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ABSTRACT

Objective: Sleep apnea is associated with a broad range of pathophysiology. While electronic health record

(EHR) information has the potential for revealing relationships between sleep apnea and associated risk factors

and outcomes, practical challenges hinder its use. Our objectives were to develop a sleep apnea phenotyping

algorithm that improves the precision of EHR case/control information using natural language processing

(NLP); identify novel associations between sleep apnea and comorbidities in a large clinical biobank; and inves-

tigate the relationship between polysomnography statistics and comorbid disease using NLP phenotyping.

Materials and Methods: We performed clinical chart reviews on 300 participants putatively diagnosed with

sleep apnea and applied International Classification of Sleep Disorders criteria to classify true cases and non-

cases. We evaluated 2 NLP and diagnosis code-only methods for their abilities to maximize phenotyping preci-

sion. The lead algorithm was used to identify incident and cross-sectional associations between sleep apnea

and common comorbidities using 4876 NLP-defined sleep apnea cases and 3�matched controls.

Results: The optimal NLP phenotyping strategy had improved model precision (�0.943) compared to the use of

one diagnosis code (�0.733). Of the tested diseases, 170 disorders had significant incidence odds ratios (ORs)

between cases and controls, 8 of which were confirmed using polysomnography (n¼4544), and 281 disorders

had significant prevalence OR between sleep apnea cases versus controls, 41 of which were confirmed using

polysomnography data.

Discussion and Conclusion: An NLP-informed algorithm can improve the accuracy of case-control sleep apnea

ascertainment and thus improve the performance of phenome-wide, genetic, and other EHR analyses of a

highly prevalent disorder.
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Lay Summary

Sleep apnea is a common disease in which breathing partially or completely pauses during sleep, leading to less oxygen in

the blood, repeated awakenings, and increased risk of developing multiple diseases. Current studies of sleep apnea often

have relatively few participants due to the challenge of performing overnight sleep recordings. Electronic health record

(EHR) billing code diagnoses of sleep apnea could be repurposed to increase the size of research studies, but the accuracy

of the diagnoses is reduced. We developed a reusable algorithm that improves the accuracy of EHR sleep apnea diagnoses

using natural language processing to extract information from clinical notes. As a proof of concept, we used the algorithm

to identify hundreds of diseases that are increased among participants with sleep apnea compared to similar patients with-

out sleep apnea. Many of these disease relationships with sleep apnea have not been previously recognized. This improved

algorithm will help to accelerate future large-scale investigations of the causes and consequences of sleep apnea.

BACKGROUND AND SIGNIFICANCE

Sleep apnea is a common disorder characterized by repetitive airway

obstructions resulting in intermittent hypoxemia, sleep disruption,

and multiple other physiological disturbances implicated in the

pathogenesis of cardiovascular, metabolic, and neurological dis-

eases.1–17 The estimated prevalence of sleep apnea in U.S. adults is

12%,18 although this varies by age and gender. Additional research

in large, generalizable samples may lead to improved treatments for

sleep apnea that lower the risk of developing multiple highly burden-

some comorbidities.

Large-scale epidemiological research in electronic health record

(EHR) biobanks enables multiple opportunities to accelerate re-

search.19–21 Data collected as part of routine sleep clinic visits that

would be financially and logistically challenging to collect prospec-

tively may be efficiently repurposed for research questions, such as

comprehensively identifying novel relationships with other diseases

and improving the power of genetic analyses.22–26 However, certain

challenges must be addressed. Early EHR analyses used Interna-

tional Classification of Disease (ICD) codes for sleep apnea pheno-

typing.27,28 ICD data are largely collected for clinical and billing

purposes. ICD-derived disease diagnoses are often used when ruling

out a given disease through a billed procedure such as a sleep exami-

nation whether or not the patient is found to have that condition.

Modest diagnosis accuracy has been observed for several diseases,

including a 33% positive predictive value for ICD-based rheumatoid

arthritis phenotyping.29 Natural language processing (NLP) in con-

junction with medical chart reviews can effectively improve pheno-

typing accuracy.29–33 Data from a sample of patients classified as

true cases or true controls based on clinician validation (eg by man-

ual record review using prespecified disease definitions) are

extracted and linked to ICD-based diagnoses and other clinical in-

formation. Data from clinical notes within the EHR that improve

classification accuracy in the validated set of charts are used to im-

prove the diagnosis accuracy of other patients with ICD-based diag-

noses. Extracting and processing free-text information is often

addressed by using standardized vocabularies and medically ori-

ented NLP tools.34,35 A second improvement has been to group sim-

ilar ICD diagnoses into broader clinical categories of �1800

“PheCodes” to provide larger numbers of cases representing the dis-

ease of interest.36,37 Patients seen in an open healthcare system may

seek care at institutions that are not part of the EHR system, and a

third improvement is the use of a “data floor” with minimum

healthcare utilization criteria to reduce misclassification of cases

and controls due to incomplete EHR records.31 A fourth improve-

ment for sleep apnea may result from extracting key values from

clinical notes and available polysomnographic (PSG) summary

reports, such as case/control status based on a disease-defining

threshold for laboratory diagnosis of sleep apnea: the apnea-

hypopnea index (AHI).

Here, we report the development of a validated NLP-informed

phenotyping algorithm for sleep apnea in the Mass General Brigham

(MGB) Biobank, a resource with over 120 000 participants.38,39 We

compare the accuracy of this phenotyping algorithm to alternative

models based on PheCodes and limited NLP,40 which are useful

when medical charts or expert clinician review are not available. We

constructed improved NLP phenotyping for comorbid diseases, pro-

viding an opportunity to examine the relationships between sleep

apnea, PSG statistics, and other diseases. As a proof of concept, we

report associations between the NLP-derived sleep apnea status pro-

spective incidence and prevalence of multiple diseases. Many of

these associations have limited or no previously tested association

with sleep apnea.

MATERIALS AND METHODS

Additional details are provided in the Supplemental Methods.

Study sample
Participants contributed EHR and sample data and provided written

research consent to the MGB Biobank.38,39 There were multiple an-

alytical groups (Figure S1, Table 1). “Screen positive” sleep apnea

cases were defined by �1 sleep apnea coded PheCode diagnoses (de-

scribed below). We selected a random sample of 300 participants

for detailed chart review in order to generate an algorithm to sepa-

rate bona fide sleep apnea cases from false positive noncases (eg

coded for billing purposes or otherwise erroneously). We selected

3� controls without PheCodes for sleep apnea or obstructive sleep

apnea, matched to the NLP-defined sleep apnea cases based on age,

sex, self-reported race/ethnicity, body mass index (BMI), and health-

care utilization using hospital encounters.41 We also examined 4544

participants with available polysomnography records irrespective

of a sleep apnea diagnosis. The first sleep apnea diagnosis date

or the date of the PSG recording was used to calculate the age of a

participant. Controls were matched on birthdates relative to cases.

The age of the first sleep apnea diagnosis for a given case was used

as the age of a matched control. BMI was extracted from structured

tables and from unstructured clinical notes using regular expres-

sions. The 2 BMI measurements closest in time to the participant’s

defined age were averaged together to calculate the participant’s de-

fined BMI.

We employed a “data floor” to reduce the number of partici-

pants with minimal documentation and hence the likelihood of false

negative associations in our open network healthcare setting.20 The

sample was restricted to those with at least 2 clinical notes, 2
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encounters associated with ICD diagnoses, and 3 separate PheCode

diagnoses for any disease.

Sleep apnea phenotype definitions
Following data floor filtering, screen-positive participants were selected

based on one or more diagnoses with the sleep apnea PheCodes

“327.3” (sleep apnea; ICD9 codes 327.2, 327.20, 327.29, 780.51,

780.53, 780.57; ICD 10 codes G47.3, G47.30, G47.39) and “327.32”

(obstructive sleep apnea; ICD9 code 327.23; ICD10 code G47.33).36,37

Clinician chart reviews
We performed clinical chart reviews among the 300 ICD-screen pos-

itive participants, in order to create a gold standard set of sleep ap-

nea cases and noncases for algorithm development. Sleep apnea

case/noncase (ie false positive) classifications were adjudicated by 2

sleep clinicians (SR and SMH) and informed by ICSD-3 guidelines

(Figure 1).42 Chart data from 97 screen negative participants were

also used to assess predictive value of the negative screen. Sleep ap-

nea case classification categories are marked in green in Figure 1,

while noncase classification categories are marked in red. This ap-

proach outperformed 2 exploratory sleep apnea disease definition

models that assigned participants with central sleep apnea (CSA) or

all non-“moderate sleep apnea” classifications as noncases (data not

shown). From the 300 chart review set, 180 (60%) of these results

were used in the training set, and 120 (40%) were used in the valida-

tion set for PheCAP and other methods.

Natural language processing
We extracted NLP terms that mapped to Concept Unique Identifiers

(CUIs) from the Unified Medical Language System using cTAKES,

and counted the instances of each nonnegated CUI term per

note.34,35 We used 2 NLP-based algorithm development approaches.

(1) PheCAP distinguishes true cases from noncases (ie negative in

chart reviews despite one or more ICD codes) based on the presence

of common terms extracted from the literature.31 (2) Multimodal

Automated Phenotyping (MAP) omits chart reviews and supplements

ICD codes with the count of their exact matches located within clini-

cal notes (eg count of “obstructive sleep apnea” phrases).40

Sleep apnea candidate CUI terms were obtained using the

surrogate-assisted feature extraction (SAFE) method from 7 inter-

net-derived disease review resources (Table S1)33,43 in order to select

NLP concepts commonly recognized with sleep apnea and therefore

more likely to generalize to other populations. We also constructed

a composite term based on the cumulative count of 6 sleep apnea-

related procedures and 2 NLP terms described in Table S2 that we

term the “Joint CPAP CUI/Procedure Term.”

PheCAP phenotype classification
We used PheCAP to test algorithms to classify sleep apnea case/non-

case status in the chart review training and validation sets.31 We

tested 20 separate models to identify the optimal PheCAP settings

(Table S3). PheCAP allows for flexible surrogate “silver standards”

of a phenotype that aid in classification. We tested multiple surro-

gate combinations of SICD (the number of phenotype PheCode diag-

noses of a given patient), SNLP (the cumulative number of NLP CUI

disease terms (eg “sleep apnea”) seen across clinical notes for a given

patient), and SICDNLP (a combined count of the 2 terms). We tested

the inclusion and exclusion of demographic (age, sex, and self-

reported race/ethnicity) plus BMI, and PheCAP NLP terms. We fur-

ther tested the final optimized PheCAP model to ask whether forcing

case status for participants with diagnostic polysomnography crite-

ria for sleep apnea (AHI � 15)42 and/or the joint continuous positive

airway pressure ventilation (CPAP) CUI/procedure term from clini-

cal notes and/or from PSG reports would improve overall model per-

formance (n¼13 cases, 7 noncases with measures available). The

overall level of healthcare utilization has been shown to bias NLP

analyses.31 We therefore adjusted for the number of encounters with

an ICD code for each participant in each PheCAP algorithm model.

Statistical analyses
Our primary measures of algorithm performance for PheCAP mod-

els, compared with PheCAP definitions, and the MAP model were

Table 1. Sample characteristics of samples used in different phases of the study

All Screen positive group Chart review set PheCAP cases Polysomnography

sample

N 100 616 15 741 300 4876 4544

Women, N (%) 56 910 (56.56) 6784 (43.10) 137 (45.67) 1887 (38.70) 2512 (55.28)

Mean age (IQR) 58.20 (25.65) 57.18 (18.19) 58.27 (18.94) 57.59 (16.87) 56.77 (24.60)

Mean BMI (IQR) 27.25 (7.78) 32.05 (9.66) 31.16 (10.48) 33.61 (10.15) 30.54 (9.73)

Race/ethnicity

Asian, N (%) 2680 (2.66) 254 (1.62) 3 (1.00) 73 (1.50) 113 (2.49)

Black, N (%) 4930 (4.90) 941 (5.98) 18 (6.00) 356 (7.30) 585 (12.87)

Hispanic/Latino, N (%) 3778 (3.75) 590 (3.75) 15 (5.00) 188 (3.86) 386 (8.49)

White, N (%) 85 495 (84.97) 13 393 (85.08) 255 (85.00) 4084 (83.77) 2993 (65.87)

Other race/ethnicity, N (%) 3733 (3.71) 563 (3.58) 9 (3.00) 174 (3.57) 467 (10.28)

Language spoken

English, N (%) 97 134 (96.54) 15 186 (96.47) 285 (95.00) 4711 (96.64) 3971 (87.39)

Spanish, N (%) 1456 (1.45) 220 (1.40) 4 (1.33) 76 (1.56) 442 (9.73)

Other languages, N (%) 2026 (2.01) 335 (2.13) 11 (3.67) 88 (1.80) 131 (2.88)

Note: “Screen positive” had one or more PheCode diagnoses for sleep apnea (327.3) or obstructive sleep apnea (327.32). The 300 participants in “Chart Re-

view Set” were obtained from the Screen Positive Group and used to perform PheCAP phenotyping. “PheCAP Cases” were classified by lead PheCAP algorithm

(PheCAP SICDNLP and NLP CUIs in Table 2). Age and BMI are presented as medians (interquartile range). All other fields, apart from sample size, are presented

as total size (percentage). Age and BMI data were based on the first sleep apnea diagnosis date for PheCode cases, the last available visit date for PheCode con-

trols, and the first available polysomnographic recording for the polysomnography sample.

Abbreviations: BMI: body mass index; IQR: interquartile range.
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the area under the receiver operator characteristic curve (AUC) and

precision (Table 2). Five additional statistics are provided in Table

S3.

Chi-square analyses examined the prevalence and incidence of

comorbid PheCodes in PheCAP cases based on the best performing

PheCAP algorithm compared to matched controls. We considered

527 PheCodes with a minimum MGB Biobank case prevalence of

1%. An incident diagnosis was defined as the first diagnosis for a co-

morbidity occurring at least one year after the first sleep apnea diag-

nosis. Participants with a prior diagnosis were excluded. Analyses

considered combined sex and sex-stratified strata. Bonferroni cor-

rections adjusted for the combined count of overall, female, and

male analyses.

Logistic regression was used to analyze potential associations be-

tween PSG statistics and cross-sectional or incident comorbidities

that were significantly associated with PheCAP sleep apnea status

by adjusting for age and BMI at the time of the first available PSG

recording, sex, and self-reported race/ethnicity. Phenotypes were

then rank-normalized to account for any nonnormality in these re-

sidual values. We analyzed 2 PSG summary statistics: the AHI using

3% criteria and the percentage of the sleep episode with oxyhemo-

globin saturation <88% (Per88). Tests were performed for PheCo-

des that were significantly associated with sleep apnea PheCAP

status in combined-sex analyses. Bonferroni adjustments considered

the combined count of AHI and Per88 calculations.

RESULTS

Sample characteristics
Sample characteristics are listed in Table 1. From the initial sample

of 115 124 participants, 108 597 participants were retained after re-

moving children or those without suitable criteria for the data floor.

The final sample size was 100 616 after removing participants with

unknown age, sex, and/or BMI values. Within this sample, 15,741

participants had �1 PheCode diagnoses for sleep apnea or obstruc-

tive sleep apnea, yielding 15.6% prevalence. Data from 397 ran-

domly selected participants were used for chart review, including

data from 300 participants with �1 sleep apnea PheCode diagnoses

(and used in the algorithm validations) and data from 97 sleep apnea

PheCode controls (to query for false negative PheCode diagnoses).

From this sample, data from 180 participants with adjudicated case/

control status (60% of those with a positive sleep apnea PheCode di-

agnosis) were used in training and data from 120 participants with

adjudicated case/control status were used in validation. Three of the

97 participants without an ICD diagnosis for sleep apnea were de-

termined to have sleep apnea based on chart reviews.

PheCAP algorithm construction and performance
The 7 articles used for SAFE yielded 1072 nonnegated NLP concepts

(CUI terms34) that were seen in at least one article (eg “PSG (Poly-

somnography) [Diagnostic Procedure]”). A total of 130 terms were

present in a majority of the articles and in at least one clinical note

of �5% of participants with a sleep apnea PheCode diagnosis and

were retained for analysis.

We tested 20 alternative PheCAP models using the 130 CUI

terms and demographic and BMI data to identify the optimal tun-

able parameters (Tables 2 and S3). We present representative algo-

rithms from PheCodes, PheCAP, and MAP in Table 2 based on

chart review classification of cases/noncases using ICSD-3 guidelines

and including sleep apnea and physician notes supported by pre-

scribed therapy (Figure 1). The lead PheCAP model with the maxi-

mum AUC values (“PheCAP SICDNLP and NLP CUIs” in Table 2)

was based on cases and noncases classified as in the Figure 1 guide-

lines, combined counts of PheCode codings and equivalent PheCode

NLP phrases (the SICDNLP surrogate model), and additional NLP

terms. Better AUC performance was observed when demographic

and BMI data were excluded. Nevertheless, the average age and

BMI and the percentage of males were all higher in the final ascer-

Figure 1. Sleep apnea chart review guidelines. Guidelines for adjudicating participants with �1 sleep apnea PheCode diagnoses were based on ICSD-3 criteria.

Decision criteria in blue boxes resulted in either a true sleep apnea diagnosis (green boxes) or a noncase sleep apnea diagnosis.
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tained PheCAP case sample compared to the PheCode-only screen

positive group (Table 1). Final beta coefficients for NLP terms in

the tested PheCAP models are provided in Table S4. The lead model

included nonzero coefficients for the intercept, the number of clini-

cal encounters, CUI C0199451 (CPAP, initiation and management),

and the combined SICDNLP silver standard surrogate term of sleep

apnea PheCode counts, C0037315 (sleep apnea), and C05200679

(obstructive sleep apnea syndrome).The PheCAP algorithm is

designed to optimize precision. The lead PheCAP model had im-

proved precision in chart reviews of participants with at least one

PheCode-based diagnosis coding date compared to PheCode-only

counts (�0.943 vs �0.733; Table 2). Modest predictive improve-

ments were observed when forcing PheCAP controls with an ob-

served AHI � 15 and/or an observed joint CPAP CUI/procedure

term to be PheCAP cases (precision � 0.951).

Associations between sleep apnea and comorbidities
We used the lead PheCAP model (ie PheCAP SICDNLP and NLP CUIs

without the AHI or the joint CPAP CUI/procedure term to increase

the generalizability of our findings) to define sleep apnea cases, in-

form the selection of 3� matched controls, and test the prevalence

and incidence of comorbidities. We reused the nonsleep apnea NLP

terms generated as a by-product of sleep apnea PheCAP phenotyping

to generate NLP-informed case/control phenotyping using MAP and

data from all of the MGB Biobank participants with a minimum

data floor. We then tested the incidence of new comorbidities, de-

fined by considering a first comorbidity diagnosis that occurred at

least a year after the first sleep apnea diagnosis (Tables 3 and S5).

Out of 527 tested PheCodes, 170 PheCodes had significant odds ra-

tios (ORs) in combined-sex and/or sex-stratified analyses following

Bonferroni correction. Hypersomnia and restless legs syndrome

(RLS) had the highest odds ratio point estimates, likely due to par-

ticipants being followed in sleep clinics. Lead disease associations

reflected a range of pathobiology, including hypertensive heart dis-

ease, hypoglycemia, dysthymic disorder, and dementias. Diseases

with significantly reduced incidence odds ratios included secondary

malignancy of bone and non-Hodgkin’s lymphoma. In sex-stratified

analyses (Table S5), 76 comorbidities had significant odds ratios

considering women with and without sleep apnea, while 111 comor-

bidities had significant odds ratios considering men with and with-

out sleep apnea. While many disorders had relatively similar odds

ratio estimates in both analyses, several disorders had higher odds

ratio point estimates and/or nonoverlapping odds ratio confidence

interval estimates among participants with sleep apnea in one sex

versus the other sex. PheCodes with the largest incidence odds ratio

differences between women and men for nonsleep disorders are pro-

vided in Figure S2. Notably, the chronic pulmonary heart disease

odds ratio was higher in women (OR 4.17, 95% CI, 2.84–6.14)

compared to men (OR 1.80, 95% CI, 1.32–2.44; P for sex interac-

tion ¼ 7.15�10�4). Gout also had higher odds ratio estimates in

women (OR 3.27, 95% CI, 2.34–4.56) compared to men (OR 1.36,

95% CI, 1.13–1.63; P for sex interaction ¼ 6.61�10�6). Obesity

had a higher odds ratio estimate in men (OR 3.05, 95% CI, 2.63–

3.53) compared to women (OR 1.50, 95% CI, 1.25–1.81; P for sex

interaction ¼ 1.24�10�4).

We calculated the cross-sectional prevalence of 527 PheCode di-

agnoses among sleep apnea PheCAP cases and matched controls. Of

this, 281 nonredundant PheCodes had significant odds ratios in

combined-sex and/or sex-stratified analyses after Bonferroni adjust-

ment (Tables 4 and S6). Morbid obesity had the highest odds ratio

point estimate for any nonsleep disorder, followed by heart failure

with preserved ejection fraction. The most significantly enriched

PheCodes in cross-sectional analyses included cardiac, pulmonary,

and multiple mental health and mood disorders. Secondary malig-

Table 2. Chart review performance of alternative sleep apnea phenotyping algorithms

Method Training

recall

(sensitivity)

Training

precision

(PPV)

Training

negative

predictive

value

Training

AUC

Validation

recall

(sensitivity)

Validation

precision

Validation

negative

predictive

value

Validation

AUC

�1 PheCode 1.000 0.689 NA NA 1.000 0.733 NA NA

�2 PheCodes 0.823 0.836 0.621 NA 0.795 0.805 0.455 NA

MAP NLP CUIs 0.774 0.850 0.582 0.819 0.727 0.831 0.442 0.786

PheCAP SICDNLP and NLP CUIs 0.427 0.981 0.437 0.893 0.375 0.943 0.353 0.832

PheCAP SICD 0.387 0.941 0.411 0.790 0.341 0.938 0.341 0.756

PheCAP SNLP 0.331 0.911 0.385 0.820 0.250 0.917 0.313 0.753

PheCAP SICDNLP 0.331 0.911 0.385 0.822 0.250 0.917 0.313 0.754

PheCAP SICDNLP, Demo-

graphics, and NLP CUIs

0.403 0.980 0.426 0.892 0.352 0.939 0.345 0.830

PheCAP SICDNLP and NLP CUIs

plus AHI and CPAP

0.411 0.981 0.430 0.904 0.443 0.951 0.380 0.858

Note: A total of 300 chart reviews were performed for participants with one or more sleep apnea PheCode codings. Therefore, certain PheCode-only rows lack

negative predictive values by definition. Of the 300 chart reviews, 180 (60%) of these results were used in the training set, and 120 (40%) were used in the valida-

tion set. Results for the best performing PheCAP model are shown as “PheCAP SICDNLP and NLP CUIs,” along with chart review performance for PheCode-only

definitions using a minimum of 1 and 2 PheCode instances to define a case and a more basic NLP algorithm using MAP. The performance of PheCAP surrogate-

only models is shown next (“PheCAP SICD,” “PheCAP SNLP,” “PheCAP SICDNLP”) and is followed by the predictive performance using demographic parameters

exclusively. Reduced performance was observed when including demographics and the lead PheCAP model (“PheCAP SICDNLP, Demographics, and NLP CUIs”).

Additional modest performance gains were obtained by forcing case status for participants with separately extracted AHI and/or continuous positive airway pres-

sure (joint CPAP CUI/procedure term) evidence. Full results for all models are presented in Table S5. Recall (sensitivity) ¼ true positives/(true positives þ false

negatives). Precision (Positive Predictive Value) ¼ true positives/(true positives þ false positives); Negative Predictive Value ¼ true negatives/(true negatives þ false

negatives).

Abbreviations: AHI: apnea-hypopnea index; AUC: area under the curve; CPAP: continuous positive airway pressure ventilation; CUIs: concept unique identi-

fiers; MAP: multimodal automated phenotyping; NLP: natural language processing.
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nancy of bone was significantly associated and had a reduced preva-

lence among sleep apnea cases (OR 0.37, 95% CI, 0.26–0.54). In

sex-stratified analyses (Table S6), 174 disorders had significant ORs

considering women with and without sleep apnea; 219 disorders

had significant odds ratios considering men with and without sleep

apnea. PheCodes with the largest absolute OR point estimate differ-

ences between women and men for nonsleep disorders are shown in

Figure S3. Three heart conditions had higher, nonoverlapping OR

estimates in women compared to men: chronic pulmonary heart dis-

ease, congestive heart failure not otherwise specified, and heart fail-

ure not otherwise specified (P for sex interaction � 4.83�10�3).

Validation of associated comorbidities using

polysomnography
Finally, we performed similar incident and cross-sectional comor-

bidity analyses in 4544 participants with available polysomnogra-

phy. We tested the AHI using 3% desaturation criteria and the

percentage of the sleep recording with oxyhemoglobin saturation

under 88% (Per88). Eight largely cardiopulmonary and circulatory

diseases were significantly associated with PSG measures in analyses

of incident cases, including hypertensive heart disease

(P¼7.62�10�9; Table S7). Forty-one diseases had significant

cross-sectional associations after Bonferroni adjustment (Table S8).

Several cardiopulmonary diseases were associated, including as-

phyxia and hypoxemia (P¼2.10�10�41) and chronic pulmonary

heart disease (P¼1.99�10�20). The lowest P values for 37 of these

PheCodes were observed when analyzing Per88 (Figure S4). Of the

17 diseases that were highly associated with Per88, 10 diseases

(P<1�10�10) were not nominally associated with AHI (P> .05).

DISCUSSION

In this study, we constructed an improved sleep apnea phenotyping

algorithm that addresses the limitations of ICD codings within the

EHR by using NLP and controlling for healthcare utilization to im-

prove precision. This algorithm considered CPAP usage and can be

applied to important analyses examining the causes and consequen-

ces of sleep apnea. We applied this algorithm as a proof of principle

in a phenome-wide analysis that identified multiple disorders with

elevated incidence and prevalence in patients with sleep apnea com-

pared to matched controls. The phenotyping of the nonsleep disor-

ders was also improved using NLP, and to our knowledge, most

disorders have never previously been examined in the context of

sleep apnea. The association between sleep apnea and the incidence

and/or prevalence of several of these disorders was confirmed using

polysomnography, despite a modest sample size and single point-in-

time polysomnography data.

The PheCAP algorithm was designed to optimize phenotype pre-

cision (Tables 2 and S3), which is particularly useful for genetic

analyses and prioritizing the selection of true cases with high cer-

Table 3. Incident disease enrichment among sleep apnea cases

PheCode Translation Odds ratio Incidence in

SA cases

Incidence in

matched controls

327.1 Hypersomnia 16.38 (11.55–23.24) 4.71 0.30

327.71 Restless legs syndrome 5.55 (4.34–7.09) 4.19 0.78

263 Other nutritional deficiency 4.26 (3.38–5.35) 4.09 0.99

428.4 Heart failure with preserved ejection fraction (Diastolic

heart failure)

3.75 (3.07–4.58) 5.02 1.39

278.11 Morbid obesity 3.72 (3.20–4.32) 9.60 2.78

401.21 Hypertensive heart disease 3.05 (2.52–3.69) 4.96 1.68

278.4 Abnormal weight gain 2.94 (2.44–3.54) 5.22 1.84

327 Sleep disorders 2.91 (2.35–3.59) 4.03 1.42

470 Septal deviations/turbinate hypertrophy 2.87 (1.97–4.19) 1.21 0.42

472 Chronic pharyngitis and nasopharyngitis 2.69 (2.00–3.61) 1.90 0.72

1002 Symptoms concerning nutrition, metabolism, and development 2.64 (2.27–3.07) 7.54 3.00

415.2 Chronic pulmonary heart disease 2.50 (1.97–3.16) 2.93 1.19

291.8 Alteration of consciousness 2.49 (2.02–3.08) 3.60 1.47

251.1 Hypoglycemia 2.47 (1.92–3.19) 2.45 1.01

313.1 Attention-deficit hyperactivity disorder 2.45 (1.87–3.22) 2.17 0.89

306.9 Tension headache 2.40 (1.63–3.52) 1.06 0.44

276.6 Fluid overload 2.34 (1.93–2.83) 4.26 1.87

300.4 Dysthymic disorder 2.33 (1.92–2.83) 4.38 1.93

428.2 Heart failure not otherwise specified 2.32 (1.93–2.78) 4.90 2.17

798.1 Chronic fatigue syndrome 2.32 (1.81–2.97) 2.50 1.09

296.22 Major depressive disorder 2.31 (2.07–2.56) 17.10 8.21

290.1 Dementias 2.27 (1.73–2.98) 2.09 0.93

1013 Asphyxia and hypoxemia 2.26 (1.86–2.74) 4.26 1.93

539 Bariatric surgery 2.25 (1.99–2.53) 11.52 5.47

278.1 Obesity 2.25 (2.00–2.52) 19.00 9.46

Note: An incident diagnosis was defined as the first diagnosis for a potential comorbidity occurring at least one year after the first diagnosis date for sleep ap-

nea. Otherwise, participants with prior diagnoses were excluded. Sample sizes will therefore vary by PheCode. Totally, 527 PheCodes with �1% overall preva-

lence were tested. Controls were matched for age, sex, BMI, population, and healthcare utilization. It was found that 170 nonredundant PheCodes were

significantly associated following Bonferroni correction. Lead results are shown here. Complete results, including sex-stratified results and sample sizes, can be

found in Table S5.

Abbreviations: SA: sleep apnea.
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tainty. The precision of the validation sample improved from 0.733

when using a single diagnosis date (�1 PheCodes) to 0.943 when ap-

plying the PheCAP algorithm. CPAP is the most frequent medical

treatment for sleep apnea and, with few exceptions, is used almost

exclusively in outpatient settings for treating sleep apnea. The CPAP

usage NLP term identified by PheCAP would likely generalize to

other healthcare systems. Inclusion of AHI from polysomnography

and CPT codes or other structured data signifying the use of CPAP

improves phenotyping precision slightly (0.943–0.951). Additional

improvements gained using the PheCAP procedure include the use

of a “data floor” to exclude participants with sparse EHR documen-

tation and adjustment for healthcare utilization to control for

biases,41 which were likely to have improved the precision of the �1

PheCodes and all other algorithms. Putative cases can be restricted

to those with multiple ICD diagnosis coding dates to improve preci-

sion in situations where access to text and/or procedural data is im-

possible.

We systematically examined the potential relationships between

sleep apnea cases, matched controls, and comorbid diseases by

leveraging improvements in the diagnostic accuracy of comorbidities

using NLP.20,30,40 The majority of tested diseases (170 incident

PheCodes and 281 cross-sectional PheCodes out of 527 tested PheC-

odes) had significantly different incidence and/or prevalence rates

between sleep apnea cases and controls following Bonferroni correc-

tions (Tables S5 and S6). Given the known associations of sleep ap-

nea with multiple metabolic, cardiovascular, and neurocognitive

morbidities,1 this is not surprising. These data highlight the role of

sleep apnea as a risk factor for a broad range of diseases. Unexpect-

edly, patients with sleep apnea were at lower risk for incident diag-

noses for non-Hodgkin’s lymphoma and secondary malignancy of

bone, with similar directionality in the cross-sectional results. We

will attempt to replicate these results in future studies as these could

be due to practice patterns in our system. Further work is needed to

understand the pathophysiological mechanisms between sleep apnea

and these diseases, the relative contributions of sleep apnea com-

pared to competing risk factors for these diseases, and whether cer-

tain sleep apnea subtypes and groups of comorbidities have

potential statistical relationships, which may aid in improved patient

risk stratification and more personalized treatment strategies.

Personalized treatment may involve different gender-specific

strategies. A number of comorbid diseases had odds ratio estimates

that diverged in sex-stratified analyses (Tables S5 and S6, Figures S1

and S2). There are well-described gender differences in the physiol-

ogy of sleep apnea, with men generally having more hypoxemia and

women having more arousals44—factors that may influence propen-

sity for future diseases. A portion of the differential odds ratios be-

tween men and women for specific diseases may be due to

differences in sleep apnea subtypes.44–46 Notable PheCodes that

have higher odds ratios of incidence in women include chronic pul-

monary heart disease, gout, and congestive heart failure not other-

wise specified.

Multiple sleep disorders are often observed in the same patients.

Other sleep disorders, including RLS, had higher odds ratios in

cross-sectional analyses (Table 4). The RLS association may be due

Table 4. Cross-sectional disease enrichment among sleep apnea cases

PheCode Translation Odds ratio Prevalence in sleep

apnea cases

Prevalence in

matched controls

327.1 Hypersomnia 21.52 (15.95–29.02) 7.92 0.40

327.71 Restless legs syndrome 6.77 (5.55–8.27) 7.18 1.13

278.11 Morbid obesity 5.56 (5.02–6.16) 23.94 5.36

327 Sleep disorders 4.61 (4.01–5.29) 11.63 2.78

428.4 Heart failure with preserved ejection fraction (Diastolic

heart failure)

4.45 (3.79–5.23) 8.41 2.02

415.2 Chronic pulmonary heart disease 3.99 (3.35–4.75) 6.77 1.79

278.1 Obesity 3.67 (3.42–3.93) 52.06 22.84

512.9 Other dyspnea 3.64 (3.35–3.94) 32.81 11.84

263 Other nutritional deficiency 3.54 (2.97–4.23) 6.13 1.81

1013 Asphyxia and hypoxemia 3.28 (2.84–3.78) 9.15 2.98

470 Septal deviations/turbinate hypertrophy 3.13 (2.46–3.99) 3.02 0.98

512.7 Shortness of breath 3.08 (2.85–3.33) 34.54 14.61

401.21 Hypertensive heart disease 2.92 (2.50–3.41) 7.22 2.60

509.1 Respiratory failure 2.89 (2.43–3.43) 5.87 2.11

296.22 Major depressive disorder 2.86 (2.65–3.10) 32.48 14.38

428.1 Congestive heart failure (CHF) not otherwise specified 2.80 (2.55–3.09) 19.26 7.84

276.6 Fluid overload 2.79 (2.40–3.25) 7.34 2.76

291.8 Alteration of consciousness 2.74 (2.31–3.24) 5.97 2.27

278.4 Abnormal weight gain 2.70 (2.39–3.05) 11.80 4.72

539 Bariatric surgery 2.61 (2.36–2.88) 17.31 7.43

290.3 Other persistent mental disorders due to conditions

classified elsewhere

2.58 (2.13–3.13) 4.33 1.72

505 Other pulmonary inflammation or edema 2.57 (2.15–3.08) 4.98 2.00

496 Chronic airway obstruction 2.53 (2.25–2.86) 11.38 4.82

313.1 Attention-deficit hyperactivity disorder 2.51 (2.08–3.02) 4.56 1.87

798.1 Chronic fatigue syndrome 2.51 (2.05–3.07) 3.90 1.59

Note: Totally, 527 PheCodes with �1% overall prevalence were tested. Controls were matched for age, sex, BMI, population, and healthcare utilization. Of

the tested PheCodes, 281 nonredundant PheCodes had significantly different cross-sectional prevalence between PheCAP-defined cases and matched controls in

combined-sex and/or sex-stratified analyses. Lead results are shown here. Complete results, including sex-stratified results, can be found in Table S6.
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in part to an increased awareness of sleep clinicians who may screen

for other sleep disorders when examining patients suspected of hav-

ing sleep apnea. RLS prevalence is increased among patients with

sleep apnea versus controls, and RLS symptoms are reduced after

treatment for sleep apnea.47,48 We could not completely disentangle

the effects of central versus obstructive sleep apnea, as 90% of the

participants originally diagnosed with CSA were also diagnosed

with obstructive sleep apnea. “Cardiac defibrillator in situ” and

“delirium due to conditions classified elsewhere” were significantly

associated in a sensitivity analysis considering patients with a CSA

diagnosis versus matched controls (P�8.40�10�4). The nonover-

lapping odds ratio estimates were higher in the CSA diagnosis group

compared to the remainder of the sample without a prior CSA diag-

nosis. Future work is needed to determine whether these odds ratio

differences are due to CSA-specific effects, and whether comorbid

sleep disorders have additive effects that may contribute to an in-

creased prevalence and/or incidence of comorbid disease.

Most of the lead associations between polysomographic traits

and comorbidities were based on a measure of low overnight oxygen

saturation during sleep (Per88), in contrast to the more commonly

used AHI (Tables S9 and S10, Figure S4). This is consistent with

prior single disease reports49–51 but has not been systematically eval-

uated to our knowledge. Hypoxemia measures have been the bases

of our most significant genetic associations with sleep-disordered

breathing to date.24 Ten of the 17 diseases that were highly associ-

ated with Per88 (P<1�10�10) in cross-sectional analyses were not

nominally associated with AHI (P> .05; Table S8, Figure S4), indi-

cating that a readily available PSG summary measure is more signifi-

cantly associated with dozens of comorbidities compared to the AHI.

Additional associations may be observed in the future using more

specific measures such as the hypoxic burden.52 The AHI (a count of

the number of breathing pauses per hour of sleep) is increasingly rec-

ognized as a heterogeneous marker, resulting in a wide variety of

stresses due to differences in durations and severity of individual

breathing pauses that comprise the AHI.46 Increased AHI was associ-

ated with reduced likelihood of cross-sectionally ascertained bariatric

surgery, essential hypertension, migraine and, notably, insomnia.

The latter association may reflect the common occurrence of co-

morbid insomnia with sleep apnea53 or the increased likelihood of

sleep disorder recognition once a patient is referred to a sleep special-

ist. The strength of a disease’s association with measures of disrupted

sleep versus hypoxemia may provide insights into potential patho-

physiological connections for future study.

Strengths and weaknesses
Strengths of this study include applying advanced NLP methods to

large-scale sleep phenotyping for the first time, to our knowledge.

Careful consideration of comorbidity phenotyping and adjustment

for healthcare utilization41 increases our confidence in the associa-

tion of sleep apnea with the increased prevalence of hundreds of dis-

orders, using a phenome-wide approach. We validated these

associations with several disorders using polysomnography. Meas-

ures of hypoxemia may be more sensitive to the risk of certain disor-

ders compared to the AHI.

While our algorithm may conceivably not generalize to other

environments, similar portable algorithms have been demonstrated

for other phenotypes.29,54 Moreover, the SAFE algorithm was

designed to extract common concepts from background literature,33

reducing the risk of overfitting. The CPAP term that remained pre-

dictive following cross-validated LASSO regression represents a

first-line therapy used in clinical sleep laboratories. We will attempt

to replicate and extend our findings in other diverse biobanks in fu-

ture studies.

CONCLUSION

We developed an advanced sleep apnea clinical phenotyping algo-

rithm that was able to increase the precision of EHR data by

leveraging NLP and identified several novel cross-sectional and inci-

dent associations between sleep apnea and other diseases. Despite

their challenges, large-scale EHR analyses have provided important

insights into the biology of disease.55,56 EHR analyses of sleep apnea

will be an attractive, pragmatic pathway for advancing our under-

standing of this important disorder at an unprecedented scale.
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