
Heyard R, et al. BMJMED 2024;3:e000709. doi:10.1136/bmjmed-2023-000709 1

OPEN ACCESSOPEN ACCESS ORIGINAL RESEARCHORIGINAL RESEARCH

	► Additional supplemental 
material is published online 
only. To view, please visit the 
journal online (http://​dx.​doi.​
org/​10.​1136/​bmjmed-​2023-​
000709).

1Center for Reproducible 
Science, Epidemiology, 
Biostatistics and Prevention 
Institute, University of Zurich, 
Zurich, Switzerland
2Division of 
Pharmacoepidemiology, 
Brigham and Womems Hospital 
Harvard Medical School, 
Boston, Massachusetts, USA
Correspondence to: Dr Rachel 
Heyard, Center for Reproducible 
Science, Epidemiology, 
Biostatistics and Prevention 
Institute, University of Zurich, 
Hirschengraben 84, 8001 Zurich, 
Switzerland;  
​rachel.​heyard@​uzh.​ch

Cite this as: BMJMED 
2024;3:e000709. doi:10.1136/
bmjmed-2023-000709

Received: 17 July 2023
Accepted: 27 December 2023

Design differences and variation in results between randomised 
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WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Real world evidence studies can complement randomised controlled trials 

by providing insights on the effectiveness of a medical treatment in clinical 
practice

	⇒ Concerns about confounding have limited the use of real world evidence 
studies in clinical practice and policy decisions

WHAT THIS STUDY ADDS
	⇒ This study suggests that heterogeneity among pairs of randomised controlled 

trials and their non-randomised emulations can be explained by differences 
in design emulation

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE, OR POLICY
	⇒ These results could inform researchers and clinicians on the degree to which 

apparent divergence in results between randomised controlled trials and real 
world evidence studies can be driven by differences in study design and the 
research question

ABSTRACT
OBJECTIVE  To explore how design emulation and 
population differences relate to variation in results 
between randomised controlled trials (RCT) and 
non-randomised real world evidence (RWE) studies, 
based on the RCT-DUPLICATE initiative (Randomised, 
Controlled Trials Duplicated Using Prospective 
Longitudinal Insurance Claims: Applying Techniques 
of Epidemiology).
DESIGN  Meta-analysis of RCT-DUPLICATE data.
DATA SOURCES  Trials included in RCT-DUPLICATE, a 
demonstration project that emulated 32 randomised 
controlled trials using three real world data sources: 
Optum Clinformatics Data Mart, 2004-19; IBM 
MarketScan, 2003-17; and subsets of Medicare parts 
A, B, and D, 2009-17.
ELIGIBILITY CRITERIA FOR SELECTING 
STUDIES  Trials where the primary analysis resulted 
in a hazard ratio; 29 RCT-RWE study pairs from RCT-
DUPLICATE.
RESULTS  Differences and variation in effect sizes 
between the results from randomised controlled 
trials and real world evidence studies were 
investigated. Most of the heterogeneity in effect 
estimates between the RCT-RWE study pairs in this 
sample could be explained by three emulation 
differences in the meta-regression model: treatment 
started in hospital (which does not appear in 
health insurance claims data), discontinuation 
of some baseline treatments at randomisation 
(which would have been an unusual care decision 
in clinical practice), and delayed onset of drug 
effects (which would be under-reported in real 

world clinical practice because of the relatively 
short persistence of the treatment). Adding the 
three emulation differences to the meta-regression 
reduced heterogeneity from 1.9 to almost 1 (absence 
of heterogeneity).
CONCLUSIONS  This analysis suggests that a 
substantial proportion of the observed variation 
between results from randomised controlled trials 
and real world evidence studies can be attributed to 
differences in design emulation.

Introduction
Real world evidence (RWE) has been defined as 
evidence on the effects of medical products that are 
derived from the analysis of real world data, which 
includes different sources of patient health data, 
particularly data collected as part of routine clin-
ical practice, including electronic health records 
and insurance claims data.1 Interest in the use of 
real world evidence from real world data to support 
clinical practice and policy decisions has been 
increasing.2–5 Concerns remain, however, about the 
validity of this evidence compared with the tradi-
tional randomised controlled trial (RCT).5–7

These concerns come from a misleading dichotomy 
that sets randomised controlled trials against data-
base studies instead of viewing them as providing 
complementary information that informs a better 
understanding of the effects of drugs.8 Results 
from databases and randomised controlled trials 
have been compared, and some have found high 
concordance, supporting the ability of well designed 
database studies to generate valid causal conclu-
sions.9–13 Others have used observed differences in 
results to criticise database studies as intractably 
confounded.7 14–17

The RCT-DUPLICATE initiative (Randomised 
Controlled Trials Duplicated Using Prospective 
Longitudinal Insurance Claims: Applying 
Techniques of Epidemiology) is one effort 
comparing randomised controlled trials with 
database studies.10 18–20 RCT-DUPLICATE set out 
to emulate 32 trials by prospectively designing 
a series of insurance claims database studies to 
match each design of the randomised controlled 
trial as closely as possible within the confines 
and limitations of using data that were not 
collected for research purposes. Because of the 
nature of using routinely collected data from clin-
ical practice, some elements of the trial design 
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could not be exactly emulated (eg, measures to 
ensure prolonged adherence over long follow-up 
periods). These emulation differences can be 
summarised as differences in outcome measure-
ments, demographics of the included patients, 
treatment implementation in clinical practice, 
and lack of placebo in clinical practice. Design 
emulation and population differences change 
the question or estimand being looked at in the 
randomised controlled trial compared with the 
database study.21 22

Our aim was to use the RCT-DUPLICATE collec-
tion of emulated trials to assess how design emula-
tion and population differences relate to variation 
in results between randomised controlled trials 
and real world evidence database studies that were 
designed to emulate them. We explored whether the 
characteristics of design emulation and population 
differences can reduce and therefore explain the 
residual heterogeneity in differences in effect size in 
a meta-regression analysis.

Methods
Our analysis was exploratory rather than confirm-
atory, meaning that the data used for the analysis 

Table 1 | Categorical emulation differences with possible levels, reference category, and description. All characteristics 
are binary
Characteristics Levels Reference category Description

Comparator emulation Good, moderate-poor Moderate-poor Good: randomised controlled trial 
had active comparator; moder-
ate: placebo was emulated with 
treatment unrelated to outcome; 
poor: placebo was emulated with 
treatment potentially related to 
outcome

Outcome emulation Good, moderate Moderate Good: outcome assessed with high 
specificity; moderate: outcome 
assessed with low specificity and 
high number of missing data

Run-in period to one treatment arm Yes, no No Yes: randomised controlled trial 
included a run-in phase that selec-
tively included responders to one 
treatment arm before randomi-
sation

Placebo control Yes, no No Yes: randomised controlled 
trial involved placebo comparator 
which was emulated with active 
comparator

Treatment started in hospital Yes, no No Yes: treatment started in hospital 
which cannot be captured in real 
world data

Dose titration during follow-up Yes, no No Yes: randomised controlled trial de-
signed with a dose titration during 
follow-up

Discontinuation of maintenance 
treatment without washout

Yes, no No Yes: randomised controlled trial 
required participants to discontinue 
some baseline treatments without 
allowing for a washout period after 
randomisation

Delayed effect Yes, no No Yes: treatment had a delayed effect 
possibly causing lower adherence 
in clinical practice recorded in real 
world data
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Figure 1 | Hazard ratios (95% confidence intervals) 
estimated in randomised controlled trials and real world 
evidence studies (pooled for all data sources). Diagonal 
line represents perfect emulation; all trials with points 
on the right side of the diagonal have an effect size 
estimated in the randomised controlled trial (RCT) that 
is larger than the effect size estimated in the pooled real 
world evidence study (RWE)
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were collected for another purpose. The conclusions 
drawn from our analysis might therefore help to 
formulate hypotheses to be tested in a subsequent 
confirmatory study. Our aim was to better understand 
emulation differences and how this affects variation 
in results between RCT-RWE study pairs.

RCT-DUPLICATE
The selection process for the RCT-DUPLICATE 
initiative is described in detail elsewhere.18 23 In 
summary, the RCT-DUPLICATE consortium emulated 
32 randomised controlled trials that were relevant 
to regulatory decision making and were potentially 
feasible to emulate based on insurance claims 
data because key study parameters, such as the 
primary outcome, treatment strategies, and inclu-
sion and exclusion criteria were measurable. The 
selected trials included a mix of superiority and non-
inferiority trials, trials with large and small effect 
sizes, and a mix of trials with active comparators and 
placebo added to active standard of care treatments. 
The consortium used three real world data sources 
to implement the database studies that emulated the 
randomised controlled trials: Optum Clinformatics 
Data Mart, 2004-19; IBM MarketScan, 2003-17; 
and subsets of Medicare parts A, B, and D (data from 
2011 to 2017 including all patients with a diagnosis 
of diabetes or heart failure, and data from 2009 to 
2017 including all patients who had been prescribed 
an oral anticoagulant). Whenever possible, the 
emulations of the randomised controlled trials were 

implemented in more than one of the data sources 
with a while on-treatment analysis (chosen because 
of the shorter duration of drug use in clinical practice 
whereas adherence to treatment is generally longer 
in randomised controlled trials) and the final anal-
yses were based on estimates resulting from a fixed 
effects meta-analysis of the implementations in all 
databases.

In this study, only trials where the primary anal-
ysis resulted in a hazard ratio were used. The LEAD2 
trial with continuous outcome was excluded. For two 
trials (ISAR-REACT5 and VERO) a χ2 test indicated 
that the results were heterogeneous across databases 
so that the meta-analysis could not be performed to 
obtain a pooled real world evidence estimate for the 
hazard ratio19 and these trials were also excluded. 
Online supplemental file, section A has a summary 
of the 29 trials included in the analysis. We evaluated 
hazard ratios that were adjusted for confounding by 
1:1 nearest neighbour propensity score matching on 
prespecified risk factors (chosen in discussion with 
clinical experts), as described in Franklin et al,19 for 
the RCT-RWE comparisons.

Design emulation and population differences 
identified in RCT-DUPLICATE
Emulation differences were recorded as covari-
ates in RCT-DUPLICATE. Differences in age and 
sex distributions were captured as numerical 
variables representing the difference in mean 
age or percentage of women (the value in the 
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Figure 2 | Difference in effect estimates (log hazard ratio with 95% confidence interval) between the randomised 
controlled trials and pooled real world evidence studies, depending on whether the study was closely emulated or not 
closely emulated. Horizontal line represents no difference between real world evidence and randomised controlled 
trial estimates (upplementary table E.2 shows more information on each study)

Table 2 | Model intercept and coefficient values (with 95% confidence intervals), and heterogeneity between real world 
evidence studies and randomised controlled trials, depending on model used. Heterogeneity close to 1 represents 
homogeneous effect size differences between study pairs
Model Intercept (95% CI) Coefficient (95% CI) Heterogeneity

Simple 0.002 (−0.061 to 0.066) — 1.905
Adjusted for close emulation 0.061 (−0.011 to 0.134) −0.159 (−0.278 to −0.040) 1.725

CI=confidence interval.

https://dx.doi.org/10.1136/bmjmed-2023-000709
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randomised controlled trial minus the value in the 
real world evidence pooled emulation). Table  1 
shows the categorical emulation difference char-
acteristics by reference category recorded in RCT-
DUPLICATE. 18

All characteristics in table 1 were summarised 
as a binary composite covariate, indicating if 
the RCT-RWE study pair was closely emulated 
or not closely emulated. More specifically, a 
study pair was considered closely emulated if 
the comparator and outcome emulations were 
at least moderate, and at least one of them was 
good, and if none of the following was true: 
follow-up started in hospital; run-in window 
that selectively included responders to one treat-
ment arm; effects of randomisation and discon-
tinuation of baseline treatment were mixed; and 
delayed effect over a long period of follow-up. 
The composite indicator was defined as part of 
the post hoc explorations by the RCT-DUPLICATE 
team18 to evaluate concordance in the results for 

randomised controlled trial-database pairs, with 
closer versus less close emulation of the design 
and research question based on the randomised 
controlled trial PICOT (population, intervention 
comparator, outcome, time).

Statistical analysis
All statistical analyses required that the effect esti-
mates from randomised controlled trials and real 
world evidence were approximately normally distrib-
uted. Hence log transformations were applied on 
hazard ratios. The standardised differences in the 
RCT-RWE study pairs were computed by dividing the 
difference in log hazard ratios by the standard error 
of the difference. The squared standardised differ-
ence is the Q statistic which was used to perform 
the Q test for heterogeneity between the randomised 
controlled trials and real world evidence studies.24 25 
The sum of all computed Q statistics was used as an 
overall test for heterogeneity between the RCT-RWE 
study pairs included in RCT-DUPLICATE.
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Heterogeneity can be quantified as a multi-
plicative parameter,26 which is an overdispersion 
parameter generally larger than one, inflating the 
model's standard errors. As described by Mawdsley 
et al,27 multiplicative heterogeneity is estimated by 
fitting a weighted linear regression on the observed 
differences from all RCT-RWE study pairs against 
a constant, with weights defined as the inverse 
of the squared standard error of the differences. 
Multiplicative heterogeneity is then simply this 
model's standard error, and absence of heterogeneity 
is achieved if the parameter is equal to 1. The heter-
ogeneity parameter is set to its lower bound of 1 if 
estimated to be <1.

Characteristics describing emulation differences 
are used to explain heterogeneity. With meta-
regression methods (chapter 7 of Handbook of 
meta-analysis28), the characteristics of the emula-
tion differences (ie, differences in age and sex 
distributions as well as each of the binary charac-
teristics summarised in table 1 and the composite 
indicator) are added to the weighted linear regres-
sion models estimating multiplicative heteroge-
neity. If the extracted residual heterogeneity from 
the more complex, adjusted model is smaller 
than the heterogeneity measured with the simple 
model (with only a constant), part of the variation 
can be explained by the set of included emulation 
differences.

To reduce the complexity of the meta-regression, 
avoid overfitting, and choose only the most predic-
tive of the p candidate characteristics, leave-
one-out cross validated mean squared errors29 were 
computed for all 2p possible candidate models. 
Many of the included characteristics were suspected 
to be dependent. The simplest model, with a mean 
squared error of at most one standard error from the 
smallest mean squared error across all models, was 
selected.30 The model coefficients for the included 
characteristics have to be interpreted with respect 
to the model's intercept, the difference in RCT-RWE 
effect estimates that remains when all binary char-
acteristics of emulation differences and the centred 
continuous characteristics are set to their refer-
ence or zero, respectively. Online supplemental file, 
section B gives a detailed description of the statistical 
analyses. All analyses were performed in R version 
4.3.2.31 Code and data to reproduce the analyses and 
recompile this manuscript are available from https://​
gitlab.com/heyardr/hte-in-rwe and from Heyard and 
Wang.32

Patient and public involvement
As a reanalysis of publicly available data, no patients 
or members of the public were involved in the 
conception, development, analysis, interpretation, 
or reporting of the results of our study. There are no 
plans to disseminate the study findings to patient 
and public communities.

Results
Figure  1 shows the estimated hazard ratios from 
the randomised controlled trials against the hazard 
ratios estimated with the pooled real world evidence 
studies (with 95% confidence intervals). Estimates 
from perfectly emulated trials would scatter around 
the diagonal line. Although more than half of the 
pooled estimates from the real world evidence 
studies tended to be smaller than the estimates for 
the randomised controlled trials, many were also 
larger. This finding is different from the results seen 
in the large scale replication projects where the effect 
size estimated in the replication study was generally 
smaller than in the original study, which might be 
attributable to publication bias or other questionable 
research practices, unlikely operating in this study.33 
This phenomenon is referred to as shrinkage of effect 
size.34 Also, an overall test of heterogeneity suggested 
strong evidence of variation between all study pairs 
in RCT-DUPLICATE (online supplemental figure C.1).

To better understand the variability in results 
in RCT-DUPLICATE, variation was quantified and 
its sources were investigated. Figure  2 represents 
the differences in log hazard ratio for each study 
pair depending on whether the study was closely 
emulated or not closely emulated. Trials catego-
rised as not closely emulated based on the indicator 
tended towards positive differences. The average 
difference in log hazard ratio over all included trials 
was estimated to be slightly negative (−0.015, 95% 
confidence interval −0.084 to 0.054), suggesting 
that, on average, the hazard ratio estimated with the 
real world data was larger than in the randomised 
controlled trial.

Table 2 shows the estimated multiplicative heter-
ogeneity comparing the pooled real world evidence 
studies with the randomised controlled trials, 
together with the model intercept and coefficient 
values (with 95% confidence intervals). The simple 
model refers to the weighted regression with only 
a constant whereas the second model is a meta-
regression adjusted for the binary characteristic, 
close emulation. Including close emulation in the 
weighted linear regression model reduced hetero-
geneity from 1.905 to 1.725, indicating that part of 
the observed variation between estimates in RCT-
RWE study pairs can be attributed to the composite 
covariate. Although the intercept of the simple model 
was close to zero, the intercept of the adjusted model 
(difference in log hazard ratio for trials that were 
not closely emulated) tended to be positive. Closely 
emulated trials had, on average, slightly negative 
differences (figure 3).

We explored the use of a set of explanatory char-
acteristics instead of the composite covariate, close 
emulation. Table 3 shows the univariate coefficients, 
respective model intercept, and residual heteroge-
neity. Some of the characteristics reduced hetero-
geneity more than others; for example, adding the 
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characteristic, discontinuation of maintenance treat-
ment without washout, gave the largest decrease in 
heterogeneity, from 1.905 to 1.260. The intercept 
in table 3 can be interpreted as the difference in log 
hazard ratio for the respective reference category 
of the binary characteristics or no difference in the 
distribution for the two continuous characteristics, 
age and percentage of women. Then all possible 
candidate models (210=1024), depending on which 
of the 10 characteristics are included, were fitted and 
the models' leave-one-out mean squared errors were 
computed. The final model was the simplest model 
with leave-one-out mean squared errors smaller 
than the minimum mean squared errors plus one 
standard error (online supplemental figure D.2). 
With this tuning parameter, three characteristics 
would be included. Table  4 shows the coefficient 
estimates of the models with the best performance 
for each number of included characteristics. The 
models summarised in table 4 resulted in the model 
performance and heterogeneity illustrated in online 
supplemental figure D.2.

The best model with three design emulation 
differences includes delayed onset of effect of drugs, 
discontinuation of maintenance treatment without 
washout, and treatment started in hospital. This 
model's residual heterogeneity was 1.003. Figure  3 
shows the association between the combination of 
these finally selected characteristics and outcome 
(difference in log hazard ratio). Only the predic-
tion intervals for the combinations with observa-
tions are displayed; for example, none of the trials 
in RCT-DUPLICATE had more than one of the three 
emulation differences set to yes. The three included 
characteristics were mutually exclusive and together 
were better in reducing observed heterogeneity than 

close emulation. Hence the remaining characteristics 
only added noise to the indicator for close emulation, 
or cancelled each other out.

Discussion
Principal findings
Based on data from the RCT-DUPLICATE initia-
tive, comparing results from RCT-RWE study pairs, 
we found that the study emulation characteristics 
delayed effect of treatment, discontinuation of treat-
ment during run-in period, and treatment started in 
hospital explained most of the observed variation 
beyond chance in this sample. In this collection of 
RCT-RWE study pairs, most of the observed varia-
tion in effect estimates could be explained by these 
three emulation characteristics. The results suggest 
that, on average, the hazard ratios estimated with 
real world data tended to be slightly larger than the 
hazard ratios estimated in the randomised controlled 
trials.

Surprisingly little variation was explained by 
placebo comparator, which was thought to be an 
emulation challenge, in the absence of placebo in 
clinical practice, and a source of confounding bias. 
This result might have been influenced by the quality 
of the placebo proxy that was used in emulation 
of placebo controlled trials for RCT-DUPLICATE. 
Although all of the included studies focused on a 
hazard ratio for the primary result, the proposed 
analysis can be applied to studies investigating other 
outcome measures (ie, risk ratios or risk differences). 
The meta-regression analyses, however, required 
that the estimates for all studies were on the same 
scale. Appropriate transformations could be applied 
to include studies whose primary analyses used a 
different scale.

Table 3 | Univariate coefficients (with 95% confidence intervals) for each candidate characteristic, ordered by 
increasing heterogeneity. For each row (each characteristic) a separate model was fitted, resulting in separate 
intercept and residual heterogeneity. The closer residual heterogeneity is to 1, the more the characteristic explains 
part of the variations. Residual heterogeneity and R2 values were added to further explain the proportion of variation 
for each covariate
Characteristics Intercept (95% CI) Univariate coefficient (95% CI) Residual heterogeneity R2

Discontinuation of maintenance 
treatment without washout (yes)

−0.079 (−0.129 to 
−0.029)

0.282 (0.189 to 0.3754) 1.260 0.578

Run-in period to one treatment 
arm (yes)

−0.056 (−0.114 to 
0.002)

0.249 (0.130 to 0.368) 1.511 0.393

Placebo control (yes) 0.073 (0 to 0.146) −0.172 (−0.286 to −0.059) 1.675 0.254
Comparator emulation (good) −0.061 (−0.150 to 

0.029)
0.117 (−0.005 to 0.239) 1.819 0.120

Dose titration during follow-up 
(yes)

0.024 (−0.053 to 0.100) −0.070 (−0.208 to 0.068) 1.904 0.037

Difference in mean age (centred) 0.009 (−0.057 to 0.074) −0.010 (−0.032 to 0.012) 1.909 0.031
Treatment started in hospital 
(yes)

−0.008 (−0.076 to 
0.060)

0.095 (−0.111 to 0.301) 1.909 0.031

Delayed effect (yes) 0 (-0.065 to 0.064) 0.254 (−0.370 to 0.878) 1.916 0.024
Difference in percentage of 
women (centred)

0.005 (-0.066 to 0.076) 0.001 (−0.005 to 0.007) 1.938 0.002

Outcome emulation (good) −0.003 (-0.137 to 
0.131)

0.007 (−0.146 to 0.159) 1.939 0.000
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Randomised controlled trials are seen as the 
standard in establishing the efficacy of medical prod-
ucts, but these studies might not be free of flaws in 
their implementation and might not always repre-
sent clinical practice. The results of multiple clinical 
trials that look at similar questions, even identical 
twin trials, can vary in their findings.35–39 Discordant 
results between randomised controlled trials and real 
world evidence studies that investigate similar use of 
drugs and outcomes should not necessarily discredit 
the real world evidence study before considering 
emulation differences that might result in assessing 
a slightly different causal question. Therefore, the 
emphasis should be on understanding where these 
differences come from, and the clinical or research 
question that is being asked by each study type.

Limitations of this study
Our study had some limitations. We have presented 
the results of an exploratory analysis with a limited 
sample size from 29 RCT-RWE study pairs, non-
randomly selected from the RCT-DUPLICATE initi-
ative. Therefore, we could only include a limited 
number of explanatory emulation characteristics 
in our models. Other emulation differences could 
further reduce residual heterogeneity. A follow-up 
study designed for purpose could derive and inves-
tigate other emulation characteristics that might be 
informative in the meta-regression.

The trials included in RCT-DUPLICATE were 
selected as having a high probability of being 
feasible to emulate with insurance claims data. 
Therefore, our results provide an understanding of 
how concordance in results between randomised 
controlled trials and database studies are influenced 
by concordance in design, but the specific coeffi-
cients should not be interpreted as generalisable 
because of the highly selected sample of trials. Also, 
the design emulation and population differences 
recorded in this study might not be a comprehensive 
list of all of the important emulation challenges that 
could be considered. Different emulation differences 
might be more or less relevant for different clinical 
areas, and the direction of the effect of these differ-
ences are context dependent, limiting the general-
isability of our empirical findings. Furthermore, the 
emulations were conducted with insurance claims 
data. Emulated randomised controlled trials from 
registry data or data from electronic health records 
might have other design emulation and population 
differences (eg, challenges to defining observable 
time when data from fragmented healthcare systems 
are used).

Conclusion
Overall, our study showed that a substantial 
proportion of heterogeneity between the results 
of randomised controlled trials and real world 
evidence studies can be attributed to differences in 

design emulation. Furthermore, our study showed 
how meta-regression can be used to define a more 
nuanced understanding of emulation differences.
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