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Abstract: Currently, Chlamydia trachomatis still possesses a significant impact on public health, with
more than 130 million new cases each year, alongside a high prevalence of asymptomatic infections
(approximately 80% in women and 50% in men). C. trachomatis infection involves a wide range of
different cell types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading
to a broad spectrum of pathologies of varying severity both in women and in men. Several two-
dimensional in vitro cellular models have been employed for investigating C. trachomatis host–cell
interaction, although they present several limitations, such as the inability to mimic the complex and
dynamically changing structure of in vivo human host-tissues. Here, we present a brief overview
of the most cutting-edge three-dimensional cell-culture models that mimic the pathophysiology of
in vivo human tissues and organs for better translating experimental findings into a clinical setting.
Future perspectives in the field of C. trachomatis research are also provided.
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1. Introduction

Chlamydia trachomatis is an obligate intracellular human pathogen responsible for a
range of diseases of public health importance. Indeed, this pathogen is the leading cause
of sexually transmitted bacterial infection worldwide, with more than 130 million new
cases each year [1]; the prevalence and incidence estimates are highest for both women and
men in the Western Pacific Region, and rates peak in the region of the Americas, although
the real prevalence of C. trachomatis genital infection remains unknown and probably
underestimated, due to the high proportion of asymptomatic infections [1].

In women, the most common clinical manifestations following C. trachomatis genital
infection are mainly cervicitis and salpingitis, in men urethritis and epididymitis, and it
is becoming increasingly accepted as a causative agent of prostatitis [2,3]. In more than
80% of women and 50% of men, C. trachomatis infection is asymptomatic and, hence, if
left untreated, it eventually leads to several complications with serious consequences,
including infertility and reactive arthritis [3,4]. Furthermore, C. trachomatis infection can
also be transmitted to infants following the direct contact with infective cervical secretions
during delivery, resulting in neonatal conjunctivitis and pneumonitis [5–7]. Lastly, there
is evidence that C. trachomatis infection increases the risk of acquiring and transmitting
human immunodeficiency virus by three to four times and, more recently, it has been
associated with Human Papillomavirus-related cervical cancer [8,9].

Over the past decades, pathogenic mechanisms underlying C. trachomatis mediated
complications have received significant research attention. Specifically, several in vitro
cellular models, based on two-dimensional (2D) cultures of immortalized cells, have been
employed for investigating C. trachomatis host–cell interaction, focusing on the character-
istics of chlamydial developmental cycle and its intracellular survival strategies. These
systems have been very useful due to their highly controlled experimental conditions,
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although they fail to mimic the complex and dynamically changing structure of in vivo
human host-tissues [10,11]. As a way to overcome these issues, in vivo animal models,
mainly mice, have been used to elucidate the natural history of the disease, the patho-
genetic mechanisms underlying chlamydial infection and its chronic outcomes, as well as
for drug and vaccine development; however, animal models possess important differences
from the human host in the clearance of chlamydial infection and in the defense immune
mechanisms [12,13]. Additionally, in vivo studies raise important ethical concerns, and,
hence, better alternatives are needed [12].

Here, we present a brief overview of the most cutting-edge cell-culture models that
mimic the pathophysiology of in vivo human tissues and organs for translating experimen-
tal findings into a clinical setting. Future perspectives in the field of C. trachomatis research
are also provided.

2. In Vitro Modeling of C. trachomatis Infection

Cell-culture monolayers have been used for isolating C. trachomatis from clinical
specimens, for studying chlamydial biology, virulence factors, molecular and cellular
pathways, or for drug screening [14–21]. In particular, the most widely used models in the
history of C. trachomatis research are 2D in vitro cell-culture models based on immortalized
cells, including mostly HeLa and McCoy cells, as well as other cell lines like HEC-1B,
CaCo2, HEp2, and monocyte-macrophages [14–24].

Unlike most bacteria, C. trachomatis developmental cycle occurs entirely within a
cell-derived membrane bound vesicle where it undergoes dramatic physiological and mor-
phological changes, alternating between two functionally distinct forms: the elementary
body (EB) and the reticulate body (RB). Chlamydial EB is the small (200 nm) extracellu-
lar and infectious form, characterized by minimal metabolic activity [25,26]. In contrast,
chlamydial RB is the large (800 nm) and metabolically active form, responsible for intracel-
lular replication [27].

Soon after attachment to the host cell, EBs are internalized and confined to a para-
sitophorous vacuole termed inclusion, through a process requiring the secretion of Type III
secretion system (T3SS) effector proteins, such as the translocated actin-recruiting phospho-
protein (TarP), the translocated early phosphoprotein (TepP) and inclusion membrane (Inc)
proteins [28]. Specifically, TarP rapidly recruits actin to the entry site in order to exploit
the host cytoskeleton and facilitate entry of chlamydial EBs, whereas TepP and Incs are
essential for regulating the host immune response to C. trachomatis, allowing its survival
within the host cell [29].

Once inside the inclusion vacuole, the EBs differentiate to RBs, which replicate by
binary fission within 24 h post-infection [30]. Approximately 24–36 h post-infection, the
majority of RBs begin to transition back to EBs [30]; and at about 36–48 h post-infection, the
EBs are finally released from the host by cell lysis or through a mechanism called extrusion,
and a multitude of infectious EBs spread and infect neighboring cells [31].

In order to maintain its intracellular survival, C. trachomatis has adopted a variety of
strategies. For example, anti-oxidative stress mechanisms by which C. trachomatis may
resist the host clearance, include the suppression of NADPH oxidase activity and activation
of superoxide dismutase [32,33]. Additionally, inhibition of pro-apoptotic pathways and
activation of pro-survival pathways have been reportedly employed by C. trachomatis in
the early stage of growth cycle [34]. A further survival strategy of C. trachomatis is the
development of persistent forms. Indeed, under stressful conditions (e.g., antibiotic or
IFN-γ treatment, iron deficiency, coinfection with HSV-2, etc.), C. trachomatis has been
shown to stop its developmental cycle, generating persistent forms that remain inside
the host cell for a long time due to their ability to evade the immune system, leading to
a chronic inflammatory state responsible for the tissue damage [35,36]. More recently, it
has been demonstrated that the development of C. trachomatis persistent forms may be
related to T3SS dysfunction and subsequent blocked secretion of bacterial effector proteins,
resulting in an enhanced evasion of both extracellular and intracellular host defenses [37].
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Recently, clinically relevant advances in the knowledge of the pathogenetic mech-
anisms associated to C. trachomatis genital infection have been provided by in vitro 2D
cell-culture models based on primary human cells. For example, primary polarized human
ecto- and endo-cervical explants have been used to demonstrate the ability of C. trachomatis
to alter epithelial structure by inducing epithelial to mesenchymal transition [38], a process
known to contribute pathologically to fibrosis and cancer progression [39]. A more compre-
hensive in vitro model of fallopian tube based on primary human polarized multiciliated
epithelial cells, producing mucin, has allowed to better characterize the cell response to
C. trachomatis infection [40].

Interesting 2D in vitro models based on human primary Sertoli and prostate epithelial
cells have highlighted potential cellular and molecular mechanisms underlying male
infertility; indeed, the prostate might be a trojan horse for C. trachomatis infection of the
reproductive tract, from where this pathogen may disseminate in the host, reaching the
testis [41]. Once inside Sertoli cells, located within the seminiferous tubule and responsible
for protective functions toward germ cells, C. trachomatis might damage the Sertoli cell
barrier function, and, hence, the spermatogenesis [42,43].

Lastly, a primary human synovial cell model, known to be involved in the reactive
arthritis following chlamydial genital infection, has evidenced another escape strategy of
C. trachomatis from host cell defense pathways, through a dysregulated inflammasome
activation [44,45].

3. Current Advances in Three-Dimensional Cell-Culture Modeling

Three-dimensional (3D) cell-culture models based on primary cells are acquiring great
importance as a new and robust platform for studying complex biological processes and
might be a promising alternative in C. trachomatis pathogenetic studies [13]. In this regard,
3D models might help in recreating the microenvironment that C. trachomatis encounters in
the host tissue, allowing a deeper understanding of host–pathogen interactions since these
systems promote direct cell-to-cell contact, interactions of cells with the extracellular matrix
and in vivo like exchange of soluble factors [10,11]. Furthermore, 3D cell culture models
are known to retain the cellular structure and spatial orientation more closely resembling
the in vivo parental tissue than the more widespread 2D cell culture models [10,11].

In the literature, several approaches have been developed for generating 3D models
(Table 1), including scaffold-based 3D cultures, that use matrices for cells adhesion, and
non-scaffold 3D cultures, that, by contrast, lead to cell assembly into spheroids. The non-
scaffold 3D cultures promote cell-to-cell rather than cell-to-extra cellular matrix interactions,
favoring the natural aggregation and assembly of cells in spheroids that better mimic the
in vivo organ formations, hence the name organoids [10,11,46].

Amongst the different methodologies, 3D bioprinting technologies have opened a
completely new field for tissue engineering [47]. Several approaches are available, such
as filament deposition modelling or stereolitography printing aided by computer assisted
design (CAD) models or medical imaging data, which can be used to assemble cells, extra-
cellular matrix proteins, cytokines, growth factors and other components into a bio-inspired
tissue structure [48]. After the 3D tissue model is printed, the fabricated tissue changes
over time due to cell self-organization and differentiation under different environmental
stimuli, just like the in vivo tissue [49].

More recently, a novel cutting-edge technology has been introduced, namely the organ-
on-a-chip (OOAC) [50]. OOAC recreates the complex and dynamic operations occurring in
human tissues for real time monitoring of the cell and tissue response to an infection [50]. In
particular, miniaturized cell-culture micro-environments with microchannels and chambers
mimic the human cell pathophysiological environment, allowing the high throughput
screening with the integration of automation and smart analysis systems [51,52]. OOAC
can incorporate multiple cell layers, mimicking the complex cell interactions that occur in
in vivo human tissues, and multiple organs can also be connected [53]. Moreover, several
actuators and sensors can be integrated for various analysis, potentially providing more pre-
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cise and relevant clinical data [50,51]. Lastly, they can incorporate various biomaterials for
the fabrication of cells’ microenvironment (polydimethylsiloxane, polymethylmethacrylate,
polystyrene, etc.) [50].

Notwithstanding the different 3D cell-culture models, to date, few of them have been
utilized in chlamydial research. Amongst them, recent C. trachomatis studies have explored
human organoids [13], produced by embedding primary cell cultures into Matrigel-based
scaffold, an animal-derived extra-cellular matrix widely used for organoid cultures [54].
The first model described in literature is endometrial organoid, generated from murine
primary cells [55,56]. The second model to be explored has been ectocervical organoid from
primary human cells, where the development of C. trachomatis infection was observed, as
well as the potential contribution of this pathogen to neoplastic progression in presence
of HPV infection [57]. Lastly, primary human fallopian tube organoid was exploited to
establish a model of C. trachomatis chronic infection, in order to study the long-term changes
of the epithelium potentially involved in tubal pathologies [58].

Table 1. Characteristics of the main technologies for the fabrication of advanced 3D cell-culture models.

Scaffold-Based 3D Cell-Culture Models

Technology General Characteristics Advantages Disadvantages

Hydrogels/Matrigels [54]

3D hydrophilic extracellular
matrix-rich meshes used as
framework to surround and

encapsulate cells

hydrophilic nature, chemical stability,
biological compatibility,

and biodegradability

labor intensive, high variability in
matrix composition, long

working time

Non-scaffold-based 3D cell-culture models

Bioreactors [59]
3D spheroids generated by creating a

micro-gravity environment via
rotational motion

limited cell damage and long-term
culture periods due to low-shear
environment, enhanced natural
diffusion of gas and nutrients

heterogeneous spheroid size,
challenging to monitor

Spinner Flasks [60]
spontaneous cell collision and
adhesion in cell suspension via

continuous rotary motion

enhanced gas and nutrient diffusion,
large number of spheroids

harmful shear stress forces,
challenging to monitor

Hanging drops [61]
single spheroid per droplet via cell

self-aggregation following
upside-down incubation of droplets

basic laboratory equipment, easy
to monitor

limited number of spheroids, long
working time

Ultra-low attachment plates [62]
cell suspension loaded on

round-bottom cell culture microplates
covered with non-adhesive materials

inexpensive and easy to use, spheroid
size and shape reproducible and
homogenous, high throughput

screening, easy to monitor

limited number of spheroids,
incompatible for large spheroids

Centrifugation pellet cultures [63] cell aggregation via centrifugation of
cell suspension

inexpensive and easy to use, large
number of spheroids

harmful shear stress forces,
challenging to monitor

Electric, magnetic and ultrasound
based cultures [63–65]

spheroid formation via electric or
magnetic fields, or ultrasound forces

control of spheroid’s
development settings

challenges in controlling spheroid size,
specific equipment, harmful

external forces

Microwell arrays [66]
cell suspensions loaded in microwells
layered with non-adhesive substances

via micro-patterning

inexpensive, easy to use, spheroid size
and shape reproducible and

homogenous, complex-shaped
spheroids, high throughput screening

as well as standard monitoring
methodologies

incompatible with large spheroids

Microfluidic systems [67]

cell suspensions loaded through a
micro-channel system in microwells,
leading to cell aggregation via small

bioreactors

easy to use and fast, enhanced natural
diffusion of gas and nutrients, large

number of spheroids with
homogenous size, high throughput

screening

advanced specialized laboratories

3D Bioprinting [48,49]

tissue-like structure formation by
automated deposition of cells,

biological materials, and supportive
matrix in layers

possibility to precisely arrange cells,
enhanced cell viability, functions,

migration, and self-assembly, high
throughput screening

harmful shear stress forces, expensive,
long working time

4. Discussion

C. trachomatis still possesses a significant impact on public health, for the high preva-
lence of asymptomatic infections and its ability to involve a wide range of different cell
types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading to
a broad spectrum of pathologies of varying severity both in women and in men [3,68].
Consequently, there is increasing research interest in C. trachomatis; this is also due to the
emergence of important breakthroughs in the genetic manipulation of chlamydial EBs,
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as well as the introduction of advanced molecular techniques for DNA sequencing, for
exploring the diverse defense factors of the genital tract [69,70].

Two-dimensional in vitro models, over the years, have paved the road towards the
understanding of C. trachomatis genital infection and outcomes. To date, alternative and
more advanced platforms, like 3D cell cultures, that provide increased similarity to the
in vivo physiology and pathology, have been helpful for investigating the complex patho-
genetic mechanisms of other infectious pathogens, like SARS-CoV-2, and might also be
fundamental for studying C. trachomatis genital infection, although their adoption is still at
an early stage [55,56,71].

Several systems exist as above described, and all of them have significantly expanded
different aspects of biomedical research since they can mimic various important functions
of different organs and tissues in vitro, or even replicate entire organs, and, hence, consti-
tute a more realistic approach relative to traditional cell culture models. Indeed, they can
incorporate multiple different structures and cell types, as for example immune cells, like
monocyte-macrophages and neutrophils, or they can be used for studying co-infections,
providing deeper insights into cellular interactions, drug screening, and the pathophysiol-
ogy of various diseases [13]. However, they present several critical issues, including the
lack of affordability, the more stringent culture conditions, low reproducibility, as well as
the extensive operator’s skills and dedicated advanced facilities. In this regard, for example,
3D bioprinting is undermined by the difficulty in maintaining cell viability and function
beyond diffusion limits, since the transport of nutrients and oxygen to each cell, as well as
the removal of waste, must be guaranteed [48,49]. OOAC systems are still in development
because they present difficulties in completely replicating the entire physiology of an organ,
the need for better biocompatible materials with improved performance for cell environ-
ment fabrication, as well as the limited sensitivity and specificity of available sensors for
monitoring physiological parameters more accurately [50,53]. Moreover, the complexity
of these models is increased when multiple organs or complex tissues are integrated on a
chip and a large amount of data is produced, requiring high-throughput analysis to reach
accurate conclusions, like machine-learning techniques [52].

In the future, these advanced technologies for mimicking the physiology of human
tissues and organs will represent a robust platform with the potentiality to lead to im-
portant breakthrough in the fields of chlamydial pathogenesis, diagnosis, prevention,
and treatment.
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