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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- An alignment-free method that involves embedding genome sequences into Grassmann manifolds of different dimensions.

- Geodesic distance is used to capture the relation between chaos game representation frequency matrices of genomes.

- The distribution of genomes on the manifolds is demonstrated in 3D space using multi-dimensional scaling.

- Our method provides a new perspective on manifold-based embedding for alignment-free approaches.
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It is important to understand the geometry of genome space in biology. After
transforming genome sequences into frequency matrices of the chaos
game representation (FCGR), we regard a genome sequence as a point in
a suitable Grassmannmanifold by analyzing the column space of the corre-
sponding FCGR. To assess the sequence similarity, we employ the general-
ized Grassmannian distance, an intrinsic geometric distance that differs
from the traditional Euclidean distance used in the classical k-mer fre-
quency-based methods. With this method, we constructed phylogenetic
trees for various genome datasets, including influenza A virus hemaggluti-
nin gene, Orthocoronavirinae genome, and SARS-CoV-2 complete genome
sequences. Our comparative analysis with multiple sequence alignment
and alignment-free methods for large-scale sequences revealed that our
method, which employs the subspace distance between the column spaces
of different FCGRs (FCGR-SD), outperformed its competitors in terms of
both speed and accuracy. In addition, we used low-dimensional visualiza-
tion of the SARS-CoV-2 genome sequences and spike protein nucleotide se-
quenceswith ourmethods, resulting in some intriguing findings.We not only
propose a novel and efficient algorithm for comparing genome sequences
but also demonstrate that genome data have some intrinsic manifold struc-
tures, providing a new geometric perspective for molecular biology studies.

INTRODUCTION
The genome space is the entire set of genomes of all living organisms, which

can be used to gain a comprehensive understanding of the dynamic genomic
evolutionary process.1 Mathematically, the genome space can be regarded as
a moduli space of genomes, where each point in the space represents a unique
genome, and the distance between two points corresponds to the biological dis-
tance between those corresponding genomes.2 Therefore, in biology, it is an
important issue to understand the geometry of genome space.3

The study of genome space geometry is still at an early stage. One well-es-
tablished approach is using principal component analysis (PCA) methods
based on Euclidean distance to establish the mapping between the distribu-
tions of certain species such as humans and their genomes. These methods
usually apply PCA to downscale the genome-type data of loci in genome
sequences to two-dimensional indices and then visualize the relationship
between the distribution of the genome in Euclidean space with the actual geo-
spatial distribution of some species.4-7 Other studies have employed multi-
dimensional scaling (MDS) methods to visualize the relationship among the ge-
nomes of different species, such as humans,8 fruits,9 bacteria,10 vertebrates,11

and horses.12 These studies demonstrate that the landscape of various species
can be well presented at the genetic level by combining distance matrices
derived from genomic data with downscaling visualization methods. In addi-
tion, since the SARS-CoV-2 pandemic, numerous studies have focused on visu-
alizing and analyzing the landscape of coronaviruses using similar methods for
both complete genome sequences13 and genomic fragments, such as the
spike protein coding sequence.14-16

A good understanding of the geometry of the genome space enables scien-
tists to make genome comparisons with biological significance by measuring
the distance between points in the genome space. Genome comparison is an
indispensable task of bioinformatics, allowing researchers to study evolutionary
relationships among various species, and construct phylogenetic trees by
comparing sequence similarity, which is also an important research topic in
computational biology. Genome comparison also plays a vital role in identifying
related genes, inferring gene functions, and tracing the origin of genes.17

The traditional genome comparison method is referred to as “sequence align-
ment,”which employs a specificmathematical model or algorithm to identify the
maximum number of matching bases or residues between two or more se-
quences.When aligningmore than two sequences, this process is knownasmul-
tiple sequence alignment (MSA). The most commonly used MSA methods
include CLUSTALW,18 MAFFT,19 and MUSCLE.20 In the realm of phylogenetic
reconstruction, state-of-the-art methods, such as maximum likelihood or
Bayesian inference, are primarilyMSA-based approaches. Thesemethods gener-
ally yield reliable results when the sequences under study are closely related and
can be reliably aligned. Recently, there has been considerable attention from re-
searchers toward applying deep learning to phylogenetic reconstruction. Accord-
ing to the review,21 three main research paths have emerged: a quartet-based
method that starts from inferring simple quartet topology and then amalgam-
ating them22; a distance-based method that infers sequence distance matrices
through neural networks23; and the construction of phylogenetic trees directly
from the results of MSA using generative adversarial networks.24 However, it is
crucial to note that despite these advancements, most work in this field relies
on the results of MSA, which means that phylogenetic reconstruction of large-
scale sequences is still not free from the expensive MSAs that are usually time
consuming, memory intensive, and impractical for large-scale genome se-
quences. Therefore, it has become an active research area to develop efficient
and accurate alignment-free methods to compare whole genome sequences,
given the exponential growth in genome sequences facilitated by modern
sequencing technologies.
An alignment-free alternative involves transforming molecular sequences into

objects suitable for analysis using established mathematical tools in linear
algebra, probability statistics, and information theory, etc. These methods can
then redefine and calculate the similarity or distance between sequences. In
contrast to traditional approaches relying on MSA, alignment-free methods
can efficiently extract information to facilitate rapid computation.25 There are
numerous alignment-freemethods for sequence analysis, leveraging various ap-
proaches such asword frequencies, the length ofmatchingwords, informational
content between sequences, chaos game representation, and graphical repre-
sentation of DNA sequences.26 For instance, Blaisdell27 employed the k-mer
model based on the classic string representation for genome sequence compar-
ison. Qi et al.28 introduced composition vector tree (CVTree) using a composition
vector approach. Li et al.29 proposed a normalized compression distance (NCD)
based on information theory. Kantorovitz30 utilized k-mer counts for comparing
regulatory sequences. Sims et al.31 utilized feature (or k-mer) frequency profiles
(FFP) of whole genomes for genome comparison. Deng et al.32 developed the
alignment-free natural vector method. For a comprehensive overview of align-
ment-free methods, we refer to the review paper.26

The chaos game representation (CGR) is a highly effective tool for trans-
forming genome sequences into CGR frequency matrices.33 It holds signif-
icant utility across various bioinformatics domains, including alignment-
free sequence comparison, phylogenetic analysis, and as an encoding
method for machine learning tasks.34 Several alignment-free methods for
sequence comparison and phylogenetic analysis leverage CGR.35-41 For
instance, Hatje and Kollmar38 used the Euclidean distance and the Pearson
distance between the CGR frequency matrices to produce an alignment-
free method (we refer to it as FCGR). Pei et al.41 introduced the extended
natural vector combining the CGR method. For a thorough introduction to
CGR and its applications in bioinformatics, we refer to the review paper.34

Previous studies have also utilized CGR in combination with other methods
to reconstruct coronavirus phylogeny, as evidenced by Sengupta et al.42

and Paul et al.43 However, it is important to acknowledge that these
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studies focused solely on a limited subset of members within the Orthocor-
onavirinae subfamily. Consequently, they cannot offer a comprehensive
understanding of the entire genome landscape.

Since CGR transforms a genome sequence into amatrix, our goal is to extract
information and analyze features of the original sequence from this matrix. To
achieve this, we focus specifically on the column space of each FCGR, consid-
ering the pairing between purines and pyrimidines. In mathematics, the moduli
space of subspaces—the Grassmann manifold—serves as a fundamental geo-
metric object that parameterizes the set of all linear subspaces of a certain
dimension in a fixed ambient vector space. The geometric properties of the
Grassmann manifold are well understood mathematically, and many quantities,
such as the geodesic distance between two points in aGrassmannmanifold, can
be efficiently computed. These characteristics render the Grassmann manifold
an appropriate tool with the potential to be applied to our genome comparison
problem. For a more detailed introduction to the Grassmann manifold, please
refer to the supplemental information and the references therein.

In this paper, we propose a novel approach for studying the geometry of
the genome space by considering a genome sequence as a point in a suitable
Grassmann manifold based on the column space of the corresponding
FCGR. To explore the intrinsic geometry of the genome space with the pro-
posed method, we define the distance between genome sequences as the
generalized Grassmannian distance44 between their corresponding points
in the genome space. Specifically, when the points are in the same Grass-
mann manifold, the distance is the usual geodesic distance, whereas,
when they are in different Grassmann manifolds, it is the distance between
a point in one of the Grassmann manifolds and a specific Schubert variety
within the Grassmannian.44 With this distance, we constructed phylogenetic
trees for various datasets, which numerically demonstrates that our method
is efficient and accurate in comparison to both MSA and alignment-free
methods. In addition, we employed MDS to visualize the genome sequences
of all members of the Orthocoronavirinae subfamily, along with the genome
sequences of the major SARS-CoV-2 variants and the spike protein coding
sequences. This visualization was represented in three-dimensional
Euclidean space, presented as a point cloud. Notably, the visualization pro-
cess did not use any clustering technique, but instead, it directly utilized
the generalized Grassmann distance matrix as an input to MDS. The results
of this visualization offer a novel and more intuitive perspective for under-
standing the relationships within the Orthocoronavirinae subfamily and the
relationships between the Omicron variant of SARS-CoV-2 and other
variants.

RESULTS
Evaluation of FCGR-SD as an alignment-free method

To evaluate the effectiveness of FCGR-SD as an alignment-free sequence
comparison method, we conducted assessments using various datasets and
compared it against competing methods. Since the choice of the parameter n
(see Equation 2.1 in the supplemental information) in FCGR-SD directly depends
on the sequence length, we constructed two datasets with different orders of
magnitude in sequence length. The first dataset consisted of 30 influenza A virus
segment 4 hemagglutinin (HA) gene sequences with an average length of
1,718.8, while the second dataset contained 44 coronavirus complete genome
sequences with an average length of 29,759. For each dataset, we assess the
performance of six methods, namely FCGR-SD, CVTree, NCD, FFP, FCGR, and
MAFFT. We evaluated their performance by establishing phylogenetic relation-
ships, comparing the topological structures of phylogenetic trees, andmeasuring
the running time of each method.

To numerically evaluate the performance of different methods and identify
satisfactory (though not necessarily optimal) parameters in our approach, we
calculated the Robinson–Foulds (RF) distance between the phylogenetic tree
constructed by each method and the reference tree constructed by MAFFT
(see section benchmark for comparison: the multiple sequence alignment base-
don fast fourier transform in the supplemental information for the reason of
choosing MAFFT as the benchmark). The RF distance quantifies the topological
disagreement between the inferred method and the reference trees, where a
small value indicates close similarity in tree topology,while a large value suggests
limited overlap in bipartitions between the two trees.45 We employed the R pack-
age TreeDist46 to compute the RF distance.

Influenza A virus HA gene. The first dataset consists of 30 linear cRNA se-
quences of the HA gene of influenza A viruses from six different subtypes,
namely H1N1, H2N2, H3N2, H5N1, H7N3, and H7N9. For each subtype, we
collected five sequences from the NCBI nucleotide database. The lengths of
these sequences range from 1,695 to 1,773, with an average length of 1,718.8.
Therefore, we set n = 6zlog4(1,718.8), which corresponds to 64 3 64 FCGR.
We chose the optimal value of the parameter p as 0.71, which leads to the lowest
RF distance to the reference tree with our method.
The phylogenetic trees are generated by the methods MAFFT (combining the

maximum likelihood (ML) method), FCGR- SD, CVTree, FFP, NCD, and FCGR,
shown in Figure 1, which implies that all themethods accurately classify the influ-
enza A viruses into six subtypes. However, our method correctly identifies the
major cluster H3-H7, as well as two secondary clusters, H7N3-H7N9 and
H2N2-H5N1, consistent with the reference method MAFFT. In contrast, no
competing alignment-free methods perform similarly.
In order to assess our method more precisely, we calculated the RF distance

between the resulting trees of those five alignment-free methods and the refer-
ence tree provided by MAFFT. The results summarized in Table 1 demonstrate
that our method’s phylogenetic tree exhibits the smallest RF distance compared
to the remaining four alignment-free methods. This suggests that the tree topol-
ogy of our method in this dataset is the closest among five alignment-free
methods to that of the alignment-based method MAFFT.
SARS-CoV-2 complete genome. To determine the optimal truncating

parameter for our study on coronavirus, we downloaded all genome sequences
from the Global Initiative on Sharing All Influenza Data (GISAID) and randomly
selected 44 sequences from 8 of the major variants (Alpha, Beta, Gamma, Delta,
Omicron, Lambda, Mu, and GH/490R), so that each group contains 4–6 se-
quences that are relatively evenly distributed geographically. This yielded the da-
taset consisting of 44 genome sequenceswith the length ranging from29,378 to
29,866 with an average length of 29,759. We then set n = 8zlog4(29,759), which
corresponds to 2563 256 FCGR, and we chose the optimal value of the param-
eter p = 0.75 to obtain the lowest RF distance with our method.
Figure 2 displays the phylogenetic trees generated by those six methods

considered in the previous subsection, which demonstrates that all methods
accurately divide the SARS- CoV-2 genomes into eight clusters, with Omicron be-
ing a single major cluster. This indicates that Omicron is markedly distinct from
other variants of SARS-CoV-2, which is consistent with the conclusions given by
Xia et al.47 The evolutionary tree produced by our proposed method effectively
identifies the closer relationship between Alpha and Gamma, as well as Mu,
GH/490R, Delta, and Lambda, but it fails to recognize the relationship between
Beta and other variants. In contrast, the competingmethods perform evenworse
in discerning the phylogenetic relationships between these clusters. As shown in
Table 1, the phylogenetic tree generated by our method again exhibits the small-
est RF distance to MAFFT compared to the remaining four alignment-free
methods in this dataset.
Time statistics. To compare the computational efficiency of different

methods, we conducted all calculations on the same computer (Intel i5-
12500H with 8G + 32G DDR5 4800MHz RAM) and cleared the memory before
each calculation. Table 2 summarizes the time costs of FCGR-SD, CVTree, NCD,
FFP, FCGR, andMAFFT to obtain pairwise distancematrix. As shown in Table 2,
due to the complexity of the singular valuedecomposition, the computational ef-
ficiencyofFCGR-SD isslightly lower thanthatof FFP.However, it outperformsall
the restof themethods in termsofcomputingspeed.At thesametime,FCGR-SD
isable toproduce resultsclosest to thephylogenetic treeconstructedbyMAFFT.

Toward survival manifold
In evaluating the performance of FCGR-SD, we observed that similar organ-

isms have comparable truncation dimensions in the first-stage singular value
decomposition. As the sequence length affects the truncation dimension, it
was necessary to construct a dataset with similar sequence lengths and the
same values for the parameter n to investigate whether closely related organ-
isms tend to occupy similar truncating dimensions.
Therefore, we selected various viral sequences of the Orthocoronavirinae sub-

family as our dataset. We downloaded 2,669 genome sequences fromOrthocor-
onavirinae subfamily except for SARS-CoV-2 from the NCBI database, and then,
we added 614 SARS-CoV-2 genome sequences from GISAID database, resulting
in a dataset of 3,283 sequenceswith the length ranging from26,592 to 31,526, all
corresponding to n = 8.
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We computed the truncated dimension of the first-stage singular value
decomposition for each organism in the dataset. As illustrated in Figure 3, the
truncation dimension exhibits diversity among virus types.

Firstly, we observe that the distribution of truncation dimensions is relatively
concentrated for most viruses when the truncation parameter p is specified
(e.g., SARS-CoV-2 is entirely concentrated at dimension 42). The most loosely
distributed viruses in the figure are the “D5｜Unc-DeltaCoVs,”which are Deltacor-
onaviruses not yet categorized at the subgenus level in the NCBI database. This
suggests that these unclassified sequences likely belong to more than one
subgenus.

Secondly, different sequence types of the same species may share similar
truncation dimensions. For instance, bovine coronavirus, human coronavirus
OC43, and porcine hemagglutinating encephalomyelitis virus, all classified as be-
tacoronavirus 1, exhibit similar truncating dimensions.

Furthermore, we note that this diversity in truncating dimensions reflects
the variability in the degree of concentration of singular values in the FCGR.
For the same truncation parameter p, sequences with lower truncation di-
mensions tend to have a more concentrated distribution of singular values,
suggesting that their theoretically “optimal truncation dimensions” will be
lower and vice versa. Consequently, assuming we can determine the optimal
truncation dimension for each sequence, this dimension also delineates the
Grassmann manifold that best fits the sequence, which we refer to as the
“survival manifold” of the sequence.
This introduces challenges in measuring distances between sequences, as

employing intrinsic geodesic distances directly within the same Grassmann
manifoldmay not be applicable. With the introduction of survival manifolds, it be-
comes necessary to consider how distances are defined between manifolds of
different dimensions.Weaddress this by enabling themeasurement of distances
between different survivalmanifolds through the application of geometric results
on cross-dimensional generalizations of geodesic distances.

A geometric dive into SARS-CoV-2 genome sequences
We evaluated the accuracy and efficiency of our method for assessing

sequence similarity on larger datasets by conducting nearest-neighbor classifica-
tion on two extensive datasets. From the dataset composed of 3,283

A

B

C

DE

F

Figure 1. Phylogenetic trees of 30HA gene cRNA sequences of influenza A virus Each subtype is represented by a specific color. Themethods employed for tree construction are as
follows: (A) MAFFT alignment + maximum likelihood tree building; (B) FCGR-SD with parameters k = 6, p = 0.71; (C) CVTree; (D) FFP; (E) NCD; and (F) FCGR. The numbers displayed
indicate the RF distance.

Table 1. RF distance between MAFFT reference tree and resulting trees

Dataset FCGR-SD CVTree FFP NCD FCGR

30 INF 8 10 10 12 10

44 SARS2 42 48 48 56 52
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Orthocoronavirinae sequences, we filtered out 28 sequences missing subgenus
tags, left with 3,255 sequences distributed across 4 genera and 18 subgenera.
We calculated a distance matrix of size 3,255 3 3,255 using FCGR-SD and
then evaluated nearest-neighbor classification accuracy using genus and subge-
nus classifications as labels, respectively. For each sequence, we identified the
nearest sequence label and verified whether they matched. We achieved classi-
fication accuracies of 98.99% at the genus level and 98.53% at the subge-
nus level.

Moving to a finer level of classification, we focused on classifying the Pango
lineage within SARS-CoV-2. Previous work in this area is documented in Ali
et al.,48 where the authors compared classification outcomes using a dataset
of 7,000 amino acid sequences of SARS-CoV-2 spike proteins from 22 randomly
selected variants from theGISAIDdatabase. State-of-the-art classification results
ranged from 84% to 85% in the k-nearest-neighbor-based classification results.
For comparison, we extracted sequences belonging to the 22 variants from a
pool of 10,348 DNA sequences encoding the SARS-CoV-2 spike protein, yielding
a dataset of 2,610 sequences containing 21 PANGOLIN variants (excluding AY.4,
which is absent from our dataset). Employing this dataset, we performed near-
est-neighbor classification using PANGOLIN variants as labels and achieved an
accuracy of 85.13%.

These findings demonstrate that by utilizing the FCGR-SD method, we can
achieve relatively high nearest-neighbor classification accuracies ranging from
the genus level to the variant level, indicating the validity of embedding coronavi-
rus sequences into Grassmann manifolds.
To visualize the distribution of the Orthocoronavirinae dataset and different

variants of SARS-CoV-2 on Grassmann manifolds, we require a distance ma-
trix-based visualization method such as MDS, t-SNE, LLE, UMAP, or ISOMAP. A
number of previous studies have attempted to visualize theSARS-CoV-2 genome
sequence or the S protein coding sequence within two-dimensional Euclidean
space, primarily utilizing methods such as t-SNE.14-16,49,50 However, our goal is
to preserve the original manifold structure as accurately as possible in a low-
dimensional space, and t-SNE or another popularmethodmay lead to distortions
in the original geometry. Since the distance matrix inherently contains the struc-
ture information, we use a non-metric MDSmethod that conserves the distance
matrix.
MDS51 is a suitable method for visualizing data distribution since it con-

structs a low-dimensional space using the similarity between sample pairs to
ensure that the distances and similarities in the high-dimensional space are
consistent. The main difference between metric and non-metric MDS lies in
whether the input matrix is Euclidean. We employ the non-metric MDS method
in our work to allow for non-Euclidean distances. Our visualization approach is
similar to ISOMAP52 but is more intrinsic, because we use the generalized
Grassmannian distance instead of constructing a neighborhood graph and us-
ing the geodesic distance (nearest distance between each pair of data point)
on the graph.
We calculated distance matrices for 3,283 coronavirus sequences, 10,348

SARS-CoV-2 genome sequences, and 10,348 spike protein coding sequences

F B

AE

C

D

Figure 2. Phylogenetic trees of 44 genome sequences of SARS-CoV-2 Each variant is represented by a specific color. Themethods employed for tree construction are as follows: (A)
MAFFT alignment +maximum likelihood tree building; (B) FCGR-SDwith parameters k = 8, p = 0.75; (C) CVTree; (D) FFP; (E) NCD; and (F) FCGR. The numbers displayed indicate the RF
distance.

Table 2. Time consumed of methods compared

Dataset FCGR-SD CVTree NCD FFP FCGR MAFFT+ML

30 INF 0.07 s 0.64 s 0.14 s 0.06 s 0.23 s 3 s + 8 min 16 s

44 SARS2 1.86 s 7.91 s 10.43 s 1.22 s 5.83 s 16 min + 18 h 12 min
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of SARS-CoV-2, respectively. We then used MDS for dimensionality reduction
visualization, and the results are shown in Figures 4 and 5.

In Figure 4, we observed that coronaviruses are distributed on an approxi-
mately spherical surface with different genera occupying different local areas.
SARS-CoV-2 is located on an island-shaped area surrounded by SARS, which
resembles Antarctica and the 60� south latitude circle. However, the “island”
of SARS-CoV-2 is divided into two areas: one part consists of Omicron BA.2,
BA.4, and BA.5, while the other part comprises other mutant strains. In Fig-
ure 4B, we noticed that within the Omicron variant, BA.2, BA.4, and BA.5
form one cluster, while BA.1 and other variants form another. This finding sug-
gests that BA.1 is closer to other types of variants than the rest of Omicron
variants, which may be characterized in practice by lower infectivity, etc. The
results in Figure 5A are consistent with the previous coronavirus visualization
results, showing that BA.1 is closer to other types of mutant strains than
BA.2, BA.4, and BA.5. Finally, in Figure 5B, we observed that the spike protein
coding sequences of the Omicron variant are more disparate than those of
the remaining variants, which is consistent with the conclusions given by
Simon-Loriere and Schwartz.53

From the visualization results, we concluded that Omicron BA.1 already
showed characteristics closer to the non-Omicron variants than the other Omi-
cron variants. This is in agreement with previous virologists that some diver-
gence has occurred within Omicron and that the later variants such as BA.4
and BA.5 have shown significant genomic-level changes compared to
BA.1.54,55 In addition, based on the visualization of the genome of the SARS-
CoV-2 and the S protein coding sequence, we further concluded that the differen-
tiation within Omicron is not significantly reflected at the S protein level. There-
fore, it implies that the differentiation differences within Omicronmay be caused
by a combination of individual genes rather than by differences in S pro-
teins alone.

DISCUSSION
In this paper, we propose a novel approach on exploring the geometry of

genome space by considering a genome sequence as a point in an appropriate
Grassmann manifold via the column space of the corresponding frequency
matrices of CGR. With this geometric explanation, we propose a new align-
ment-free genome comparisonmethod, named FCGR-SD, which uses the gener-
alized Grassmannian distance as a geometric distance measure.
Compared to traditional MSA methods, FCGR-SD occupies several advan-

tages. Neither similar lengths of genome sequences nor normalization of the fre-
quency matrix are necessary with FCGR-SD. Moreover, the proposed method
has a lower computational complexity since it only uses singular value decompo-
sition. Numerical results basedon several datasets have also verified the superior
performance of the proposed method FCGR-SD in large genome data analysis.
Genomes are considered as points on different Grassmann manifolds based

on the molecular structure similarity between bases with the proposed method.
The phylogenetic tree constructed with the proposed method has a more accu-
rate topological structure, indicating that genetic data usually have some intrinsic
manifold structures with biological significance. This topic is worth further in-
depth study in genome sequence analysis. In our future work, we will explore
more detailed and larger-scale studies of the survival manifold phenomena to
gain deeper insights into the underlying biological mechanisms.

MATERIALS AND METHODS
See the supplemental information for details.
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