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Abstract

Coronavirus disease (COVID-19) outbreak has caused un-
precedented global disruption since 2020. Approximately 238
million people are affected worldwide where the elderly suc-
cumb to mortality. Post-COVID syndrome and its side effects
have popped up with several health hazards, such as macular
degeneration and vision loss. It thus necessitates better
medical care and management of our dietary practices. Natural
flavonoids have been included in traditional medicine and have
also been used safely against COVID-19 and several other
diseases. Kaempferol is an essential flavonoid that has been
demonstrated to influence several vital cellular signaling
pathways involved in apoptosis, angiogenesis, inflammation,
and autophagy. In this review, we emphasize the plausible
regulatory effects of Kaempferol on hallmarks of COVID-19
and macular degeneration.
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Introduction

COVID-19 has overwhelmed our healthcare
system with an incidence of over 4.8 million death re-
ports. Most governments implemented lockdowns,
travel restrictions, and social stratification to control the
pandemic. However, governments have been compelled
to reopen societies because of growing economic con-
straints and unmet population demands. The benefits of
reopening should be assessed against the risks to public
health, including infection control and proper social
distancing measures. This delicate balance has forced a
digital shift in many businesses, allowing remote labor
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and ongoing services while preserving acceptable safety
[1]. Nevertheless, the risks of reinfection with COVID-
19 are still high with age and lifestyle disorders.

Recent research has identified diabetes mellitus and
hypertension as risk factors for COVID-19 or limitations
for the therapeutic potential against the disease. A
disproportionate percentage of those who died were also
found to be Hispanic or Black with a history of health
problems such as high blood pressure, obesity, or asthma
[2]. Although extra pulmonary comorbidities have gotten
less attention, several studies have found connections
between chronic central nervous system comorbidities
and COVID-19, such as macular degeneration that
causes vision loss [3].

Vision loss is primarily caused by degeneration of retinal
pigment epithelial cells, which significantly affects the
rods and cones where age-related macular degeneration
(AMD) and diabetic retinopathy (DR) are two of the
most prevalently reported, impacting about 300 million
individuals worldwide [4,5]. Multiple anecdotes and
published research of COVID-19 patients’ eye redness
and irritation suggested that conjunctivitis was an ocular
symptom of severe acute respiratory syndrome corona-
virus-2(SARS-CoV-2) infection at first [6]. However, the
elderly are the most affected by the disease, both
directly and indirectly.

Several cellular and molecular pathways in COVID-19
and associated comorbidities have been deregulated
and studied for therapeutic development. The most
broadly applied treatment methods for viral infections
are blocking the viral entrance and replication and
modulating humoral and cellular defense in the unin-
fected population [7]. Several drugs, including chloro-
quine (CQ), hydroxychloroquine (HCQ), remdesivir,
favipiravir, ritonavir, lopinavir, ribavirin, dexamethasone,
and arbidol, have been utilized for the treatment of
COVID-19 patients. Nonetheless, these synthetic
medications have several adverse effects: heart failure,
permanent retinal damage from HCQ, and liver damage
from remdesivir [8]. In older people, improper treat-
ment and chronic molecular disease conditions might
lead to retinal degenerative disease, and the irreversible
pathogenesis necessitates the need for an alternative
with minimal side effects.
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Multiple in-silico analyses indicated that natural com-
pounds derived from plants could be promising thera-
peutics against SARS-CoV-2 and its clinical
manifestation and comorbidities [9]. Active ingredients
such as flavonoids have enormous medicinal potential in
regulating cell homeostasis. Kaempferol is one of the
essential flavonoids extracted from vegetables, fruits,
and medicinal herbs [10]. This review focuses on the
plausible molecular regulation of COVID-19 and retinal
degenerative disease by Kaempferol. In addition, we
hope to present Kaempferol as a potential prophylactic
treatment against these diseases.

The origin of COVID-19

Humans have historically been victims of deadly infec-
tious illnesses, such as viral epidemics. SARS-CoV-2 is a
novel virus that differs from SARS-CoV and MERS-CoV
(Middle East respiratory syndrome coronavirus) but can
cause pneumonia-like symptoms, which was first
discovered in late 2019 in Wuhan, China [11,12].
Coronaviruses are non-segmented positive-sense RNA
viruses that infect humans and animals primarily,
causing mild respiratory and gastrointestinal diseases.
Clinical studies reported that most infected people
were found to have dry cough and dyspnea, as well as
bilateral ground-glass opacities [13].

Hallmarks of COVID-19

The SARS-CoV-2 life cycle is a dynamic process in
which the virus enters the host cell through the ACE2
(angiotensin-converting enzyme 2) receptor [14]. Once
the virus is endocytosed, it is replicated by the host
cells, followed by exocytosis. SARS-CoV-2 components
can also bind to various cytosolic PRRs (pattern recog-
nition receptors), resulting in damage-associated mo-
lecular patterns (DAMP) and cytokine release followed
by subsequent inflammation and coagulation and acti-
vation of transcription factors including IRF3 and NF«kB
(Nuclear Factor Kappa B). Sepsis, multiple organ failure,
and death can occur if not diagnosed and treated
promptly (Figure 1) [15].

COVID-19 has been associated with several risk factors,
including age, gender, environment, inherited genetic
vulnerability, and pre-existing comorbidities [16]. The
most severe occurrences have mostly been recorded in
the elderly or those with pre-existing illnesses, mainly
cardiovascular problems, including hypertension and
congestive heart failure. These risk variables are strik-
ingly comparable to the risk factors linked with MERS-
CoV-related mortality (diabetes, hypertension, and
obesity), even though MERS-CoV respiratory illness can
affect younger people. According to current research,
SARS-CoV-2 severity progressed within 14—21 days
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Ultimate inflammasome activation and multiorgan damage under SARS-CoV-2 infection. SAR-CoV-2 downregulates ACE2 expression which leads to the
accumulation of angiotensin Il and upregulation of proinflammatory mediators; green circle entitled with P represents phosphorylation; arrow represents

the induction.
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after infection [17]. In severe conditions, myocarditis
might develop in the third week of the disease,
causing irregular heartbeat that increases mortality.
Recently, macular degeneration was also a risk factor for
SARS-CoV-2 related mortality, which unveiled several
sharing pathways involved in the disease mecha-
nism [18].

Molecular pathogenesis of COVID-19

The ultimate causes that damage cellular macromole-
cules and tissues are cross-talk between oxidative stress
and activation of pro-inflammatory cytokines, as seen in
COVID-19 patients [19]. When SARS-CoV-2 infects a
cell, it reduces the expression of the ACEZ2 receptor,
that converts angiotensin-I to angiotensin II, further
forming angiotensin 1-7, which preferentially binds to
the cell surface receptor MasR (Mitochondrial Assembly
Receptor), causing anti-fibrotic, anti-inflammatory, and
vasodilation effects [20]. Angiotensin-II accumulates in
the presence of down regulated ACE2 receptors, which
bind to the cellular membrane’s angiotensin II type 1
receptor (AT1R), inducing molecular hallmarks of
inflammasome formation via the JAK-STAT pathway
[21,22]. Since COVID-19 patients lose ACE2-mediated
protection, Ang-II signaling causes clinical signs such as
disseminated coagulopathy and acute tissue damage
[23]. Multiple organs express ACE2 and are targets for
SARS-CoV-2.

When cells continuously undergo stress and DNA
damage, it activates a DNA damage repair mechanism.
When the damage becomes irreversible, those cells will
be programmed for cell death via the JNK pathway,
which is involved in ischemia-induced cell death,
reperfusion damage, and neurodegenerative diseases
[24]. Initiation of inflammatory cascade occurs when
TLR3, 7, 8 further upregulate the interferon type-I and
type-II gene expression, and NFkB nuclear trans-
location which then enhances the expression of multiple
pro-inflammatory genes, including pro-1L.-1f, pro-IL-
18, TNF-a, and 1L.-6 [25—27]. Cytoplasmic NLRP3
also recognizes the virus and develops the inflamma-
some complex with ASC and Caspase-1 (Casp-1),
cleaving and releasing mature IL.-1 and IL-18. These
cytokines, along with TNF-a, promote phosphorylation
of p38 MAPK and nuclear translocation of NFkB, which
in turn secretes more pro-inflammatory cytokines and
chemokines [25]. At the same time, [L.-6 contributes to
the cytokine release syndrome observed in COVID-19
patients [28]. Given the importance of NFkB in the
mediation of cell death, which is a significant charac-
teristic of COVID-19 pathogenesis, targeting NFkB in
patients, may have therapeutic implications [29].

Another possible explanation for COVID-19’s etiology is
that SARS-CoV-2’s intracellular replication is lethal to
host cells. After SARS-CoV-2 infection, the virus

multiplies by subverting the protein machinery of host
cells via the ACEZ receptor in alveolar epithelial cells.
The critical component proteins of the new coronavirus,
the spike glycoprotein, membrane protein, and an en-
velope protein, are translationally integrated into the
endoplasmic reticulum (ER). The increased production
of nascent viral peptides may induce ER stress and UPR
activation. In most individuals, host cells can tolerate
ER stress caused by viral infection because of the UPR
proteostasis capacity. Whereas, when the UPR is over-
burdened with a load of viral protein replication, the
cellular function is compromised, this eventually leads
to cell death [30].

Autophagy’s involvement in another set of distinct viral
infections and cell types, are well-acknowledged [31].
Host autophagy has an antiviral role (also known as
xenophagy or virophagy) to inhibit virus infection. At the
same time, some viruses use the autophagy mechanism
to aid reproduction [32]. Although the exact relation-
ship between autophagy and CoV infection is unknown,
recent evidence suggests that CoVs communicate with
numerous autophagy apparatus components to promote
replication of the virus where significant induction of
double-membrane vesicles (DMVs) was observed [33].
DMV is an ER-derived membrane that serves as the site
for forming RNA replication complexes of viruses [34].
Cells infected with SARS-CoV-Z accumulate critical
metabolites and deregulate the autophagy mechanism,
triggering inflammation and oxidative stress, leading to
cell death across all ages [35]. Thus, the post-COVID
phase must be treated with careful health monitoring
and the use of appropriate nutritional supplements.

Post-COVID syndrome

Previous research has shown that SARS and MERS in-
fections result in significant long-term neurological ef-
fects leading to several degenerative diseases such as
Alzheimer’s disease, multiple sclerosis (MS), Parkinson’s
disease, and retinal degenerative diseases via neuro-
inflammation across different age groups [36—38].

Experience has demonstrated that severely sick in-
dividuals experience long-term functional impairment
following discharge, which can continue for years, where
old age is a known risk factor for impairment [39].
Following SARS, coronavirus infection in South East
Asia in early 2003, a persistent post-viral syndrome was
observed. These long-term adverse effects of SARS are
similar to those experienced by patients with chronic
fatigue syndrome (CFS) and fibromyalgia syn-
drome [40,41].

According to Hayrunnisa et al., headache is a common
symptom linked with continuing SARS-CoV-2 infection
(up to 34 per cent); nevertheless, headache persistence
has been documented even weeks after recovery [42].
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Extra cranial viral infections, stressful life events, and
invasive procedures such as intubation are typical causes
of new daily persistent headaches (NDPH). The patho-
physiology of NDPH is unknown, but some studies
believe that pain is caused by cytokine production and
persistent glial activation in response to precipitating
events, which is also one of the hypotheses for COVID-19
involvement in the CNS, implying a synergy between
pathophysiological mechanisms [43]. Ongoing hyper
inflammation and endotheliitis contribute to the disrup-
tion of the blood—brain barrier, allowing entry of innate
immune cells into the brain and other pro-inflammatory
cytokine cascades. Endothelial dysfunction with accom-
panying hyper inflammation is caused by viral down
regulation of ACEZ2 receptors, which further promotes
more damage to endothelial functionality [44—46]. No
medication is advantageous in the studies conducted to
date. As such, prophylactic treatment was mainly used
with a tricyclic antidepressant or anticonvulsant
(amitriptyline and topiramate), with varying success [47].
However, the appropriate treatment for COVID19 post-
infectious inflammatory response remains unknown. Be-
sides, following SARS-CoV-2 infection, neuro-
inflammation and vascular mechanism disruption can
show various ocular symptoms ranging from mild
conjunctivitis to posterior ischemic optic neuropathy to
bilateral para central acute middle maculopathy and acute
macular neuro-retinopathy [48,49].

The global pandemic and vision loss
COVID-19 and ophthalmology have direct links and
significance for hospital epidemiology, infection control,
community health, and the general population, partic-
ularly the elderly. A clear—cut correlation between dis-
ease severity and retinal vein width was established,
implying that this could be a non-invasive process of
monitoring inflammation and endothelial dysfunction in
COVID-19 patients [50]. The abnormal MRI observa-
tions in nine COVID-19 patients were also described,
comprising of one or even more infarcted lesions in the
macula on FLAIR-weighted images [51]. The lesions
were either generated by direct inflammatory infiltra-
tion or viral-induced micro angio-pathic illness. Since
the outbreak, significant studies have been performed
on ocular problems, with retinal degeneration being the
most important as it causes irreversible vision loss [52].
COVID-19 has also been linked to uveitis, retino-
vascular disease, and neuro-ophthalmic illness, accord-
ing to recent research [53]. Conjunctivitis has also been
reported often in COVID-19 patients [54]. The symp-
toms of SARS-CoV-2 infection have yet to be
explained entirely.

Big data could be utilized extensively to drive the triage
of ophthalmology clinic visits to study the risks of
glaucoma, diabetic retinopathy, age-related macular
degeneration against COVID-19 exposure [55]. Another

recent epidemiological study found at the start of the
pandemic in China’s Hubei region, among 276
confirmed cases, the ratio of patients who wore eye-
glasses was lower than the general population [56].

Retinal degenerative disease: an incurable concern
COVID-19 has forced people to stay isolated at home
and minimize the availability of follow-up medication
and therapeutics from the ophthalmic workstations.
Due to the pandemic, the delayed ophthalmic cases
have caused impaired visual function and an increased
rate of scar formation in the sub-macular zone. In the
non-delayed cases, visual function remained constant
with favorable anatomical results, highlighting the need
for regular follow-up for patients. Furthermore, appro-
priate hospital procedures during pandemics are critical
for prompt treatment for chronic diseases [57]. Optical
Coherence Tomography (OCT) revealed lesions at the
inner plexiform and ganglion cell layers post SARS-CoV-
2 infection [58]. Following are the significant irrevers-
ible blindness diseases that are shown to share clinical
characteristics post COVID-19 disease.

Age-related macular degeneration (AMD)

AMD primarily affects the elderly group. At the same
time, because of age and other co-existing illnesses, this
vulnerable population is frequently at an elevated risk of
COVID-19-related mortality and morbidity [59].
Furthermore, slit-lamp inspection and intra vitreal in-
jection procedures provide a higher risk of viral trans-
mission because of the procedures’ proximity. On the
other hand, permanent vision loss induced by delaying
intra vitreal treatment in wet AMD might negatively
affect long-term societal and economic consequences.
Globally, there has been an unprecedented drop in the
number of patients seeking medical attention at acci-
dent and emergency rooms, even in potentially life-
threatening situations, due to fear of catching the
virus [60,61]. In ophthalmology, there are reports in the
literature of patients failing to keep their eye clinic
appointments for sight-threatening conditions [62,63].

Among COVID-19 patients, studies discovered that
more than one-fourth of those with AMD died,
compared to the average mortality rate of 8.5 per cent
[18]. They additionally found a significant decrease in
nAMD referrals throughout the initial months of the
COVID-19 outbreak and lockout. According to a con-
servative estimate, a three-month delay in treatment
might result in substantial vision deterioration in the
following months [64].

Diabetic retinopathy

Lack of physical activity and dormant working culture
caused by lockdown rules may be detrimental to in-
dividuals who have blindness. In healthy adults,
reducing daily steps by ten times can impair sensitivity
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to insulin and impede metabolic activity, increase fat
deposits, decrease muscular strength, worsen cardio-
vascular performance, and lead to diabetes mellitus and
related ocular complications [65,66]. A recent study
describes the increase in diabetic retinopathy up to
fivefolds, considered a leading risk factor for unfavorable
COVID-19 outcomes [67]. Further demographic anal-
ysis may uncover the influence of lockdown and the
severity of diabetic retinopathy during the COVID-
19 pandemic.

Glaucoma

Glaucoma, which affects an estimated 80 million people
worldwide, is an irreversible illness caused by degener-
ation of the optic nerve responsible for transferring in-
formation from the retina to the brain [68]. It is the
Western world’s second-biggest cause of blindness. The
COVID-19 incident has accelerated the progression of
glaucoma problems in previously diagnosed patients,
resulting in permanent loss of visual acuity in some in-
stances, which is irreversible. The dread of going to a
specialist’s appointment, as well as the digital divide in
older people’s ability to communicate online with their
ophthalmologist, have both contributed to this sce-
nario [61].

Entry of telemedicine

The introduction of telemedicine made a promising
entry by aiding the patients in need of medication [69].
However, exposure to infections or post-infection
period, inflammatory cytokine storm holds the domi-
nation over the healing mechanism in the human body.

The proclamation of a global lockdown prompted the
development of new innovative digital engagement
tactics. It also digitized schooling and all other modes of
communication, increasing the use of digital gadgets
worldwide and resulting in the gradual degradation of
eye health across all age groups [70].

Thus, it hints at the necessity of a daily nutritional
supplement to help the body fight against the infection,
vision loss due to infection, or the change in lifestyle in
the pandemic itself.

Promising therapy using flavonoids

Several vaccine platforms entered into clinical evalua-
tion [71]. These include nucleic acid vaccines, viral
vector vaccines, inactivated virus, and antigen antibody-
based vaccines. Initially, treatments for COVID-19 were
restricted to those who were under clinical studies [72].
However, several vaccinations had been put forward
without complete phase clinical trials due to the
emergency factor. Because of the pandemic’s novelty,
scientists are still seeking viable vaccinations and
medicines to treat the pathology. One of the most
challenging concerns is reducing inflammation while

preserving the patient’s healthy immune response. In
this case, research should concentrate not only on
effective medications but also on nutrition. The signif-
icance of good nutritional status and dietary habits has
been heavily highlighted in the COVID-19 epidemic,
not only to avoid the appearance of non-communicable
diseases (NCDs), which can result in more severe in-
fections, but also to control the inflammatory condition
of the patients. Indeed, underestimating the impor-
tance of diet in COVID-19 patients can significantly
impact their prognosis [73].

Targeting ACE2 is a well-identified therapeutic strategy
against COVID-19. According to recent research, the
ocular surface and retina contain the essential proteins
for SARS-CoV-2 infection, including trans membrane
serine protease 2 (TMPRSS2), CD147, ACE2, and
Cathepsin L (CTSL), which was validated through tear
samples [74]. Several flavonoids were identified in-silico
as potential inhibitors that target the virus’s main pro-
tease (Mpro) and ACEZ receptors [75]. However, no
study has been performed based on the benefit of fla-
vonoids against COVID-19 and retinal degeneration
together. Considering the age and infection, together
with cytokine storm and blood—brain barrier breach in
the disease condition, we suggest that Kaempferol can
be a potential therapeutic intervention using natural
compounds against COVID-19 and its ophthalmic
manifestation, directly and independently.

Kaempferol: a potential multifunctional
flavonoid against COVID-19 and retinal
degenerative disease

Kaempferol (3,4,5,7-tetrahydroxyflavone) is a flavonol
widely found in several fruits and vegetables [76] of the
human diet in the glycosylated or aglycone form re-
ported to modulate many critical components in cellular
signal transduction pathways related to apoptosis,
angiogenesis, autophagy, inflammation, and metastasis
[77—80]. Interestingly, although kaempferol tends to
preserve cell viability, driving a protective effect, it also
induces apoptosis by inhibiting cancer cell proliferation
and angiogenesis. Here we have represented the most
crucial signaling mechanisms of kaempferol in normal
and disease conditions (see Figure 2).

Kaempferol ameliorates inflammasome formation

The NOD-, LRR- and pyrin domain-containing protein
3(NLRP3) is activated by a variety of events, including
viral infection, via the DEAH-Box Helicase 33 (DHX33)
[81,82] and is then attracted to mitochondrial antiviral
signaling (MAVS) or mitofusin 2 [83], where it recruits
the apoptosis-associated speck-like protein with a
caspase recruitment domain (ASC) and pro-caspase-1,
leads to NLRP3 inflammasome formation, caspase-1
activation and proteolytic conversion of pro-IL-1 and
pro-IL.-18 into its active versions and increased
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secretions [84]. The NLRP3 inflammasome is consti-
tutively expressed in various eye parts, including the
retinal pigment epithelium and ONH astrocytes in both
humans and mice, indicating the importance of this
mediator in the ocular defence system [85,86].

In COVID-19 disease conditions, the viral protein ac-
tivates NFkB, leading to the expression of NLRP3 [87],
which is also seen to be activated in the presence of
amyloid-f3, A2E, or lipofuscin in the context of AMD
[88]. NLRP3 can also be activated via the ATP-
controlled P2X7 channel, reacting to reactive oxygen
species buildup in the RPE [89] due to cathepsin B
release from damaged lysosomes. The role of I1.-18 in
the RPE has yet to be entirely determined, yet the
expression of this cytokine is constitutively shown in the
RPE [90].

The ORF3a-TRAF3 interaction induces ASC ubiquiti-
nation, which results in caspase 1 activation and IL-1
maturation. On the other hand, ORF3a also binds to
TRAF3 and activates NFKB, resulting in the transcrip-
tion of the pro—IL-1 gene. NLRP3 inflammasome
activation has also been observed in pre-clinical in-
vestigations of glaucoma, where increased cytokines are
thought to induce neurotoxic inflammation, culminating
in axon and retinal ganglion cell (RGC) degeneration
[91]. As a result, NLRP3 becomes the primary focus for
alleviating the inflammatory condition.

Docking studies on kaempferol showed equivalent
binding affinity and docking positions on specific pro-
teins similar to a known NFkB inhibitor (MG-132) [92]

which is then validated by m vitro and m vivo studies
resulting in a significant reduction in pro-inflammatory
and oxidative stress markers [93,94].

Chronic inflammation leads to neuro-inflammation and
causes the onset or progression of various neurodegen-
erative disorders, such as inherited retinal diseases
(IRDs), neo-vascular retinal disease, DR, or AMD, all of
which promote retinal health degeneration by cytotoxic
effects on photoreceptor cells. At the onset of each
disease, there is specific damage in these degenerative
retinal diseases, but studies suggest that even low-grade
inflammation also could trigger disease progression [95].
Hence, kaempferol can help in maintaining cellular
homeostasis by preventing inflammasome formation and
cell death (Figure 3).

Kaempferol inhibits oxidative stress-induced
apoptosis

The term oxidative stress (OS) refers to a disproportion
between harmful reactive oxygen species (ROS) and
antioxidants resulting in redox signaling tumult and
irreversible oxidative damage [96]. ROS is highly linked
to neurodegenerative diseases that damage the brain
and associated organs due to its excessive concentration
and accumulation [97]. ROS mechanisms and multiple
organ insult have been studied in the pathogenesis of
COVID-19 [98].

Protein 3a (U274), the most considerable accessory viral
channel-forming protein with 274 amino acids, plays a
vital function in the corona viral particle release phase
during infection. In addition to the viral release
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NLRP3 signalling and inflammasome formation. Kaempferol mitigates the cytokine storm by inhibiting caspase activation; Dotted arrow (Translocation
into nucleus); Red --| represents the inhibition); Kaempferol- (PubChem CID5280863).

procedure, the 3a protein’s role in caspase-1 activation
and its consequent stimulatory effect on NLRP3
inflammasome is important in IL-1B secretion and
pyroptotic death in lung cells, respectively. The 3a
protein of SARS-CoV-2 was produced in Xenopus oo-
cytes to test the inhibitory impact of kaempferol and its
derivatives. However, despite considerable inhibition on
3a protein, kaempferol glycosides with more solubility
showed more inhibitory solid effects [99].

On the other hand, hyperoxic insult and apoptosis have
been examined in the presence of various vitamins as a
rescuing factor [100]. Kaempferol protects retinal
pigment epithelium cells from hydrogen peroxide-
induced inflammation and apoptosis by activating
SIRT1 and inhibiting PARP1, which opens up a signif-
icant gateway for more experiments and further in-
sights [101].

VEGF is considered a critical factor that is significantly
upregulated in COVID-19 and retinal degenerative
disease, where OS plays a major part [102—104].
Kaempferol was proven to be effective in preventing
cerebellar granule cell (CGC) death by suppressing
caspase-3 activation [105], inhibition of lipofuscin for-
mation, and also reducing angiogenic activity where
VEGF is pointedly down regulated [106,107], suggest-
ing the life-prolonging activity of the component. In a
recent report, VEGF-D was identified as a COVID-19

progression biomarker [102]. Thus, the anti-oxidative
regulatory activity of kaempferol could protect retinal
and alveolar cells from undergoing apoptosis (Figure 4).

Kaempferol can modulate autophagy in disease
conditions

Autophagy is a cellular catabolic mechanism that gov-
erns protein recycling, degradation and cell survival
[108—110]. In typical cases, autophagy may counteract
viral infection by promoting the survival mechanism of
immune cells, but in disease conditions, viruses escape
the autophagy-mediated degradation and even facilitate
their replication [111]. Several autophagy-modulators
exhibit antiviral therapeutic potentials. However, more
studies should be conducted to come up with the spe-
cific link. DMVs imitate autophagosomes after viral
infection, and these structures then merge with the
lysosome and late endosome, destroying the seques-
tered cytoplasmic cargo [112].

Viruses can alter certain host cell mechanisms, such as
metabolism, cellular trafficking, and immune re-
sponses for their survival (Figure 5) [113]. The NSP6
(Non-structural Protein 6) virus protein induces
autophagosome production by promoting the produc-
tion of LC3-I-coated DMVs, which are required for
viral RNA transcription and replication and prevent
the host cell mechanism of matured autolysosome
formation [114]. Thus, finding a novel drug against
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Potential benefits of kaempferol against oxidative stress in COVID-19 and retinal degeneration. Yellow spots represent the lipofuscin accumulation inside
the retinal pigment epithelial cells (RPE); PR, Photoreceptors; BM, Bruch’s membrane; CC, Choriocapillaris.

Figure 5
Autolysosome
Initiation
EDEMosome
i Elongation
@ : CRo
LC3-1I —.Cf{ (\i Autophagosome
Lc31 DMV Phagophore
Current Opinion in Pharmacology

Modulation of autophagy by SARS-CoV-2. Kaempferol enhances the maturation of autophagosome to autolysosome in autophagy; DMV, Double-

membrane vesicle; ER, Endoplasmic Reticulum; LC3, Microtubule-associated protein 1A/1B-light chain 3; PLpro-TM, membrane-anchored papain-like
protease; NSP6, Non-structural Protein 6; Arrow shows the induction; Red --| represents the inhibition.

Current Opinion in Pharmacology 2022, 64:102231 www.sciencedirect.com


www.sciencedirect.com/science/journal/14714892

Kaempferol against SARS & retinal degeneration Firoz and Talwar 9

the deregulated autophagy pathway could combat
COVID-19.

Targeting the life cycle proteins of CoVs has introduced
many reactive medicines against CoVs, but safe and
effective medication development is still ongoing,
where CQ and its derivative HCQ as therapy has
sparked debate [115]. The transcriptome analysis
revealed that in SARS-CoV-2-infected Calu-3 cells, the
majority of the 471 TFEB-regulated autophagy gene
expressions from the coordinated lysosomal expression
and regulation (CLEAR) network were down regu-
lated [116].

Autophagy is also reported to be deregulated in retinal
degenerative diseases, where lipofuscin is accumulated
in the retinal cells. The photoreceptor outer segment in
the eye sheds daily as a diurnal process, and in older
people, the clearance of this gets disrupted and accu-
mulates as lipofuscin, which together with AZE leads to
DNA damage and cell death, which are the clinical
characteristics of AMD [117—119]. Therefore, SARS-
CoV-2 infection is more deleterious and can even lead
to lipofuscin accumulation due to the modulation of
lysosomal function in autophagy.

Kaempferol, which targets the autophagy process,
causes a rise in the immuno reactive band LC3-11 and a
substantial increase in mature autophagosomes carrying
digested material. Even at the dose of 30 UM, it could
induce autophagy in neuronal cells without toxicity
[120]. Kaempferol inhibits NLRP3 inflammasome
activation and promotes autophagy in microglia [121].
Here we propose that kaempferol can suppress the virus
replication and its activity by inducing autophagy, which
could aid in the clearance of lipofuscin accumulation in
enhanced autophagy (Figure 5).

Kaempferol can rescue cells from ER stress-mediated
apoptosis

Apoptosis is a critical mechanism that maintains tissue
homeostasis by removing damaged cells from viral
infection or DNA damage caused by free radical pro-
duction and restoring them to standard cellular archi-
tecture [122]. Loss of control over apoptosis can thus
result in disease, with over-activation leading to loss of
function and under-activation leading to disruptive
events. However, it is shown that NFkb inhibitors can
suppress the up-regulation of IL-1f and TNF-¢. in those
cells [123].

Viral infection can impair ER function, causing ER stress
and apoptosis by modulating the downstream critical ER
stress signaling components such as ATF6, IRE1, pERK,
and elF2a. Additionally, SARS-CoV-2 can activate p38
directly or via E protein, by activating syntenin, which
up regulates p38 expression and thus promotes pro-

inflammatory cytokine secretion. MKK4 and MKK?7
can also activate JNK; along with SARS-CoVs, N, 3a, 3b,
and 7a proteins, to promote pro-inflammatory cytokines
and apoptosis (Figure 6). Moreover, viral infection in the
lungs reduces blood oxygen supply, resulting in hypoxia,
cell death, and severe organ dysfunction [124].

UPR was recently revealed as a promising antiviral target
in the battle against coronavirus. Notably, pharmaco-
logical blockage of the UPR significantly decreased viral
replication [125]. The likely mechanisms underlying ER
stress and the induction of the UPR response on SARS-
CoV-2 infection are excessive viral protein synthesis,
modification, and folding; severe ER membrane
restructuring for the formation of DMVs for viral
genome replication; and ER membrane depletion due to
the continued virions formation and autophagy [126].

Targeting UPR signaling pathways at various phases
opens up the possibility of promoting cell survival,
preventing neuronal cell loss, and developing treat-
ments for neurological disorders [127]. The sigma-1
receptor (Sig-1R) is an ER membrane-bound chap-
erone that functions as an initial regulator of ER stress,
making it suitable for host-based repurposing ap-
proaches [128]. Several studies have also shown that
IRE1 is a potential target and one of the primary
signaling proteins in the ER as it is altered in COVID-19
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and retinal degenerative disease [129,130]. In addition,
to IRD, UPR activation has been linked to other path-
ophysiological conditions such as glaucoma, which is
caused by deterioration of retinal ganglion cells; AMD,
which is caused by RPE damage; diabetic retinopathy, a
neuro-vascular diabetic complication; and cataracts,
which are caused by stressed lens epithelial cells [131].

Thousands of clinical trials are underway, repurposing
FDA-approved drugs and assessing their safety and ef-
ficacy [132]. The discovery of small-molecule inhibitors
that could target UPR machinery and lower ER stress
has piqued the interest of many researchers, which led
to the identification of many compounds with the ability
to modulate ER stress in the past, which include
TUDCA (chemical chaperones) [133], salubrinal (in-
hibitor of eIF2 dephosphorylation) [134], and valproate
(chaperone inducer) [135], synthetic triterpenoids
[136]. Moreover, multiple studies have been conducted
to prevent the pro-apoptotic protein from triggering cell
death, in which CHOP (C/EBP homologous protein)
plays a significant role [137].

Kaempferol is a flavonoid that inhibits the production of
CHOP, a pro-apoptotic transcription factor, and pro-
motes the expression of GRP78, a transcription factor
involved in ER stress-induced apoptosis. Furthermore,
kaempferol inhibits ER stress by modulating the IRE1/
TRAF2/JNK signalling pathway [138]. Notably, it ap-
pears that kaempferol can suppress ER stress in
methods other than directly targeting it. Kaempferol has
also been proven to have a neuro protective impact via
reducing ER stress in neurodegenerative diseases [139]
and inducing neuroblastoma differentiation by targeting
IRE1a [140,141]. Considering the mentioned research,
we suggest kaempferol can protect the cells from ER
stress in COVID-19 and retinal degenerative disease,
enhancing the survival mechanism by eliminating the
accumulation of misfolded proteins and other cyto-
toxic factors.

Conclusion

Since developing a new drug may take many months
before it reaches the public after clinical trials and
research, it necessitates an alternative potential natural
compound with minimal or zero side effects. Several
repurposed drugs and vaccination have put many lives in
uncertainty and even mortality. Vision problem was
another concern that came with the COVID-19
pandemic. Either delayed treatment due to fear, life-
style, or as an adverse effect of COVID-19 is linked with
visual acuity. Some studies on the Hispanic population
even revealed that patients with macular degeneration
were more prone to disease and mortality. COVID-19
and its comorbidities have been immensely studied to
understand its mechanism of pathogenesis, unveiling
various molecular signaling pathways to target, where

COVID-19 and retinal degenerative diseases share
similar mechanisms. Traditional medicines, such as fla-
vonoids, were discovered to be beneficial in the aeti-
ology of COVID-19 as well as retinal degenerative
disease, where kaempferol has exhibited considerable
neuroprotective effect, principally resulting in an overall
anti-inflammatory impact. Kaempferol was also benefi-
cial against autophagy dysregulation, ER stress, and
oxidative stress. Hence, we suggest that regular dietary
management with kaempferol could maintain the
cellular homeostasis despite the age group to protect
self from vision problems and from SARS-CoV-2 infec-
tion to a level. Further studies with kaempferol on these
disease models could bring more insight into the sharing
of molecular web and pathogenesis.
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Vision blurring and black spots have been reported one month after
receiving the second dose of Covishield vaccine. This is the unique
report which has not been described previously.
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Kaempferol reduced retinal ganglion cell death by inhibiting the NF-B
and JNK pathways and suppressing NLRP1/NLRP3 inflammasomes
and caspase-8 expression.
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