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Abstract

Determining the primary structure (i.e., amino acid sequence) of a protein has become cheaper, faster, and more accurate.
Higher order protein structure provides insight into a protein’s function in the cell. Understanding a protein’s secondary
structure is a first step towards this goal. Therefore, a number of computational prediction methods have been developed
to predict secondary structure from just the primary amino acid sequence. The most successful methods use machine
learning approaches that are quite accurate, but do not directly incorporate structural information. As a step towards
improving secondary structure reduction given the primary structure, we propose a Bayesian model based on the knob-
socket model of protein packing in secondary structure. The method considers the packing influence of residues on the
secondary structure determination, including those packed close in space but distant in sequence. By performing an
assessment of our method on 2 test sets we show how incorporation of multiple sequence alignment data, similarly to
PSIPRED, provides balance and improves the accuracy of the predictions. Software implementing the methods is provided
as a web application and a stand-alone implementation.
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Introduction

For protein sequences of unknown structure and/or biological

function, one of the first and quite insightful analyses of the linear

sequence of amino acids (i.e., the primary structure) is a prediction

of the secondary structure. Fig. 1 shows a four-state secondary

structure definition of the primary amino acid sequence. Advances

in genomic sequencing technologies have made obtaining protein

sequences relatively cheap, accurate and fast, in comparison to the

costly and involved approaches to solving a protein’s structure.

However, the number of protein sequences far outpaces knowl-

edge of their structure. Improvements in secondary structure

prediction would have impact across many fields of computational

biology. As the basis for higher order protein structure, more

accurate secondary structure predictions is a necessary step for

improved modeling of a protein’s fold [1,2] and identification of its

function [3]. Secondary structure modeling also plays an

important role in the rational design of protein structure [4] and

enzymatic function [5] as well as in drug development [6].

Depending on the set of protein sequences assessed, the

accuracy of secondary structure prediction methods has improved

steadily to an average of upwards of 80% [7]. The most successful

approaches for secondary structure prediction apply machine

learning algorithms to maximize the sequence relationship

between a proteins’ primary sequences and their assigned

secondary structure as defined by the program DSSP [8]. One

of the early approaches that has become a standard in the field,

PHD [9] and its current incarnation PredictProtein [10], employs

an artificial neural network and sequence profiles in identifying

secondary structure from a protein sequence. Other successful

servers such as Jpred [11] and PSIPRED [12] also apply artificial

neural networks. As an approach, neural net based prediction

methods are quite popular and accurate [13,14]. Other machine

learning methods attempt to match prediction accuracy using

hidden Markov models (HMM) [15–17] and support vector

machines (SVM) [18,19]. Due to their consistently high accuracy

of prediction, these methods have become the de facto standard

against which other secondary structure prediction methods

measure their success, many of which have been evaluated in a

recent review [20]. However, the accuracy has essentially

remained at 80% for many years [2,20].

Because these expert systems rely on indeterminate relationships

between the primary sequence and a 3 or 4 state secondary

structure classification, a potential approach to improving

secondary structure predictions is to incorporate higher order

structural information. The initial use of structural information to

model protein secondary structure was based on the hydrophobic

patterns found in amphipathic helices and sheets [21] or the

hydrophilic spacing between residues and turn regions [22]. With

the recent success of fragment-based structure prediction, numer-

ous methods have incorporated structural information from local

fragment prediction [23–25] to more global structural relation-

ships [26–29] into secondary structure prediction. These recent
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methods have been able to reproduce the 80% accuracy of the

machine learning approaches. The approach tested in this paper

applies sequence to structure relationships defined by packing of

residues based on the knob-socket model [30,31].

Improving the previous models of packing in helix [32] and

sheet [33], the knob-socket model provides a simple and general

motif to describe the packing in protein structure that has been

shown to relate the primary sequence to the packing structure at

both the secondary and tertiary structure levels in both helices [30]

and sheets [31]. Whereas the previous knob-into-holes [32] and

ridges-into-grooves [33] are each limited to describing packing at

defined angles within only a single type of secondary structure, the

knob-socket model encompasses all packing within proteins at all

angles and between all types of secondary structure. The knob-

socket model simplifies the convoluted packing of side-chains into

regular patterns of a single knob residue from one element of

secondary structure packing into a socket formed by 3 residues

from another element of secondary structure. Because the

composition of both the knobs and socket exhibit preferences for

certain amino acids, this knob-socket model not only relates

primary sequence to tertiary packing structure, but also associates

the primary sequence with secondary structure packing. At the

level of secondary structure, only the local 3-residue socket plays a

role in this model, since the knob residue defines tertiary packing

structure. The repetitive main-chain hydrogen bonding for regular

secondary structure produces a consistent arrangement of sockets.

The arrangements defines the secondary structure packing motifs

that provide the sequence patterns to identify secondary structure

(Fig. 2). This is the case even for the irregular coil secondary

structure.

In this paper we propose a Bayesian model for secondary

structure prediction given the primary structure. The method

considers the packing influence of residues on the structure

determination, including those packed close in space but distant in

sequence. Fundamentally, secondary structure is defined by the

regular hydrogen bonding patterns between the main-chain polar

groups of amino acids in the linear sequence. From this definition,

secondary structure is usually described by three classes (a-helix, b-

sheets, and other or coil) for three-state predictions. The regular

hydrogen bonding patterns define the states of a-helix or b-strand,

whereas the irregular coil is defined by the lack of repetitive

hydrogen bonding. Instead of hydrogen bond patterns, the knob-

socket model identifies the regular patterns of packing not only in

a-helices and b-strand, but also in coil structure (Fig. 2). We

therefore develop a probabilistic model for secondary structure

prediction that is informed by the packing structure between

residue defined by the knob-socket model. The local sequence

relationships are incorporated, similarly to PSIPRED [12] [34], as

a set of multiple sequence alignments (MSA). The incorporation of

MSA information has been a standard approach for many years

[35]. We compare performances of our method with TorusDBN

[36] and the benchmark machine learning approach PSIPRED,

on two test sets. TorusDBN is a conformational sampling method

(akin to a fragment library) and was not developed for secondary

structure prediction. A side-benefit of the TorusDBN method,

however, is the prediction of protein secondary structure. Our

results demonstrate that adding local structural information (as

defined by the knob-socket model) in the prior distribution

increases our method’s accuracy to just below current standards on

one of the test set and above on the larger test set.

We have developed both a web application and stand-alone

implementation of the methods described in this paper. The

website is http://bamboo.byu.edu and the stand-alone implemen-

tation is bamboo, an open-source R package available on the

Comprehensive R Archive Network (CRAN). The package

implements all the methods described in the paper and it provides

all the data used in our analysis. Documentation and an example

are provided. The package may be installed on the latest version of

R by running: install.packages (‘‘bamboo’’).

Results and Discussion

We evaluate the performance of our proposed method against

the 3,344 chains in the ASTRAL30 and the 203 chains in the

CASP9 data sets. For each data set, the DSSP annotation [8] was

used as the true secondary structure state. Over the thousands of

proteins, the secondary structure prediction based on the amino

acid sequence a is compared to the DSSP value at each position.

Since test sets were not part of the 15,470 chain training set, the

accuracy reported for our approach compared to the true

secondary structure value are reliable assessments of performance.

The knob-socket packing was implemented in 2 different ways

with 2 posterior summaries, which amounts to 4 separate methods.

We compare the prediction accuracy of our method against 2

other secondary structure prediction methods: TorusDBN [36]

and PSIPRED [12]. PSIPRED was run using 2 sequence

databases: sequences from the PDB for PSIPRED-PDB and a

non-redundant sequence database for PSIPRED-NR, described in

more detail in the methods. The purpose of the PSIPRED-PDB is

to provide a more direct comparison of methods, since the MSA’s

used by our method were limited to sequences from the PDB [37].

However, with a deep sequence alignment as an input, PSIPRED-

NR produces the best results, which coincide with the benchmark

for secondary structure prediction accuracy.

Table 1 reports the percent accuracy of each method on the

ASTRAL30 and CASP9 test sets in terms of classification recall,

i.e., the percent of the true DSSP defined secondary states that are

correctly predicted for 3 classes, or Q3. Because TorusDBN and

PSIPRED are three-state models that do not predict turn residues,

the turn predictions of our model were merged into the coil class to

facilitate comparisons. TorusDBN and PSIPRED both performed

consistently between the 2 test sets. Although secondary structure

prediction is not the focus of TorusDBN, TorusDBN exhibits a

high of 62% accuracy for the ASTRAL30 test set. For PSIPRED,

secondary structure. If this were the entire protein, then we would have L = 29, M = 6, and (g,l)~((g1,:::,g6),(l1, . . . ,l6))
~((C,H,T ,C,H,C),(3,6,3,2,10,5)).
doi:10.1371/journal.pone.0109832.g001
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Figure 1. The first 29 amino acids from the protein clathrin 1c9l domain   [46] with our associated parameterization (g,l) of the
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using only sequences from solved structures performs up to 15

percentage points better than TorusDBN, while allowing deeper

sequence alignments into the larger non-redundant sequence

database increases the Q3 accuracy upwards of 20 points to the

established standard of 80% on the ASTRAL30 data set and

slightly higher 81% on the CASP9 data set. As a baseline for our

method, the NonInfo-MAP uses a non-informative prior and

maximization of the posterior probability, producing the lowest

measured accuracy of 52% on the CASP9 data set. Implementing

the secondary structure guided block sampling of the posterior

distribution (NonInfo-MP in Table 1) provides a modest increase

in prediction accuracy, although still a bit below TorusDBN for

both test sets. The fact that TorusDBN and our NonInfo-MP

essentially perform equally is to be expected given the fact that

neither use an informative prior. Incorporating MSA information

to inform our method’s prior distribution results in a significant

improvement in accuracy, especially with the ASTRAL30 test set

where both implementations of the posterior sampling reach

accuracies above the PSIPRED-NR benchmark of 80% at 84%

for MSA-MAP and 88% for MSA-MP. Accuracies improve for the

CASP9 test set too, although they remain lower than PSIPRED-

NR at 69% for MSA-MAP and 75% for MSA-MP. This decrease

in performance is likely due to the different amount of MSA

information available for the two data sets. For ASTRAL30, in

fact, there were 201 sequences without an MSA, which is 6%,

while for CASP9, there were 109 sequences, which is 54%.

Recall and precision is broken down for each of the secondary

structure states to provide a more detailed understanding of Q3

prediction accuracy. For the ASTRAL30 and CASP9 sets

respectively, a comparison of Q3 classification recall is shown in

Tables 2 and 3 and Q3 classification precision is shown in

Tables 4 and 5. The recall tables indicate that TorusDBN best

predictions are of the helix and coil states. The majority of

incorrectly predicted helix residues are assigned the coil state and

the converse is true for the coil state. The strand residues are

assigned essentially by chance with a uniform distribution over the

3 states. For precision, the TorusDBN results are consistently the

same across all three states, where the distribution of prediction is

60% correct and then about equally mispredicted at 20% for the

other 2 states. The PSIPRED program’s recall in both

implementations and across both test sets performs the best at

identifying the coil state, then the helix state and finally the strand

state. Incorrect predictions of state are consistently coil that should

be strand or helix. PSIPRED does not mix up helix and strand

states often. Precision of PSIPRED predictions is the best for the

helix state and worst for the coil state, where the strand state is

twice as likely to be predicted as coil than the helix state.

Reiterating the recall results, the precision of PSIPRED helix and

strand predictions consistently are incorrectly assigned coil states.

For the baseline NonInfo-MP implementation of our method,

the recall results (Tables 2 and 3) indicate that inclusion of this

model for coil correctly predicts a high of 75% of coil residues.

This result is accomplished by over-predicting the coil state such

that coil is the major error in predicting helix and strand at around

37% for each. The precision for NonInfo-MP reveals that the helix

state is most precisely predicted followed by coil and then sheet for

both the ASTRAL30 (Table 4) and CASP9 (Table 5) test sets.

NonInfo-MP and TorusDBN do not use prior information and,

therefore, do not perform particularly well, our MSA-MP

predictions perform very well on the ASTRAL30 set at 88%

accuracy. The recall in Table 2 is at 90% for helix, 89% for coil

and 85% for strand. The predominate error is to assign coil to

helix and sheet at 9% and 14%, respectively. This is especially

encouraging as the MSA-MP uses essentially the same sequence

database as PSIPRED-PDB. The precision for the MSA-MP

method (Table 3) corroborates these results. While TorsuDBN

Figure 2. Local structural motifs used to model protein secondary structure as defined by the knob-socket model. On the top for each
type of secondary structure, ribbon diagrams of the protein backbone with black spheres at Ca positions are presented. On the bottom, two-
dimensional lattice representations are shown of the local residue interactions that define secondary structure, where solid lines represent covalent
contacts between residues and broken lines are packing interactions. Because only the local interactions are being considered to predict secondary
structure, only the socket portion of the knob-socket model is used. The knob portion signifies interactions at the level of tertiary structure or packing
of non-local residues distant in the protein sequence. Each of the 4 types of secondary structure are described in more detail. (a) Helix Model: Relative
residue positions and interactions are shown. Two types of sockets are represented in different grey scale: (i,iz3,iz4) sockets in dark grey and
(i,iz1,iz4) sockets in light grey. (b) Strand Model: Double-side sheet sockets are shown. Sockets (i,iz1,iz2) and (iz2,iz3,iz4) in white are
facing one direction, a socket (iz1,iz3,iz4) in dark grey faces the other side. Also, the side chain only socket (i,iz2,iz4) is shown in light grey. (c)
Coil Model: Three types of coil sockets are shown. The socket (i,iz1,iz2) is closed socket with all three residues in contact one another, the socket
(iz1,iz2,iz3) is open socket with (iz1,iz2) contact and (iz2,iz3) contact but no contact between iz1 and iz3, and the socket
(iz2,iz3,iz4) is strained socket with no contact between iz3 and iz4. (d) Turn Model: Three residue sockets (i,iz1,iz2), (iz1,iz2,iz3),
(i,iz2,iz3), and (i,iz3,iz4) in the 5 residue turn are shown.
doi:10.1371/journal.pone.0109832.g002
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and PSIPRED accuracies are consistent between the 2 test sets,

our MSA-MP method exhibits worse Q3 prediction accuracies for

the CASP9 data set. However, the overall accuracy of 74% is on

par with the PSIPRED-PDB value of 75%. For recall, the drop in

accuracy accompanies an increase in incorrect assignment of helix

and strands to coil. The precision drop with the MSA-MP on the

CASP9 data set shows an increase in all of the off-diagonal

misprediction states. Indeed, the NonInfo implementation of our

method is used for those sequences without MSA information,

resulting in the overall predictions being influenced by the over

prediction of the coil state.

Fig. 3 compares the Q3 results from the different methods to

the DSSP [8] defined states for the phospholipase protein 3rvc
[38], where the marginal posterior probabilities from our

NonInfo-MP and MSA-MP methods are also plotted. Performing

the worst in this set are TorusDBN and our NonInfo-MP, and

both of these are limited to primarily local information. As

indicated in the recall and precision tables, TorusDBN over

predicts the helix state and under predicts the sheet state, which is

clearly shown by the prediction in Fig. 3. Our NonInfo-MP

method is slightly better at finding regions of correct secondary

structure, but the length and limits of secondary structure states

are poorly predicted. As shown by Fig. 2, the longest sequence

distance that the knob-socket model considers is 5 residues.

Clearly, information limited to local residues is unable to

accurately reproduce the native secondary structure over large

segments of sequence. Yet, over all of our predictions using the

NonInfo-MP implementation, the average difference between the

incorrect and correct probabilities was 0.244, with a standard

deviation of 0.173 and an interquartile range (that is, the

difference between the 25th and the 75th percentiles) of 0.244.

This implies that the probabilities are somewhat close in areas of

misprediction. With a residue window of 15 residues [34],

PSIPRED in both of its applications is able to better identify the

sheet residues and define the transitions between the different

secondary structure states. Adding in the MSA information, the

MSA-MP method adds more global secondary structure state

information to the local model provided but the knob-socket

model. The accuracy in identification of secondary structure states

is very accurate, with most of the errors in defining the ends of

secondary structure segments. In the plot of the MSA-MP, the

marginal probability for a certain type of structure is clearly

dominant at many positions in the middle of secondary structure

segments, with values close to 1, but drops at the residues that

transition between secondary structure states, with values of 0.5 or

a little higher. While the case shown in Fig. 3 displays a favorable

prediction for our MSA-MP method, it is at these transition points

where the marginal probabilities of the secondary structure states

clearly show less confidence in the prediction. Plots of this type

help us understanding how incorporating information about the

global influences on secondary structure can aid prediction.

As noted above and shown in lower portion of Fig. 3, the

posterior distribution of marginal probabilities facilitates inference

and adds a level of interpretation available only through a

Bayesian approach. In particular, these marginal probabilities

provide an extra level of confidence in the predictions. The

posterior distributions in Fig. 3 are not only higher in areas that

are correctly predicted, but there is a great spread between the

marginal probability of the correct state than the next closest

incorrect state. For the transitions areas, the marginal probabilities

are much closer in value. To quantify of this, the difference in

probability between the correct and highest incorrect state have

been calculated and are reported for each state in Table 6. In the

ASTRAL30 data set, the difference is between 56% and 70%
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when the prediction is correct, whereas the difference is only

between 34% and 39% when incorrect. In the CASP9 data set, the

values are smaller in both cases, where the difference for correct

predictions ranges from 42% to 54% and the difference for

incorrect predictions is 24% to 28%. So, as a simple rule of thumb,

a separation of over 50% would strongly indicate a good

prediction, and values less than 50% would indicate that the

prediction is potentially wrong.

Not only can we examine the marginal posterior probability at

each position, but our method allows us to make inference on the

number of blocks in total and the number of blocks of each type.

Take, for example, protein T0622-D10 from the CASP9 data set.

These posterior distributions are plotted in Fig. 4. For this protein,

the model estimated well the total number of blocks, but has over

estimated the number of coil blocks and under estimated the

number of turn blocks.

Our results reinforce the general concept that more context is

necessary to understand the environment that induces secondary

structure that in effect goes against its amino acid composition.

Improvement may be possible by considering higher order

packing that can be provided by the knob-socket model. As an

example, instead of strand predictions, a construct for tertiary

packed sheets would potentially improve the accuracy by

providing a strong differentiation over coils using the knob-socket

Table 2. Classification Q3 recall (%) of TorusDBN, PSIPRED, and our method under different priors on ASTRAL30 test dataset.

Other Methods

(a) TorusDBN (b) PSIPRED-PDB (c) PSIPRED-NR

Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 69 30 23 77 5 9 79 3 6

Strand 7 33 6 3 66 8 1 68 6

Coil 24 37 71 20 29 83 20 29 88

Overall 62 77 80

Our Methods

(d) NonInfo-MAP (e) NonInfo-MP (f) MSA-MAP (g) MSA-MP

Helix Strand Coil Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 42 16 17 50 12 13 84 2 8 90 1 6

Strand 17 43 14 15 51 11 1 79 6 1 85 5

Coil 41 41 69 35 37 76 15 19 86 9 14 89

Overall 53 60 84 88

*Each column of the matrix represents the instances in an actual class, while each row represents the instances in a predicted class. Note that the sum of elements of
each column equals to 100.
doi:10.1371/journal.pone.0109832.t002

Table 3. Classification Q3 recall (%) of TorusDBN, PSIPRED, and our method under different priors on CASP9 test dataset.

Other Methods

(a) TorusDBN (b) PSIPRED-PDB (c) PSIPRED-NR

Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 72 31 24 77 6 10 82 2 7

Strand 6 30 5 4 62 10 1 69 7

Coil 22 39 71 19 32 80 17 29 86

Overall 61 75 81

Our Methods

(d) NonInfo-MAP (e) NonInfo-MP (f) MSA-MAP (g) MSA-MP

Helix Strand Coil Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 41 16 18 47 14 14 66 8 13 73 7 11

Strand 18 42 14 16 49 12 7 61 10 7 67 9

Coil 41 42 68 37 37 74 27 31 77 20 26 81

Overall 52 58 69 74

*Each column of the matrix represents the instances in an actual class, while each row represents the instances in a predicted class. Note that the sum of elements of
each column equals to 100.
doi:10.1371/journal.pone.0109832.t003
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model. While long range residue interactions have been integrated

in a general sense into previous methods [26,28], the knob-socket

model provides constructs that can correlate specific residue

patterns derived from packing interactions that identify secondary

structure.

Materials and Methods

Data Set
The secondary structure data was derived from the ASTRAL

SCOP 1.75 structure set [39] filtered at 95% sequence identity.

This structure set consisted of 15,470 individual protein domains

from the PDB [37] whose length range from 22 to 1,419 amino

acids and total 2,751,815 amino acids. Besides the training set, we

used two test sets. The first test set is the current release of SCOPe

2.03 data set [40] filtered at 30% sequence identity (ASTRAL30).

In this ASTRAL30 set we included the domains that are not

included in 1.75 version and only included in 2.03 version. The

transmembrane proteins were also excluded and this gave 2,794

domains. The data set integrity was further tested by breaking

down into the actual segments. When the structure has missing

residues, the chain was split into separate sequences and omitted in

this study if a chain is shorter than 25 residues. This produced

3,344 chains with 523,332 amino acids. The second test set was

Table 4. Classification Q3 precision (%) of TorusDBN, PSIPRED, and our method under different priors on ASTRAL30 test dataset.

Other Methods

(a) TorusDBN (b) PSIPRED-PDB (c) PSIPRED-NR

Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 63 16 21 86 3 11 91 2 7

Strand 22 59 19 5 78 17 3 84 13

Coil 20 18 62 17 13 70 16 13 71

Overall 62 77 80

Our Methods

(d) NonInfo-MAP (e) NonInfo-MP (f) MSA-MAP (g) MSA-MP

Helix Strand Coil Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 61 13 26 71 10 19 91 1 8 93 1 6

Strand 30 44 26 27 52 21 2 86 12 1 89 10

Coil 30 17 53 26 16 58 13 9 78 8 7 85

Overall 53 60 84 88

*Each column of the matrix represents the instances in an actual class, while each row represents the instances in a predicted class. Note that the sum of elements of
each row equals to 100.
doi:10.1371/journal.pone.0109832.t004

Table 5. Classification Q3 precision (%) of TorusDBN, PSIPRED, and our method under different priors on CASP9 test dataset.

Other Methods

(a) TorusDBN (b) PSIPRED-PDB (c) PSIPRED-NR

Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 61 17 22 84 4 12 91 2 7

Strand 19 63 18 7 74 19 2 84 14

Coil 19 21 60 16 16 68 13 14 73

Overall 61 75 81

Our Methods

(d) NonInfo-MAP (e) NonInfo-MP (f) MSA-MAP (g) MSA-MP

Helix Strand Coil Helix Strand Coil Helix Strand Coil Helix Strand Coil

Helix 58 15 27 67 12 21 77 6 17 82 5 13

Strand 30 45 25 27 52 21 12 69 19 11 73 16

Coil 30 19 51 27 17 56 22 16 62 17 14 69

Overall 52 58 69 74

*Each column of the matrix represents the instances in an actual class, while each row represents the instances in a predicted class. Note that the sum of elements of
each row equals to 100.
doi:10.1371/journal.pone.0109832.t005
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created from the targets used in CASP9 experiments in 2010 [41].

The CASP9 set includes 147 structures, and the same cleanup

procedure produced 203 chains with 23,298 amino acids.

To compare the performance with TorusDBN [36] and

PSIPRED [34], our method was trained with the older

ASTRAL30 1.75 set [42,43]. The training set did not contain

any chains from either the ASTRAL30 and CASP9 test sets

described, and so is properly jack-knifed with regards to the test

data. TorusDBN and PSIPRED predictions were carried out

locally using downloaded copies of the programs. For TorusDBN,

the backbone-dbn-torus predictor program was used without any

additional input. The prediction with PSIPRED was carried out

with a BLAST [44,45] search on two different databases. The NR

is a full non-redundant sequence database with low-complexity

regions filtered and the other nrPDB is the subset of sequences

with determined structures in the PDB [37]. The BLAST search

was also performed on a local computer with the downloaded

program. Because of the large number of sequences in the NR

database, the BLAST search took significantly longer than nrPDB.

Multiple sequence alignments of the similar structures were

obtained from the BLAST search with the nrPDB database for

our MSA prediction. Also, in our prediction, the sequences in the

ASTRAL30 and CASP9 were jack-knifed out of the nrPDB

database. This insured that our MSA based predictions had no

information from the native sequence.

Notation
Let a~(a1, � � � ,aL) be an observed amino acid sequence, i.e.,

protein primary structure, where al[A~fA,R,N,D,C,E,Q,G,
H,I ,L,K ,M,F ,P,S,T ,W ,Y ,Vg is a one-letter code denoting one

of the 20 proteinogenic amino acids and L is the protein length.

The secondary structure of a protein is the general form of its local

segments, which we refer to as ‘‘block types’’. [8] proposed the

Dictionary of Protein Secondary Structure (DSSP) for protein

secondary structure with single letter codes. Although generaliza-

tions may be desirable, we consider the following 4 block types (in

italics) from the original 8 structures defined in DSSP (in

parentheses):

N Helix ‘‘H’’: 310 helices (G), a-helices (H), or p-helices (I);

N Strand ‘‘E’’: extended strands in parallel or anti-parallel b-

sheets (E);

N Turn ‘‘T’’: hydrogen bonded turns of length 3 or more

amino acids (T);

N Coil ‘‘C’’: b-bridge residues (B), bends (S), or random coils

(C).

Figure 3. Marginal probability (MP) curves across positions for the phospholipase protein 3rvc [38]. Shown at the top is the true
secondary structure, TorusDBN’s prediction, PSIPREDs’ prediction, and the prediction from our method (MP-MSA).
doi:10.1371/journal.pone.0109832.g003

Table 6. Means and standard deviations (in parenthesis) of differences in marginal probability between correctly predicted
secondary structure (Correct) and the next highest probability, and between secondary structure predicted incorrectly (Wrong) and
highest probability for ASTRAL30 and CASP9 data sets.

Helix Strand Turn Coil

ASTRAL30 Correct 0.71(0.25) 0.70(0.27) 0.59(0.29) 0.56(0.31)

Wrong 0.34(0.26) 0.36(0.25) 0.39(0.27) 0.35(0.26)

CASP9 Correct 0.54(0.30) 0.53(0.30) 0.42(0.28) 0.45(0.34)

Wrong 0.24(0.19) 0.25(0.19) 0.28(0.23) 0.28(0.22)

doi:10.1371/journal.pone.0109832.t006
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Let S~fH,E,T ,Cg denote the set of block types. The

secondary structure can be encoded in a convenient fashion by

representing the structural types and segment length

(g,l)~((g1,l1), � � � ,(gM ,lM )), where gm[S gives the secondary

structure type in the m-th block and lm gives the length of that

block. Note that lm[f1, � � � ,Lg and
PM

m~1 lm~L. For example,

Fig. 1 shows the representation of the secondary structure of the

protein clathrin 1c9l [46].

In the case of secondary structure prediction, the quantities of

interest are g and l corresponding to the known amino acid

sequence a, i.e., the type and length of each secondary structural

segment. The cumulative length also contains the segment location

information. Thus, mathematically, the problem is to infer the

values of (g,l) given the amino sequence a.

Sampling Model
We start by considering the joint distribution of the data

a~(a1, � � � ,aL) given the latent secondary structure, (g,l). We

write the joint probability mass function (p.m.f.) p(aDg,l) as a

product over blocks:

p(aDg,l)~ P
M

m~1
pgm (aim , � � � ,ajm ), ð1Þ

where im~1z
P

m’vm lm’ is the starting position of the m-th

block, jm~
P

m’ƒm lm’ is its ending position, and pgm is one of pH ,

pE , pT , and pC based on the value of gm[S. By grouping portions

of the sequence into blocks, our method leverages the natural

property that secondary structure states are necessarily formed by

groups of residues. Our method thus captures the local context or

environment around a residue that influences its secondary

structure state, which aids prediction accuracy in all three states.

As described below, pH , pE , pT , and pC are designed to reflect the

protein three-dimensional local structure at the molecular level.

(See Fig. 2.)

We evaluate the sampling model for each block as the product

of position-specific marginal or conditional distributions estimated

from the PDB. At each position, the sampling model for a single

amino acid a is of the form:

p(aDX)~

ð
p(aDh)p(hDX)dh, ð2Þ

where X~(X1, . . . ,X20) is the count vector for the number of

times that each of the 20 amino acids is found in the training data

(from the PDB) for the situation of interest. Specific situations are

described in the following subsections and could be, for example,

the start of a helical block or the third position in a strand with

amino acids A then C proceeding it. When a is viewed as a vector

of length 20 with all zeros except a single 1, p(aDh) in (2) is a

multinomial distribution with one trial and probability vector h.

Assume the following Bayesian model: X Dh*Multinomial(n,h)

and h*Dirichlet(1, . . . ,1), where n~
P20

k~1 Xk. Due the con-

jugacy, the posterior distribution p(hDX) is hDX*Dirichlet
(X1z1, . . . ,X20z1). The integration of the product of p(aDh)
and p(hDX) with respect to h makes p(aDh) a Dirichlet-multinomial

distribution. Because the number of trials is simply 1, evaluating

p(aDh) requires only that we divide one plus the number of times

the amino acid a is present in the situation of interest in the

training dataset by n+20.

Sampling Model for Helices. We propose that the sampling

model for helices is defined by a product of four p.m.f.’s as follows:

H (ai, . . . ,aj)~

pH1
(ai)pH2

(aiz1Dai)pH3
(aiz2Dai,aiz1)pH4

(aiz3Daiz1,aiz2)|

pH5
(aiz4Dai,aiz1,aiz3)| � � �|pH5

(aj Daj{4,aj{3,aj{1),

ð3Þ

Figure 4. The posterior distribution of the number of blocks in total (left) and the number of blocks of each type (right) for protein
T0622-D10 from the CASP9 data set. Also displayed is the number of the blocks in the truth, the MAP estimate, and the MP estimate in red, blue,
and green color, respectively.
doi:10.1371/journal.pone.0109832.g004

Model of Protein Primary Sequence for Secondary Structure Prediction

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109832



where pH1
is a multinomial distribution with a category for each of

the 20 amino acids, pH2
is a 20-dimensional multinomial

distribution conditioned on the antecedent amino acid, pH3
and

pH4
are multinomial distributions conditioned on the two previous

amino acids, and pH5
is a 20-dimensional multinomial distribution

conditioned on the previous amino acid, the amino acid three

positions back, and the amino acid four positions back. In the case

of a short helical block, terms beyond the length of the helix are

simply ignored (i.e., pH (ai,aiz1,aiz2)~pH1
(ai)pH2

(aiz1Dai)

pH3
(aiz2Dai,aiz1) for a helix of three amino acids). This

formulation for pH (ai, � � � ,aj) is tractable, yet still respects the

biochemistry of helices, as shown in Fig. 2(a).

As previously explained, in our approach we evaluate the

simpler p.m.f.’s in (3) based on training data. The 20-dimensional

probability vector for pH1
is taken to be the posterior mean from a

Bayesian model assuming a multinomial sampling model and a

non-informative Dirichlet prior with all hyperparameters equal to

1. The data for this estimation is obtained from the PDB by

counting the number of helical blocks that start with each of the 20

amino acids. Similarly, since there are 20 amino acids on which to

condition, there are 20 p.m.f.’s of type pH2
and 20620 p.m.f.’s of

type pH3
. Likewise, since there are 20620620 = 8,000 combina-

tions of three amino acids, there are 8,000 p.m.f.’s of type pH4
.

Again, these probability vectors for pH are calculated from all the

sequences in the PDB and stored for evaluating the likelihood for a

helical block as in (2).

As described to this point, the sampling model for helix is a

‘‘forward’’ model in which the contribution of each amino acid is

conditioned on previous amino acids. An important aspect of the

biochemistry of each block is the existence of capping signals: the

preference, through side chain-backbone hydrogen bonds or

hydrophobic interactions, for particular amino acids at the N- and

C-terminals of a helix. Usually, the terminal end is the first and last

3 or 4 positions in a block [47], whose effect is reflected by the

amino acid distribution which significantly differ from that of

internal positions. These signals have been characterized exper-

imentally in terms of their stabilizing effect in helical peptides [47].

Whereas the forward model captures the capping signal in the

N-terminus, we also consider a ‘‘backward’’ model. The backward

model is the exact opposite of the forward model. It is built

sequentially by starting at the C-terminus of the block and working

backwards to the front, each time conditioning on amino acids

closer to the C-terminus. Apart from the direction, the form of the

conditioning is the same as the forward model. Thus, the sampling

model for the helical blocks is a mixture model, composed of the

forward component and the backward component as follows:

pH (ai, � � � ,aj)~wzpHz (ai, � � � ,aj)zw{pH{ (aj , � � � ,ai),

where pHz is the forward model defined in (3) and

wz~w{~1=2. A mixture model is not the only way to handle

both capping ends and, for example, a single unified model would

also be valid. We do not expect a major difference in performance

among models that account for capping. As such, we propose the

two-component mixture model for ease of exposition.

Sampling Model for Strands. We propose that the

sampling model for strands, with joint p.m.f. pE(ai, � � � ,aj), is

defined by a product of six simpler p.m.f.’s pE1
, pE2

, pE3
, pE4

, pE5
,

and pE6
as follows:

pE(ai, . . . ,aj)~ (pE1(ai) pE3(aiz2Dai)|

pE5(aiz4Dai,aiz2)| � � �|pE5(aj Daj{4,aj{2))|

(pE2(aiz1) pE4(aiz3Daiz1)|

pE6(aiz5Daiz1,aiz3)| � � �|pE6(aj Daj{4,aj{2)),

ð4Þ

where pE1
and pE2

are a multinomial distribution with a category

for each of the 20 amino acids, pE3
and pE4

are 20-dimensional

multinomial distributions conditioned on the value of the

antecedent amino acid two positions back, etc. In the case of a

short strand block, terms beyond the length of the strand are

simply ignored (i.e., for a stand of length three,

pE(ai,aiz1,aiz2)~pE1(ai)pE3(aiz2Dai)pE2(aiz1): Again, this for-

mulation pE(ai, � � � ,aj) is tractable, yet still respects the biochem-

istry of strands, as shown in Fig. 2(b). Note that pE1
=pH1

, despite

the fact that both are marginal multinomial distributions.

Likewise, pE3
=pH2

, despite the fact that both are conditional

multinomial distributions given an amino acid. In particular, pE1
,

pE2
, pE3

, pE4
, pE5

, and pE6
are estimated from PBD data involving

strands, whereas pH1
, pH2

, pH3
, pH4

, and pH5
are estimated from

PBD data involving helices, but the estimation strategy is the same.
Sampling Model for Coil. We propose a sampling model for

coils as the product of p.m.f.’s as follows:

pC(ai, . . . ,aj)~pC1
(ai)pC2

(aiz1Dai)|

pC3
(aiz2Dai,aiz1)| � � �|pC3

(aj Daj{2,aj{1):
ð5Þ

In the case of a short coil block, terms beyond the length of the

coil are simply ignored (i.e., for a coil of length two,

pC(ai,aiz1)~pC1
(ai)pC2

(aiz1Dai): Again the formulation respects

the biochemistry of coils as shown in Fig. 2(c) and the sampling

models are estimated from the PDB.
Sampling Model for Turn. According to the turn structure

as shown in Fig. 2(d), we propose that the sampling model for

turns be defined by a product of p.m.f.’s, as follows:

pT (ai, . . . ,aj)~

pT31
(ai)pT32

(aiz2Dai)pT33
(aiz1Dai,aiz2)

if j{iz1~3;

pT41
(ai)pT42

(aiz3Dai)pT43
(aiz1Dai,aiz3)pT43

(aiz2Dai,aiz3)

if j{iz1~4;

pT51
(ai)pT52

(aiz4Dai)pT53
(aiz1Dai,aiz4)pT53

(aiz3Dai,aiz4)pT54
(aiz2Daiz1,aiz3)|

pT55
(aiz5Daiz2,aiz3,aiz4)| � � �|pT55

(aj Daj{3,aj{2,aj{1)

if j{iz1§5,

ð6Þ

where each conditional p.m.f. in the equation above is estimated

based on the PDB data using hydrogen bonded turns of length 3,

4, and 5 or more amino acids, respectively.

Prior Distribution
The model is completed by specifying the prior distribution,

with p.m.f. p(g,l). First, we make the p.m.f. equal zero if the

biochemistry inherent in secondary structure is violated. Specif-

ically it is zero if, for m~1, � � � ,M, any of the following conditions

are met:

N g1=C or gM=C (i.e., if it does not start and end in coil)
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N gm~H,gmz1~E (i.e., if helix is followed by strand)

N gm~E,gmz1~H (i.e., if stand is followed by helix)

N lmv3 and gm~H (i.e., if helix block is less than 3 positions)

N lmv3 and gm~E (i.e., if strand block is less than 3

positions)

N lmv3 and gm~T (i.e., if turn block is less than 3 positions).

The implies that helix, strand, coil, and turn blocks are at least

3, 3, 1, and 3 amino acids long, respectively. The first prior is a

noninformative (NonInfo) prior and it provides equal weights to all

the allowable secondary structures, that is,

pNonInfo(g,l)!1,

for all (g,l) except the above listed conditions.

We also consider an informative prior distribution which

incorporates multiple sequences alignment (MSA) information.

For an observed amino acid sequence a, we first search for a set of

proteins with similar amino acid sequences whose secondary

structures is already known. The candidate database and the

matching criterion are a modeling choice. For our analysis, we

used a PSI-BLAST search of the nrPDB database. PSI-BLAST

searches were performed on the local sever against the non-

redundant protein sequence database with entries from GenPept,

Swissprot, PIR, PDF, PDB and NCBI RefSeq, downloaded from

NCBI website (ftp://ftp.ncbi.nih.gov/blast/db/nr.*). The low

complexity sequence regions were filtered to avoid the artifactual

hits. The structures with E-values better than 0.001 from the

search were used in the alignments. Also, sequences already in the

validation datasets (ASTRAL30 and CASP9) were excluded to

insure that our MSA based predictions had no information from

the native sequence. We build the prior distribution for a as the

product of position-specific marginal distributions estimated from

its corresponding alignment outputs. Let

X~( X :1 X :2 � � � X :L )~

XH1 XH2 � � � XHL

XE1 XE2 � � � XEL

XC1 XC2 � � � XCL

XT1 XT2 � � � XTL

0
BBB@

1
CCCA,

where X :j is the count vector for the number of times that each of

the four secondary structure types is found in the j-th position of

the alignment output. Assume the following Bayesian model:

X :j Dw:j*Multinomial(nj ,w:j),

and

w:j*Dirichlet(aH ,aE ,aC ,aT ),

where nj is the number of aligned sequences minus the number of

times that gap is found in the j-th position. Due to the conjugacy,

the posterior distribution is

w:j DX :j*Dirichlet(XHjzaH ,XEjzaE ,XCjzaC ,XTjzaT ):

We suggest default values of aH~aE~aC~aT~1. Let

W~( w:1 w:2 � � � w:L ),

then we assume the secondary structure sequence follows a

product of L p.m.f.’s, i.e.,

pMSA(g,l)~ P
M

m~1
P
jm

l~im
wgml ,

where l indexes the position, im~1z
P

m’vm lm’ is the starting

position of the m-th block, and jm~
P

m’ƒm lm’ is its ending

position.

MCMC Algorithm
Our goal is to make inference on the secondary structure (g,l)

given the amino acid sequence a. We use Markov chain Monte

Carlo (MCMC) methods to sample from the posterior distribution:

p(g,lDa)!p(aDg,l)p(g,l): ð7Þ

We update (g,l) using a Metropolis algorithm. The factoriza-

tion in (1) allows Hastings ratios to be evaluated locally with

respect to the affected segments [48]. We note that this algorithm

is sufficient to guarantee ergodicity for our model. In this

algorithm, a new candidate (g�,l�) is generated according to the

following scheme:

N Switch the type of a randomly chosen block: Randomly

choose a number m[f1,Mg and change the new m-th block

type to g�m[fH,E,T ,Cg\fgm{1,gm,gmz1g with equal prob-

ability. Leave all other block types and lengths unchanged.

N Change the position of boundary between two blocks:

Randomly choose a number m[f1,M{1g and draw the

new m-th block length l�m from Uniform(1,lmzlmz1{1)

and hence the new (mz1){th block length l�mz1 equals to

lmzlmz1{l�m. Leave all block types and other lengths

unchanged.

N Split a block into two adjacent blocks: Randomly choose a

number m[f1,Mg. Make space for a new block to be

placed between blocks m and mz1 as follows. Let g�t ~gt

and l�t ~lt for t~1, . . . ,m{1, and let g�t ~gt{1 and

l�t ~lt{1 for t~mz2, . . . ,Mz1. Let g�m~gm. What

remain to define are values for l�m, g�mz1, and l�mz1. Assign

t h e n e w ( m + 1 ) - t h b l o c k t y p e t o

g�mz1[fH,E,T ,Cg\fgm,gmz1g with equal probability.

D r a w t h e n e w m - t h b l o c k l e n g t h l�m f r o m

Uniform(1,lm{1) and hence the new (m+1)-th block

length l�mz1 equals to lm{l�m.

N Merge two adjacent blocks into one block: Randomly

choose a number m[f1,M{1g. Let g�t ~gt and l�t ~lt for

t~1, � � � ,m{1, and let g�t ~gtz1 and l�t ~ltz1 for

t~mz1, � � � ,M{1. F i n a l l y , l e t g�m~gm a n d

l�m~lmzlmz1.

The Hastings ratio can be written as:

r~
p(g�,l�Da)

p(g(t{1),l(t{1)Da)

q(g(t{1),l(t{1); g�,l�)

q(g�,l�; g(t{1),l(t{1))
,

where q(g�,l�; g(t{1),l(t{1)) is the proposal density, the density for

proposing a move to (g�,l�) given the previous state (g(t{1),l(t{1))

and q(g(t{1),l(t{1); g�,l�) is the reverse case. The move is
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accepted (g(t),l(t))~(g�,l�) with the probability min(1, r),

otherwise, the move is rejected and (g(t),l(t))~(g(t{1),l(t{1)).
For the results presented in this paper, 1,000,000 MCMC

proposal were obtained (each time randomly selecting among the

four proposal schemes described earlier). About half of the

proposals lead to valid secondary structures. (For example,

proposing to switch a block to helix is not valid if the block is

already adjacent to an helix block.) Among the valid proposals,

about 20% were accepted. The first 10,000 samples were

discarded for burnin. MCMC convergence can be assessed by

comparing the stability of the marginal probabilities of the states at

each position across independent MCMC runs with different

starting secondary structure states.

Posterior Estimation
The goal is to infer the secondary structure (g,l). We considered

two ways to summarize the posterior distribution to yield a point

estimate. Among all samples obtained by the MCMC algorithm,

choose the (g,l) that maximizes the posterior probability p(g,lDa):

(g,l)MAP~argmaxg,l p(g,lDa):

We name this estimate as maximum a posteriori (MAP)

estimate.

To describe the second posterior estimation method, it is

convenient to introduce the linear sequence parameterization that

encodes the secondary structure using a vector r~(r1, � � � ,rL),
where rl[S indicates the secondary structure at position l. This

parameterization encodes the same information as the original

parameterization (g,l). We construct the estimate by selecting the

most likely block type for each position:

rMP~(rMP
1 , . . . ,rMP

L ),

where rMP
l ~Y { if Pr(rl~Y {Da)§Pr(rl~Y Da) for

Y ,Y {[S~fH,E,T ,Cg and l~1, . . . ,L. We call estimates ob-

tained in this manner marginal probability (MP) estimates.

Conclusions

A statistical model for knob-socket packing [30,31] between

residues has been developed for prediction of protein secondary

structure. The unique feature of this approach is that the knob-

socket model provides constructs for the direct inclusion and

prediction of the secondary states of coil and turn (Fig. 2(c) and (d),

respectively). Other secondary structure prediction methods do

not make direct prediction of coil structure and essentially apply

indirect identification of coil residues as neither helix and sheet.

We assess our method’s Q3 prediction accuracy on 2 test sets and

compare results with those obtained with the benchmark method

PSIPRED [12]. From an investigation of the accuracy of

prediction for each state, we found improved predictions adding

context in terms of blocks of amino acids; however, our basic

model over predicts the coil state. We show how incorporation of

multiple sequence alignment data, similarly in spirit to PSIPRED,

provides balance and improves prediction accuracy. Indeed, our

method achieves slightly less accurate predictions than does

PSIPRED on one test set, and almost reaches 90% on the other.

Our results reinforce the general concept that more context is

necessary to understand the environment that induces secondary

structure.

Our work takes the initial step to enable Bayesian method to

infer the secondary structure of proteins and serves as a call for

participation. Many interesting and important directions are

worth exploring. For example, our work is limited in the sense that

only considers local dependency. We are exploring several ways of

incorporating non-local information in future work. This may be

especially beneficially improving strand predictions. Another

interesting line of research is how to borrow information across

probability vectors in the sampling models to improve the

algorithm performance.
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