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$X174 was developed as a model system for experimental studies of evolution because of its small
genome size and ease of cultivation. It has been used extensively to address statistical questions
about the dynamics of adaptive evolution. Molecular changes seen during experimental evolution
of $X174 under a variety of conditions were compiled from 10 experiments comprising 58 lineages,
where whole genomes were sequenced. A total of 667 substitutions was seen. Parallel evolution
was rampant, with over 50 per cent of substitutions occurring at sites with three or more events.
Comparisons of experimentally evolved sites to variation seen among wild phage suggest that
at least some of the adaptive mechanisms seen in the laboratory are relevant to adaptation
in nature. Elucidation of these mechanisms is aided by the availability of capsid and pro-capsid
structures for $X174 and builds on years of genetic studies of the phage life history.
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1. INTRODUCTION

Humans have long dabbled with selection—both
intentionally and unintentionally. Indeed, the process
of artificial selection was used by Darwin to illustrate
the process of natural selection (Darwin 1859). In
the laboratory, experimental evolution has been used
to investigate the patterns and mechanisms of evol-
ution, and to test some underlying assumptions of
population genetic theory. On a grander scale, our
many interventions pose strong selective pressures in
the natural world, and thus it is particularly useful to
have model systems to study strong selection in real
time. Such studies have been carried out on a wide
array of organisms including, but not limited to,
mice, fish, insects, bacteria and viruses. Yet, it is only
recently that we have been able to deduce the under-
lying genetic basis of such laboratory adaptation, and
we are only now beginning to investigate the mechan-
isms underlying adaptive change in these systems.
Here, we consider what we have learned from one
such model system, the Microviridae, with special
emphasis on the prototype isolate $bX174.

The Microviridae are tailless icosahedral bacterio-
phages with a single-stranded, circular DNA genome
(Hayashi ez al. 1988; Fane er al. 2006). Among the
group that infects coliform bacteria, genome size
ranges from 5.4 to 6.3 kb (Rokyta ez al. 2006). In gen-
eral, the genome encodes 11 genes, nine of which are
essential (table 1), and has overlapping reading frames
for several genes. Exceptions are microvirid phages
isolated from the y-proteobacteria, which are distantly
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related to the coliform microvirids and have smaller
genomes, and members of the a3- and WA13-like
phages, which have five additional conserved reading
frames of unknown function (Rokyta er al. 2006).
These differences will not be considered further here.

$X174 was developed as a model system for exper-
imental studies of evolution by J. J. Bull during a
sabbatical in the laboratory of Bruce Levin at Emory
University in 1993-1994. This system was chosen
for its small DNA genome, which facilitated whole
genome sequencing, and for its ease of laboratory cul-
tivation, which facilitated passaging large populations
in a short period of time at relatively low cost. The
first studies looked at the extent of parallel evolution
in this system (Bull ez al. 1997; Wichman er al.
1999), and subsequent studies have examined host-
specific adaptation (Crill ez al. 2000; Wichman ez al.
2000; Pepin er al. 2008), temperature adaptation
(Bull et al. 2000; Holder & Bull 2001; Knies ez al.
2006, 2009), the number, size and distribution of ben-
eficial mutations (Bull ez al. 2000; Rokyta et al. 2005,
2008), pleiotropy (Pepin er al. 2006), epistasis (Bull
et al. 2000; Pepin & Wichman 2007), evolutionary
dynamics (Wichman er al. 1999, 2005; Holder &
Bull 2001; Bull er al. 2006; Pepin & Wichman 2008;
Dickins & Nekrutenko 2009), evolution of resistance
(Cherwa & Fane 2009), compensatory evolution
(Poon & Chao 2005, 2006), recombination (Wichman
et al. 2005; Rokyta er al. 2006, 2009), domestication
(Rokyta er al. 2009) and spatial dynamics (Coberly
et al. 2009). Some of the later studies took advantage
of a collection of wild isolates of the Microviridae
(Rokyta et al. 2006), and increasingly they have
taken advantage of the known structure of most pro-
teins in the viral capsid (McKenna ez al. 1992, 1994;
Dokland er al. 1997).

This journal is © 2010 The Royal Society


mailto:hwichman@uidaho.edu

2496 H. A. Wichman & C. J. Brown Review. Experimental evolution of viruses

Table 1. Genes encoded by bacteriophages in the Microviridae®P.

gene protein encoded essential? function (number)

A replication initiation yes stage II and stage III DNA replication

A* shortened version of no thought to inhibit host DNA replication; may be involved in superinfection

protein A exclusion

B internal scaffold yes® procapsid morphogenesis (60 in procapsid)

C DNA packaging yes switch from stage II to stage III; stage III DNA replication

D external scaffold yes procapsid morphogenesis (240 in procapsid)

E lysis yes facilitates host cell lysis

F major capsid yes morphogenesis; host recognition (60 copies in procapsid and virion)

G major spike yes morphogenesis; host recognition (60 copies in procapsid and virion)

H minor spike (pilot) yes morphogenesis; host recognition; needed for DNA injection (12 copies in
procapsid and virion)

] DNA binding yes required for DNA packaging (60 copies in virion)

K no unessential; may affect burst size

#Taken from (Baas 1985; Hayashi et al. 1988; Fane et al. 2006).

®Five putative genes of unknown function found only in the a3-like and WA13-like phages (Rokyta ez al. 2006) are not included.
°bX174 can be evolved to be independent of the internal scaffolding protein (Chen ez al. 2007).

2. MATERIAL AND METHODS

Molecular changes seen when $X174 was evolved in
the laboratory were compiled from 10 experiments
and a total of 58 lineages (Bull er al. 1997, 2006;
Wichman et al. 1999, 2000, 2005; Crill ez al. 2000;
Pepin er al. 2008; Pepin & Wichman 2008; and
M. W. Rain & H. A. Wichman 2001, unpublished
data; J. Millstein & H. A. Wichman 2003, unpublished
data). These experiments were carried out under a
variety of conditions. Two studies comprising 16
lineages were carried out by flask passaging (Pepin &
Wichman 2008; Pepin ez al. 2008) while the remainder
were carried out in chemostats. For flask evolution
experiments, each passage was 30 min and total pas-
sage time ranged from 40 to 87 h; viral populations
were smaller than host populations so that co-infection
and recombination were minimized. Chemostat
passages were carried out for 10—-11 (34 lineages),
22 (3 lineages), 50 (4 lineages) or 180 days (1 lineage);
viral populations were much larger than host
populations and were characterized by frequent
selective sweeps, and co-infection and recombination
were common. Of the 58 lineages evolved, 18 used
Escherichia coli C as the host, 16 used defined lipopo-
lysaccharide (LLPS) variants of E. coli, three used
Shigella and 21 used Salmonella; two lineages were
evolved at 32°C, 30 lineages at 37°C and 26 lineages
at high temperature (42-43.5°C); 16 lineages were
founded from our laboratory ancestor (GenBank
accession AF176034), 15 from an isolate of this
ancestor pre-adapted to flask passaging and 27 from
previously-evolved chemostat lineages.

In the early studies using this system, a single isolate
was sequenced at the end of an experiment (Bull ez al.
1997; Wichman ez al. 1999, 2000; Crill ez al. 2000).
However, in more recent studies multiple genomes
were sequenced, and in many cases genomes were
sequenced from multiple time points over the course
of the study. This allowed for rough estimates of the
frequency of a particular change in a population as
well as observation of the dynamics of substitutions
sweeping through the population. For any given lineage,
a mutation was counted only once. For published
studies, sequence data are available in GenBank or
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in tabular form in the publication. Data for one
unpublished study can be found under GenBank
accession numbers AF299300 through AF299314.

When summing over all 58 evolved lineages, a total
of 667 changes were seen at 337 sites. A total of 508
amino acid substitutions were seen. Note that, because
of overlapping reading frames, a single base substi-
tution can affect more than one codon. To determine
the probability of seeing substitutions at the same
site in the absence of adaptive evolution, we conserva-
tively assumed that 25 per cent of sites are invariant
(i.e. subject to strong purifying selection). We thus
used the following equation to calculate the number
of sites at which we expect to see substitutions
occurring z times

< 667 ) y 1
n [(0.75) x (5386)]"’

where 667 is the total number of substitutions seen in
all experiments, (0.75) x (5386) is the estimated
number of potentially variable sites in $X174 and n
is the number of times a substitution occurs at the
same site.

3. RESULTS AND DISCUSSION

(a) Parallel and convergent evolution

Here, we define parallel evolution as independent evol-
ution of the same molecular substitution from a
common ancestor. We use the term convergent evol-
ution to describe evolution of the same molecular
substitution in two independent ancestors. In exper-
imental evolution, where the ancestor is known and
replicate adaptations are carried out, parallel evolution
is easy to document. In nature it is not always trivial to
distinguish between parallel and convergent evolution
because the ancestral state is not usually known.

One of the most pronounced characteristics of
experimental evolution in this system is the high inci-
dence of parallel evolution. For any two experiments
carried out under the same experimental conditions,
around 50 per cent of substitutions arose in both
experiments, but there is still considerable parallel
evolution between experiments carried out under
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Figure 1. Common sites of an amino acid substitution during experimental evolution. Histogram shows the number of times
an amino acid substitution was seen at each residue among the 58 experimental lineages analysed. Only amino acid residues
with three or more substitutions are included. Grey bars indicate sites that also vary among wild $X-like phages (Rokyta ez al.
2006 and unpublished isolates). Black bars indicate substitutions that converge on the sequence at residues that are invariant
among the wild $X-like phages. In most cases, the substitutions were parallel events of the same substitutions from a common
ancestor, but reversions and alternate substitutions at the same residue were also counted. However, some lineages were exten-
sions of other experiments and thus already carried amino acid substitutions relative to the ancestor, so, depending on the
selective environment, not all substitutions have an equal opportunity of arising.

Figure 2. Structural location of select evolved sites. Images were rendered with VIPER using 1rb8_half.vdb from VIPERdb at
http:/viperdb.scripps.edu/. (a) Structure of the $X174 capsid. One of the 12 pentameric units is highlighted, with five copies
of the major capsid protein F shown in red and five copies of the major spike protein G shown in blue. (b) Changes at sites of
host recognition. Sites of host recognition in the major capsid protein F as suggested by experimental evolution on Salmonella
are shown in yellow (F101, F102, F153 F336, F361, F364 and F388). The region of host recognition suggested by McKenna
et al. (1994) based on the crystal structure are shown in aqua (F176, F178, F181, F205, F209 and F213). Amino acid number
is based on GenBank accession AF176034. (¢) Changes at sites of interaction between subunits of the major capsid protein.
One copy of the major capsid protein F is highlighted in red. Experimentally evolved changes at or adjacent to sites of F—F
interaction are shown in yellow (F2, F82, F115, F184, F188, F205, F227, F361 and F424).
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different experimental conditions (Bull ez al. 1997;
Wichman et al. 2000; Pepin & Wichman 2008).
Although evolution in the same gene is frequently
seen during experimental evolution of organisms
with larger genomes (Barrick ez al. 2009; Harcombe
et al. 2009), parallel evolution at the level of identical
nucleotides is rare or uncommon. Even in the smaller
genome of the RNA bacteriophage MS2, parallel evol-
ution at the level of the nucleotide does not occur at
the rate observed in this system (Betancourt 2009).
Parallel evolution is often considered as evidence for
adaptive evolution, but in this large dataset some par-
allel evolution is expected by chance alone. Given the
number of substitutions observed and the genome
size, two or more occurrences of substitutions at the
same site are expected to occur by chance 55 times,
accounting for 16 per cent of substitutions, but three
or more occurrences at the same site are expected
only three times (1% of substitutions). In the total
dataset, over 50 per cent of substitutions occurred at
sites with three or more events, and 67 per cent
occurred at sites with two or more events. To be conser-
vative, we consider only three or more events at the
same site as strong evidence for adaptive substitution,
and our subsequent discussion will focus mainly on
these sites (figure 1). If we define parallel evolution in
this case to be the same base substitutions at the same
sites in the virus three or more times, parallel events
occurred for 297 of the 667 substitutions. Thus, parallel
evolution was pervasive, especially given that we are
combining experiments carried out under varied con-
ditions. However, it is important to note that where
the dynamics of substitutions have been tracked in
these experiments, it appears that many or most
substitutions are adaptive (Wichman ez al. 1999, 2005).
One might ask to what extent we can extrapolate
the results of experimental evolution of viruses to adap-
tation of similar organisms in nature and to evolutionary
processes in more complex genomes. One way to
address this question is to compare the sites of variation
among natural isolates to sites of adaptation during
experimental evolution. If experimental evolution is
using the same pathways of adaptation that are used in
nature, we might expect to see an excess of sites in
common between experimental and wild variants (i.e.
evidence of parallel and convergent evolution).
Considering that amino acid substitutions were seen
at 216 sites during experimental evolution (11% of the
1986 amino acid positions) compared with 206 vari-
able amino acid positions among the wild phage
(10%), we would expect 22 (1.1%) of the sites to be
in common; we observed 47 in common. We can
now consider only sites where we have strong evidence
that substitutions in our experiments are adaptive. If
we consider only the 58 amino acid sites where we
saw evolution three or more times, there is variation
at 36 per cent of these sites among the wild phage
(figure 1). Evolution at these positions accounts for
over 64 per cent of the 508 amino acid substitutions
seen in our experiments. The pattern becomes even
stronger if we consider only the most frequent substi-
tutions. Some sites had a very high rate of
substitution during experimental evolution. There
were 13 amino acid positions at which changes
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occurred eight or more times among the experimental
lineages, accounting for 26 per cent of the 508 amino
acid substitutions seen. Variation or convergent
evolution was seen among the wild phage at 11 of
these 13 residues. Thus, there is strong evidence that
at least some of the adaptive mechanisms seen in the
laboratory are relevant to adaptation in nature.

There was also considerable variation at regulatory
positions in the virus. There are 133 nucleotide pos-
itions that have been shown to regulate transcription
or translation either experimentally or by sequence simi-
larity to known regulatory motifs (Hayashi ez al. 1988;
Fane ez al. 2006). Forty putatively adaptive substitutions
and/or indels have arisen in response to selection at 17 of
these positions (12%) in the sigma factor binding, tran-
scription termination or ribosome binding sites.

(b) Host recognition

$»X174 attaches to the LPS of some rough strains of
Gram-negative bacteria including some E. coli, Salmo-
nella typhimurium and Shigella sonnei. Host attachment
has a reversible stage followed by an irreversible stage,
but it is not known if LPS is the host receptor for only
one or for both of these stages. In early studies, host
recognition sites for $X174 and S13 were mapped
genetically to the pilot protein H (Sinsheimer 1968),
the major spike protein G (Newbold & Sinsheimer
1970; Weisbeek er al. 1973) and the major capsid
protein F (Tessman 1965; Dowell er al. 1981), but
the identities of host-specific mutations within these
proteins are unknown. Specific interactions of LPS
from ¢&X174-susceptible strains, but not resistant
strains, have been shown for the proteins G and H
(Inagaki er al. 2000; Kawaura ez al. 2000). Thus, had
we been forced to use a candidate gene approach to
study host recognition in this system, we would have
focused on the pilot protein H and the spike protein
G where there was both genetic and biochemical evi-
dence for a role in host recognition. We did observe
a considerable amount of evolution in the pilot protein
H. A total of 105 substitutions were observed
at 48 amino acid sites in H. Gene H makes up
16 per cent of the protein-coding capacity of $X174,
so the expected number of changes is 81, if changes
are distributed evenly in the genome. However, we
do not yet have direct evidence that any of these
changes occurred in response to selection for host rec-
ognition. In contrast, we have observed little evolution
in the major spike protein G. Amino acid substitutions
occurred at only eight sites in G, and at only one site
(G66) was there considerable parallel evolution. The
same substitution occurred at G66 five times, but
under different host conditions and different tempe-
rature regimes, so there is no indication that this
substitution was specific to host recognition.

Another piece of evidence suggesting a specific
region for host attachment was the presence of sugar
bound in a depression in the major capsid protein F
of the crystal used to solve the atomic structure of
$X174 (McKenna et al. 1994). Based on this ability
to bind sugar and the location of host receptor sites
in other viruses, McKenna er al. speculated that this
was the host attachment region in the coat protein
F. Although this six residue pocket (figure 2b) has
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been reported to be highly conserved, we observed
variation both within and among coliform microvirid
lineages. The region is conserved among all but two
of the wild ¢X-like phage examined, but a total of
nine haplotypes have been observed among the five
previously sequenced laboratory strains and the wild
isolates reported by Rokyta ez al. (2006). In all haplo-
types, the pocket consists of two to four negatively
charged amino acids, zero to one positively charged
amino acid, and one to three neutral amino acids,
but charge is only conserved at one (neutral) position
among all haplotypes. During experimental evolution,
we saw only a single substitution at any of these six
sites, and that change conserved the negative charge at
the site. Some evolution occurred at adjacent sites but
none of these substitutions caused a change in charge,
and we do not know whether they affected phage inter-
action with LPS. Thus far, there is no experimental
evidence for the involvement of this carbohydrate-
binding pocket in host recognition or attachment.
Another region of the major capsid protein F was
identified by experimental evolution to be important
for host recognition. This region forms a raised ridge
just under the lip of the capsid spike (figure 2). Evi-
dence for the involvement of this region in host
recognition includes: (i) direct measurement of the
effect of substitutions at F101 and F102 in attachment
(Crill et al. 2000; Pepin ez al. 2006; Pepin & Wichman
2007); (i) evolution and then reversion of substi-
tutions at F101, F153, F336, F364 and F388 upon
host switching (Crill ez al. 2000); (iii) convergent evol-
ution at F153 and F361 when the Salmonella phage
S13 and the E. coli phage $X174 were evolved on
alternate hosts (Wichman er al. 2000); and (iv) mul-
tiple independent substitutions at F101, F102, F153,
F336 and F388 on Salmonella and at F100 on E. coli.

(¢) Temperature adaptation

Adaptation frequently involved reversion of the
temperature-sensitive (ts) mutation common to some
laboratory strains of $X174 (F242). This residue is a
phenylalanine, not only in all of the $X-like phages
we have characterized, but also in all of the other
sequenced coliform microvirid phages (Rokyta et al.
2006); it is a leucine in our laboratory isolate and is
the probable ts mutant in the $X174 isolate sequenced
by Sanger (Sanger et al. 1977). This residue is in the
B-barrel of the coat protein F, and substitution of
phenylalanine for leucine confers the ability to grow
at high temperature (Bull ez al. 2000). Temperature
was one of the selective pressures commonly used in
experimental evolution, and the high temperature
used in our experiments (42—43.5°C) is higher than
what the phage are likely to be exposed to in the
environments from which they were recovered. Fitness
of our laboratory isolate at high temperature is
negative (i.e. phage cannot produce a visible plaque
or reproduce fast enough to maintain a constant
population size under standard liquid passaging), so
we would expect strong selection for not only
the change at F242, but for other changes that
stabilize the capsid. For example, adaptation to high
temperature can also occur by evolution of scaffolding
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proteins. A change in the internal scaffolding protein
at B114 confers the ability to grow at high temperature
(Bull ez al. 2000). This same mutation was seen in four
experimental lines, always at high temperature. The
only high-frequency amino acid substitution in the
external scaffolding protein is at D123, which is a
site of intra-dimer contact in the scaffold. This
phenylalanine to leucine substitution occurred five
times, always at high temperature.

We see considerable evolution at or immediately
adjacent to known sites of protein—protein interaction
(McKenna et al. 1994) between subunits of the coat
protein F within the capsid (F2, F82, F115, F184,
F188, F205, F227, F361 and F424) and at other
sites near these regions of protein—protein interaction.
While it is tempting to interpret these as adaptations to
high temperature, changes at these sites actually
occurred more frequently at 37°C. High temperature
is not the only selective force that might be expected
to affect protein—protein interactions. Because many
adaptive mutations destabilize protein structure,
compensatory mutations are frequently stabilizing
(DePristo et al. 2005). Thus, many of these mutations
at sites of protein—protein interaction may be compen-
satory for other adaptive but destabilizing mutations.
Another possibility is that these mutations act on the
capsid assembly, perhaps by suppressing off-pathway
assembly products.

4. CONCLUSIONS
We compared evolution in the laboratory to variation
in the wild. Overall, there was a strong signature of
purifying selection among the wild phage. Excluding
regions with out-of-frame overlaps in genes, silent
differences were 3.8 times more prevalent than mis-
sense differences. This might be taken to suggest that
most or all of the amino acid variation among the
wild phage is neutral, but the considerable con-
vergence at sites of adaptive evolution among the
experimental lines suggests that some of this variation
is a signature of adaptation in the wild. For example,
all six of the sites in the major coat protein F identified
as putative host recognition sites by experimental evol-
ution vary among wild isolates. In contrast, of the
14 sites at or adjacent to known sites of interactions
between F subunits, variation was seen among wild
phage at only 5 sites. While this is more than would
be expected by chance, the amount of variation at
these sites is less than at host recognition sites. This
is especially noteworthy because three of these five
sites were also identified as potential host-interacting
sites, so any signature of adaptive evolution in the
wild may well be driven by host adaptation.
Certainly, the small genome size and limited
number of proteins encoded contribute to the magni-
tude of parallel evolution in this experimental system
and convergence between laboratory evolved strains
and wild isolates. However, it is becoming increasingly
clear that parallel and convergent evolution are also
common in nature, especially when the target of selec-
tion is small (Wood er al. 2005). In some cases,
convergent evolution at the molecular level has been
seen between quite divergent species. For example,
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there are several examples of the evolution of insecti-
cide resistance in different species of insects owing to
identical amino acid changes in the same gene
(Ffrench-Constant 1994; Feyereisen 1995; Ffrench-
Constant er al. 2000). On the other hand, adaptive
loss or down regulation of function frequently involves
different mutations in the same gene; this has been
shown for pigmentation genes in both flowers and
fish, for instance Gross er al. (2009) and Streisfeld &
Rausher (2009). Thus, even in complex organisms,
the target of selection may be small.

We wish to acknowledge Bentley Fane, Paul Joyce and James
Bull for helpful discussions. This work was funded by grants
from the National Institutes of Health.
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