image quality. They

reported that although SNR is dependent on hardware, software,

environmental and subject parameters, the SNR is mostly

dependent on the scanner hardware and explained up to 74% of

variance. For compartment volumes, they reported the precision

of repeated scans of the same subject on different scanners with

different field strengths and vendors is much worse than that on

the same scanner over time.

In the present study, we focused on the differences between two

identical scanners sited the same way and the effect of a major

Table 2. Average volumes and standard errors for each ROI
under three conditions, ANOVA F value, p value, and ICC.

Con 1(cm3) Con 2(cm3) Con 3(cm3) F2,15 p valueICC

R. Thalamus 8.0160.47 8.0960.47 8.1560.49 0.03 0.97 0.97

R. Putamen 5.1760.56 5.2160.55 5.3260.58 0.11 0.89 0.97

R. Hippocamus 3.7060.27 3.7460.29 3.6460.45 0.15 0.86 0.80

R. Amygdala 1.2860.24 1.2260.33 1.4260.22 0.08 0.93 0.93

Brain Stem 21.4761.76 21.5161.60 21.6961.97 0.03 0.97 0.96

White Matter 764.32627.8 769.68636.7 758.08618.4 0.25 0.78 0.62

CSF 351.88633.8 348.56625.4 354.05625.5 0.057 0.95 0.87

doi:10.1371/journal.pone.0047684.t002

Table 3. Average stretch factors and standard errors under
three conditions, ANOVA F value, p value, and ICC for MNI
template.

Con 1 Con 2 Con 3 F2,15 p value ICC

X direction 1.07360.011 1.07360.011 1.06660.012 0.62 0.55 0.95

Y direction 0.98760.054 0.99460.054 0.98760.055 0.03 0.97 0.99

Z direction 1.09660.026 1.09960.035 1.09660.024 0.02 0.98 0.86

doi:10.1371/journal.pone.0047684.t003

Table 4. Average stretch factors and standard errors under
three conditions for individual condition 2 template.

Con 1 Con 2 Con 3

X direction 0.998560.0012 1.000060.0001 0.993960.0017

Y direction 1.002460.0021 1.000060.0001 0.993960.0024

Z direction 1.000960.0021 1.000160.0002 0.995860.0013

doi:10.1371/journal.pone.0047684.t004

Table 5. Average and standard error of FA in the ROIs under
three conditions, ANOVA F value, p value, and ICC.

Con 1 Con 2 Con 3 F2,15 p value ICC

SCC 0.8760.02 0.8660.02 0.8860.01 0.71 0.51 0.69

RFWM 0.5260.05 0.5260.06 0.5460.07 0.15 0.86 0.82

RUF 0.4360.06 0.4160.07 0.4160.06 0.13 0.88 0.94

WM 0.4460.03 0.4460.04 0.4460.05 0.00 1.00 0.94

SCC: Splenium of corpus callosum, RFWM: right frontal white matter and RUF:
right uncinate fascicle.
doi:10.1371/journal.pone.0047684.t005
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repair (gradient coil replacement) on morphometry measures

(brain volumes and stretch factor). Our results show the metrics

proposed are highly reproducible for volumetric data and when

the data are pooled to a standard template. However when using

a study specific template, the native anatomic data were sensitive

to geometric distortions introduced by the gradient replacement

and between different scanners. It is not surprising that differences

between same scanner before and after hardware repair were

smaller than differences between the two different scanners. Note

that these differences in scale are far less than 1% and did not alter

volumetric measures in the ROIs tested.

BOLD
For task-based fMRI studies, a diverse collection of methods

have been used to assess fMRI task-induced activation reliability

(see review by Bennett et al. [11], including activated cluster

overlap and Intra-class correlation). For resting-state fMRI, the

test-retest variability of the resting state network has been

examined by Shehzad et al. [12] using seed-based resting state

networks and by Zuo et al. [13] using ICA-based networks.

Temporal Signal-to-Noise Ratio (tSNR) is an important factor

influencing fMRI reliability in both task and resting state studies

that represents an overall measure of image quality. In the case of

resting state fMRI, the best way to quantify ‘‘signal’’ and ‘‘noise’’ is

not clear and depends on the method of data analysis. We propose

the use of tSNR to indicate temporal stability of the BOLD data

for both task and resting state analysis. The rationale for using two

resting state networks as ROIs for calculating tSNR instead of

anatomical ROIs is that signals within the same functional

network exhibit similar/coherent spontaneous fluctuations and

registration issues while small anatomical ROIs may introduce

additional variation which can be large enough to obscure the

scanner induced variations. Default-mode and attention networks

were selected for their reliable and complementary nature [14,15].

Our results showed that the measurement error caused by

different scanners is small relative to noise introduced by different

subjects. This demonstrates that the BOLD data were not sensitive

to the differences between conditions using the tSNR in resting

state networks. A potential metric for resting state data is the ratio

of connectivity strength within a known network divided by the

connectivity strength between a functional irrelevant network.

However unlike T1 and DTI measures, the strength of the

connectivity heavily depends on the physiological/cognitive status

of the subject during the data collection, therefore it may not be

a suitable metric for testing reliability of the imaging hardware and

environmental changes.

DTI
Using ROI-based analysis, Vollmar et al. [16] showed that with

two identical 3T scanners there was a consistently low variation of

FA measures between scans for both intra- and inter-site

rescanning. Using a similar ROI-based analysis, we showed that

the FA values are highly reproducible likely due to the close

proximately so that they share the same physical environment and

resources as well as the identical installation design. In contrast,

using whole brain Tract-Based Spatial Statistics (TBSS) and voxel-

based analysis, Takao et al. [17] showed inter-scanner variability

and a software upgrade (not hardware upgrade) introduced

a significant bias on longitudinal (1 year) FA comparisons. The

difficulty in interpreting Takao’s data is that these changes could

be real or introduced by the software. Any sort of adjustment

made by the service engineer during a software upgrade or tune-

up could alter these gradient demanding data. In our study we

measured the different conditions over a short two week period to

avoid these complications.

Following Vollmar et al. [16], whole brain white matter, SCC,

RFWM, and RUF were chosen in the current study as they

represented four kinds of fiber characteristics in white matter: the

fibers are mainly parallel and densely-packed in SCC, orientation-

crossed in RFWM, and small in RUF. The ROI representing SCC

was defined carefully in the standard template as shown in panel A

(i) of Figure 2 to make sure after projecting back to the native space

of each subject it remained only in the WM regions. The mean FA

values of the aforementioned three ROIs and whole brain white

matter were comparable but in general lower than those reported

by Vollmar et al., which might be due to the differences in the

ROI selection, scanner type, field strength, coils, the number of

directions, data analysis and individual differences. At all scales of

assessment, our data did not find any differences across scanners or

following the gradient coil replacement for either FA or MD.

Conclusion
We achieved consistent measures for T1 brain structure

volumes, stretch factor, tSNR for resting state BOLD signals

and mean FA/MD values in specific ROIs and the whole brain

between two identical 3T scanners, and before and after gradient

coil replacement. These findings provide statistical validations for

conducting longitudinal work on multiple systems that are

identical. Furthermore, even a major hardware repair did not

alter the metrics for all three types of neuroimaging data. It is

important that the proposed metrics be used for routine quality

control for all data collected to identify any issues related to

hardware, software or subjects. Finally, in order to use these

metrics in a multi-center study, one would have to employ the

‘‘human phantom’’ approach resulting in someone travelling to all

of the sites. A traveling phantom may be appropriate for short

term multi-center trials but not ideal for longitudinal studies as

changes are expected in the ‘‘human phantom’’ that could

complicate the interpretation of the results.
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Table 6. Average and standard error of MD in the ROIs under
three conditions, ANOVA F value, p value, and ICC.

Con 1
(1023)

Con 2
(1023)

Con 3
(1023) F2,15 p value ICC

SCC 0.7160.05 0.7160.05 0.7060.05 0.19 0.83 0.83

RFWM 0.7660.02 0.7560.03 0.7660.04 0.28 0.76 0.65

RUF 0.7460.05 0.7560.05 0.7560.06 0.11 0.90 0.92

WM 0.7560.02 0.7560.03 .7660.04 0.28 0.76 0.90

SCC: Splenium of corpus callosum, RFWM: right frontal white matter and RUF:
right uncinate fascicle.
doi:10.1371/journal.pone.0047684.t006
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